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The Schwarz reflection principle in one complex vari-
able can be stated as follows. Let M and M’ be two real
analytic curves in C and # a holomorphic function defined
on one side of M, extending continuously through M, and
mapping M into M’'. Then A has a holomorphic extension
across M. We address here the question of extending this
classical theorem to higher complex dimensions for some
class of hypersurfaces and mappings.

1. Introduction and main results. Let M and M' be two
germs of real analytic hypersurfaces at 0 in C**!, n > 1, and H a
holomorphic mapping defined on one side of M, extending smoothly
up to M, and mapping M into M’, with H(0) = 0. We say that
the reflection principle holds if H extends holomorphically across
M at 0. In the complex plane, by the classical Schwarz reflection
principle, the reflection principle holds. The first results in higher
dimension were due to H. Lewy [16] and S. Pincuk [18]. They
proved independently that the reflection principle holds if M and
M’ are strictly pseudoconvex, and A is a diffeomorphism from M
to M'. Other results on the reflection principle have been obtained
by Baouendi, Jacobowitz and Treves [2], Baouendi and Rothschild
(3], [4], [5], Bell [6], Diederich and Fornaess [10], Diederich and
Webster [11], as well as by other mathematicians. In [3] and [4]
the authors obtain a reflection principle for M and M’ germs of real
analytic hypersurfaces at 0, of finite type, satisfying an algebraic
condition. The mapping they consider is of finite multiplicity. In [5]
the authors consider the case of C? and obtain a more general result
which allows M and M’ to be of infinite type; in fact they obtain a
necessary and sufficient condition for the reflection principle to hold.
In this paper, we address the question of extending the reflection
principle in C**1, n > 1, to a new class of germs of real analytic
hypersurfaces allowing them to be of infinite type, and to a new
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class of mappings, generalizing the results obtained in [3], [4], and
[5].

To make this more precise, we first introduce notation and def-
initions needed in the sequel. Let M be a germ of a real analytic
hypersurface at 0. After a local holomorphic change of coordinates,
we can assume that there exists €2, a sufficiently small open neigh-
borhood of 0 in C**!, n > 1, such that M is given in Q by

(1.1) Imw = ¢(z,Z, Rew),

with z € C*, w € C, ¢ a real valued convergent power series
and ¢(z,0,w) = 0. Such a choice of coordinates is called normal
coordinates.

Let Ot = {(z,w) € QImw > ¢(z,%,Rew)}, and similarly
Ot = {(z,w) € QImw > ¢(z,Z,Rew)}. Consider a mapping
‘H holomorphic in Q, smooth in ¥, valued in C**! and satisfying
H(M) C M', where M’ is another germ of a real analytic hyper-
surface at 0 in C**!| also given in normal coordinates (', w'). We
shall always assume H(0) = 0. We shall say that such (M, M', H)
satisfy the hypothesis of the reflection principle.

Write H = (F1, Fs, ..., Fn,G) = (F,G) and denote by (Fi, F,

,Fr,G) = (F,G) the formal holomorphic Taylor series of the
components Fy, Fy, ..., Fn, G at 0. Let H = (fy,..., fn,g) be the
restriction of { to M. Recall that M is flat if after a holomorphic
change of coordinates in C**!, M is given by Imw = 0.

Let M be a germ of a real analytic hypersurface given in normal
coordinates by

(1.2) Imw = ¢(z, 2, Rew) = (Rew)™¢(z, Z, Rew),

where ¢ is a real valued convergent power series in z, Z, Re w such
that ¢(z,2,0) Z 0 and m > 0. We shall see that m is independent
of the choice of normal coordinates. Write

(1.3) ?(2,¢,0) Zaa

R

Note that m = 0 if and only if M is of finite type in the sense of
(8], [15]. We introduce the following definition.

DEFINITION 1.4. M is m-essential at 0 if the ideal (an(2)) in
the ring of formal power series C[[z]] generated by all the a,(z) is
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of finite codimension, i.e.
(1.5) m — ess.type M = dim¢ C[[2]]/(aa(2)) < o0.

Note that M is O-essential at 0 if and only if M is essentially
finite in the sense of [2], [3]. Also we shall see that the above
definition is independent of the choice of normal coordinates. Recall
the following definitions:

Let (M, M',H) satisfy the hypothesis of the reflection principle.
‘H is not totally degenerate at 0 if

(1.6) det (—afl(z, 0)) £0, j,k=1,...,n.
azk

Also, H is of finite multiplicity at 0 if
(1.7) mult.H = dim¢ C[[z]]/(F'(2,0)) < oo.

Note that 1.7 implies 1.6 by standard algebra ([12]). It is known
that these two definitions are independent of the choice of normal
coordinates ([3]). For germs of real analytic hypersurfaces which
are m-essential at 0, we have the following theorems which extend
the results obtained in [3] and [4].

THEOREM 1. Let (M, M', H) satisfy the hypothesis of the reflec-
tion principle. Then H extends holomorphically to a neighborhood
of 0 in C**1, if one of the following conditions holds:

(1) M is m-essential at 0,G Z 0, and H not totally degenerate at

0.
(2) M’ is m/-essential at 0, G # 0, and H of finite multiplicity at
0.
(3) M’ is m'-essential at 0, G # 0 and H not totally degenerate
at 0.
Write
(1.8) G(z) =) G;(2)w?,

Jj=ko

with ko minimal so that G,(z) # 0. We shall see that ko is inde-
pendent of the choice of normal coordinates.
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THEOREM 2. Let (M, M',H) satisfy the hypothesis of the reflec-
tion principle. If either
(1) M 1is m-essential at 0, G £ 0, H is not totally degenerate at
0, or
(2) M' is m'-essential at 0, G # 0, and H is of finite multiplicity
at 0,
then

(1.9) m — ess. type M = (mult. H)(m' — ess. type M’),
with all three integers finite, and

(1.10) m—1=ko(m' —1).

Let (M, M', H) satisfy the hypothesis of the reflection principle.
Write

(1.11) F(z,w) =) Ff(z)w’

=0
yvhere Fi(z) = (Fj(2), Fjy(2), ..., Fj,(2)) are formal power series
in z.

Define [ to be minimal such that

(1.12) Fy(z) # F(0).

We shall see that [ is independent of the choice of normal coordinates
if M is not flat, M' is of infinite type and G # 0. We introduce the
following definition.

DEFINITION 1.13. Let (M, M', H) satisfy the hypothesis of the
reflection principle, with M not flat, M’ of infinite type, and G # 0.
We say that H is [-tangentially finite at O if

(1.14) | — tang.mult.’H = dime C[[2]]/(F (2) — F;(0)) < oo.

Note that #H is O-tangentially finite if and only if H is of finite
multiplicity. We shall see that the above definition is independent
of the choice of normal coordinates. For H [-tangentially finite, we
get the following extension result.
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THEOREM 3. Let (M, M',H) satisfy the hypothesis of the reflec-
tion principle, with M’ of infinite type. Then H extends holomor-
phically to a neighborhood of 0 in C**!, n > 1, if any one of the
following conditions holds
(1) M is non flat, M’ is m’'-essential, H is l-tangentially finite

and G # 0.
OF};
Ozk

(2) M is non flat, M’ is m'-essential, det ( (z)) # 0 and
G #0.
As for mappings of finite multiplicity, there exists a relationship
between m-ess.type M and [-tang.mult.. Indeed we have:

THEOREM 4. Let (M, M',H) satisfy the hypothesis of the re-
flection principle, with M m-essential at 0, M' of infinite type,
OF}
G #£0, det (—a-z—ll(z)) #£0, j,k=1,...,n.Then H is l-tangentially
k
finite and

(I — tang. mult. #) divides(m — ess. type M).

Note that under the assumptions of Theorem 4, M’ need not be
m/-essential at 0 as it is shown in the following example.

EXAMPLE 1.15. Consider, in C?, M given by
w — 0 = 2iw[®(|z]? + |22[%) + 2i|w|"®]z|*°
M’ given by
' — it = 2 Pl + 2k (4 + 1)
Fi(z,w) = 1w, Fa(z,w) = 20w, G(z,w) = w.

Here M is 6-essential but M’ is not m'-essential.

REMARK 1.16. Our proof of part (3) of Theorem 1 in the finite
type case is different from that given in [3] and [4]. The proof of
Theorem 3 for C? is also different from that given in [5].

Section 2 deals with invariants associated to germs of real analytic
hypersurfaces and holomorphic maps; we introduce new numerical
invariants associated to germs of real analytic hypersurfaces and
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holomorphic maps. In Section 3, we give the proofs of Theorem 1
and Theorem 3. The proofs of Theorem 2 and Theorem 4 are given
in Section 4.

The results of this paper were part of the author’s Ph.D. disserta-
tion at the University of California, San Diego. The author wishes
to thank Salah Baouendi and Linda Rothschild for their help and
support during the completion of this work.

2. Invariants associated to germs of real analytic hyper-
surfaces and holomorphic maps. Let M be a germ of a real
analytic hypersurface given in normal coordinates by 1.1. Put w =
s + . We have the following lemma:

LEMMA 2.1. The integer ko defined by (1.8) is independent of the
choice of normal coordinates.

This is easily shown by observing from the definition of normal co-
ordinates that we have G(z,w) = wG'(z,w), with G*(z, w) another
formal power series.

PROPOSITION 2.2. Let (M, M',H) satisfy the hypothesis of the
reflection principle, with M' of infinite type, and G £ 0. Then the
following is true:

(1) Gko(z) = Gko(O) €ER - {0}
(2) IfH is not totally degenerate, then

m—-1= ko(ml - 1),
where m and m' are defined by (1.2).

We have the following corollary:

COROLLARY 2.3. The integer m defined by (1.2) is independent
of the choice of normal coordinates.

The proof is immediate by using (2), since ko = 1 in this case.

Proof of Proposition 2.2. Applying Proposition 3.16 of [4], we
obtain tha,tg M is of infinite type. Let M given by 1.2 and M’ given
by ' = '™ (2,2, s'). Write G(z,w) = w*GF(z, w), with ky > 1.
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As H(M) C M', we get
(2.4)
(s 4+ is™@(z, Z, 5))FoGRo — (5 — is™@(z, 2, 5) )0 Gko
_ o ( (s 4+ is™@(z, 2, 5))o Gk + (s — is™P(z, Z, s))koﬁ)"‘

2
G+G
w(FF —-2——),

1

where
G* = G* (2,5 + is™P(z, 2, 5)) and G* = G*(z, 5 — is™P(z, 2, 5)).
Using the binomial formula, we can rewrite 2.4 as
(2.5) sko(GFo — G¥o) 4 csmHho~1gIGRe 4 GRo + (2, Z, 5)]
G+ G) ,
2

— (! gkom’ [Gko 4+ Gho 4 B(z, z, 8)]m,¢ (F F

with ¢, ¢ constants # 0.
(2.6) «(0,z,3) =a(z0,s) =0, 8(0,2,5s) = 8(z,0,s) = 0.

Dividing 2.5 by s*, and putting s = 0, z = 0, we obtain (1).
In order to prove (2), we first assume that m + ko — 1 < kom'.
Differentiating 2.5 m + kg — 1 times with respect to s and putting
s =0, we get

gm-1Gko gm—1Gko
w1 (20 = e (5:0)

+ Cp(G*(2,0) + G*(2,0) + a(z, z,0))

with C constant # 0.

Using (2.6) and the fact that we work in normal coordinates, we
get that ¢(z, Z,0) = 0, which is impossible by 1.2.

Suppose that m + kg — 1 > kgm'. Differentiating 2.5 kom' times
with respect to s and putting s = 0, we get

0,

akom’ —ko Gko 8k0m’ —ko Gko
awkom’—ko (Z, awkom’ —ko ( 0)

_C’(G""( 0)+Gko(z 0)
+ B(2,%,0))" $(F(2,0), F(2,0),0),
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with C" a constant # 0.
Using 2.6 and the fact that we work in normal coordinates, we
get that

(2.7) $(F(2,0), F(z,0),0) = 0.
Since H is not totally degenerate by assumption, it is easily shown,
differentiating 2.7 with respect to 2zx, £k = 1,...,n, and using

Cramer’s rule, that 2.7 is impossible. Hence we get the desired
equation (2) of Proposition 2.2.
We have the following proposition:

PROPOSITION 2.8. Let (M, M',H) satisfy the hypothesis of the
reflection principle, with M' of infinite type, G #Z 0 and H not
totally degenerate. Then Gy, Gkg+1y- -+ , Gkg+m—1 Gr€ constant and
real.

Proof. Dividing 2.5 by s*, we get
(2.9) (G* — G*) 4 cs™ 1@[G* + G* + a(z, Z, 5)]

=s™ 7GR 4+ GF 4 Bz, 2, 8)|™ 4 (F F, ; ) .

Differentiating 2.9 j times with respect to s, j < m —1, and putting
s =0, we get

G*(2,0) — G*(2,0) =0

om1Gko om-1Gko

W(Z’O) - W(Z 0) =0,

as we work in normal coordinates. Putting zZ = 0 in these equations,

we get the desired conclusion. O

COROLLARY 2.10. If H is a local biholomorphism at 0, and M’
is of infinite type, then G, ... ,G,, are constant and real.

We have the following proposition:

PROPOSITION 2.11. Let (M, M',H) satisfy the hypothesis of the
reflection principle, with M m-essential, G # 0 and H not totally
degenerate. Then M' is m'-essential, H is of finite multiplicity and

(2.12)  m — ess. typeM = (mult.H)(m' — ess. typeM’).
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Before giving the proof, we state the following corollary:

COROLLARY 2.13. Definition 1.4 and the number defined by 1.5
s independent of the choice of normal coordinates.

The proof of the Corollary is immediate from Proposition 2.11.
Note that, unlike the finite type case, the conditions M m-essential
and G # 0 are not enough to guarantee H not totally degenerate, as
it is shown in the following example (considered in [5] for another
purpose).

ExXAMPLE 2.14. Consider in C? F(z,w) = (1 + 2)w, G(z,w) =
—2(1 + 2)w3, M’ given by w' — @' = 2’22 — 7'2"*, and M given
by t = s¥(z,z), with ¢¥(2,0) = ¥(0,z) = 0, and ¢ chosen such
that H = (F,G) maps M into M'. Here, we have M is 1-essential,

G # 0, M’ is 0-essential, but # is totally degenerate.

Proof of Proposition 2.11. The case m = 0 has been considered
in [3] and [4]. Assume m > 0. By Proposition 3.28 in [4], we have
m' > 0. Differentiating 2.5 m + kg — 1 = kom’ times with respect to
s, and putting s = 0, we obtain

(2.15)
Cp(2, 2,0)(G*(2,0) + G*o(2,0) + a(z, 2, 0))
= C'(G*(2,0) + G (2,0)
+ B(z, 2,0))™ ¢(F(z,0),F(z,0),0), C,C" constants # 0.

Using 2.6 and (1) of proposition 2.2, we can rewrite 2.15 as
h(z, 2)p(2, 2,0) = $(F(2,0), F(2,0),0),

where h(z, Z) is a formal power series with h(0) # 0. Inspecting the
proof of Theorem 3 in [3], which uses tools of commutative algebra,
we conclude that H is of finite multiplicity, M’ is m’-essential and
that 2.12 holds. This completes the proof of Proposition 2.11.
We denote by Li, kK =1,...,n, the antiholomorphic vector fields
tangent to M given by
0 . Yz 5

2.1 Ly = — — )
(2.16) k 0% Z1+i<,0583

Let [ be defined by 1.12. We have the following propositions:
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PROPOSITION 2.17. Let (M, M',H) satisfy the hypothesis of the
reflection principle, with G Z 0 and M' of infinite type at 0. Then
we have:

(2.18) m > 21,
(2.19) Grots(2) = G (0), 0< 5 < L.

Proof. The proof is similar to that of 2.5 and 2.6 in [5], and is left
to the reader. O

PROPOSITION 2.20. Let (M, M', H) satisfy the hypothesis of the
reflection principle, with G # 0, M not flat and M’ of infinite type
at 0. Then

f(z,2,5) =sPfo(z,%,s),
(2.21)
L;if(z2,s) =slfj(z,2,s), j=1,...,n,

where p is minimal such that F;(z) Z 0, fo = (f(n,foz, e ,fOn),
with fo smooth, and f; = (fjl,fﬂ, - ,fjn), with f; smooth.
Furthermore, there ezists an indezx jo such that

(2.22) Ljof(z,%,8) = slfjg(z, zZ,s),
with fio(z,%,0) # 0.

Proof. The proof is similar to that of Theorem 3 in [5] and is left
to the reader. ]

PROPOSITION 2.23. Let (M, M', H) satisfy the hypothesis of the
reflection principle, with M not flat, M' of infinite type at 0 and
G # 0, Then the number | is independent of the choice of normal
coordinates.

Proof. Let H = (f1, fay-- -, fn,9) and consider H*, the pushfor-
ward of tangent vectors from M to M’. We have forz=1,... ,n,

H*(Liz,s) = Z Cij (Z, Z, S)L;'H(z,f,s):

J=1
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with c;; smooth. Write (¢;,(2, Z, s)) = sa(€ij(2, Z, 5)) with ¢&; smooth,
(¢ij(#,2,0)) # (0). Using standard tools of linear algebra, it is
easily shown that « is independent of the choice of normal coordi-
nates. Using the chain rule, it is easy to show that (¢;;(z,2,s)) =
(Lifj(z,2,5)). Hence, by 2.22, we conclude that the number [ is
independent of the choice of normal coordinates. l

REMARK 2.24. It is easily shown that the number [ is also an
invariant if M is of finite type and G # 0. It would be interesting
to know whether [ is again a biholomorphic invariant in the case M
of infinite type, M’ of finite type and G # 0. It should be noted as
shown in Theorem 2 in [5] that [ is an invariant in C? for this case.
Also, if kg = 00, i.e. G =0, then [ is not a biholomorphic invariant,
even for the C? case, as it is shown in Remark 2.30 in [5].

We have the following proposition:

PROPOSITION 2.25. Let (M, M',H) satisfy the hypothesis of the
reflection principle, where M is not flat, M' of infinite type at 0
and G # 0. Then the number defined by (1.14) is independent of
the choice of normal coordinates.

O'F
Proof. We have F(z) = llé—-l—(Z,O). The case [ = 0 has been
w
considered in [3]. Let [ > 1. Considrer 6 : (z,w) — (Z,w) a
holomorphic change of normal coordinates in the source, and let
F = F o0~'. By Proposition 2.23, we have to compare

o'F o'F
—B—J(z, 0) and %‘[(Z, 0)

We have

(2.26) = o

o=t (aﬁ _ 0w

%(z, 0= (Méi; ’I’)) (2,0)

= wl-1 55(‘3771))6—“7(

" OF 0z,
Z, W
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o'F
By definition of I, we have that 2.26 is of the form 5—1( 0)
]
ow : k
<8w(z 0)) + a sum of terms which are product of awk(N 0)

1s Pod

0
and ——lg(z, 0),1<a<l, 1<k<I-1. Using Corollary 2.10 and
2.18, we conclude that
O'F O'F O'F O'F
— (2,0 0,0 — (2
(0 - S50 = ¢ (550 - SE0.0),

with C constant # 0. This completes the proof for a holomorphic
change of normal coordinates in the source.

Consider k™! : (2, w') — (Z',%') a holomorphic change of normal
coordinates in the target space, and let H = k™! o H. We have

Fij(z,w) =Kjo H(z,w), where k = (K1, K, ... ,kns1). As 1> 1, we
have
(2.27) H(z,0) = H(0,0) = 0.
We get
O'F; &' (k0 H)
(2.28) Bwl] (2,0) = 8]wl (z,0)
81_1 n alﬁj ~ aFk
w1 (]CZ—_:l a—i;c( (Z, w))—a——

Using the definition of [, 2.19 and 2.27, we obtain that 2.28 is of the

form -
’ n 8l€j 0 Fk

with C’ constant. Therefore

O'F; O'F; Ok 0'Fy, o' Fy,
- 2000 = (220) (5260 - Z20.0).

As we work in normal coordinates, det (gi( )) # 0. This com-
%

pletes the proof in the case of a holomorphic change of normal co-
ordinates in the target. O
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3. Proof of Theorem 1 and Theorem 3. Leta = (a,... ,04)
€ Z". Define L® to be L* = L1** Ly** ... L,**. We have the follow-
ing propositions:

PROPOSITION 3.1. Let (M, M',H) satisfy the hypothesis of the
reflection principle. Then the following is true:
(1) If H is not totally degenerate at 0, then there exists a multi-
indez ag such that

L (detL;fy)(0) #0, j,k=1,...,n.

(2) If M is not flat, M’ is of infinite type at 0, G # 0 and
OF;
det( Y (z)) # 0, then there exists a multi-index [y such

sz
that

(3.2) LPo (det—f]-—k) (0)#0, j,k=1,...,n,

where E,: is given by (2.21). Furthermore, if
(3.3) D(z,%,s) = det L; fv(2, 2, 5),
then for every multi-indez o,

(3.4) L®D(z,%,5) = s™D,(z, 2, 5),
with Dy(%, Z, s) smooth and Dg,(0) # 0.

Proof of (1). See Proposition 3.18 of [3].

Proof of (2). We can assume [ > 1. Let M be given in normal
coordinates by 1.2. By 2.21, we have

(35) fk(z, 2, 3) = spfOk(z’ 27 3)7
with E smooth, k = 1,... ,n. We claim that Sp_lejf:()—]; is smooth™
and

(3.6) Fir(z,2,0) = (L;lf f,") (2, %, 0).
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Indeed, using 2.18, 2.21, and 3.5, we obtain

Ljfk (2,2,8) = s’E(z, Z,5)
(3.7) -
= SpLijk(z? z, 3) + 82lh(z’ Z, S)a

with h(z,Z,s) smooth. Therefore, dividing 3.7 by s, we get that
sP~'L; for. is smooth; putting s = 0 in 3.7, we get 3.6. Hence the
claim is proved. On the other hand, as m > 1, we have

[L(det fi2)](0) = [L*(det fix(z, 2, 0))](0)

(3.8) L
= [D*(det f;x(z, 2,0))](0),
where g Han
D 8“"‘1 Pz

Using 2.18, we have, for @ = s — is™ @(2, Z, 5),

ﬂmmzwﬂ@w

si-p
~ (PUL(s7P(Fp® + .. + Fjd' + .. »Duzm
= (psp‘lﬁ’;k(l — is™ )P 1( is™ s )) (2,2,0) +.

+—(LF&(l-ism-1¢>“4(—¢sm—l¢@>

+ 2 a0 - i1y 20) = Sk
Therefore,
(3.9) L*(det f31)(0) = [Da (det %%’ﬁ)} (0).

By assumption, we have

(3.10) det (%—I‘;f“(z)) £0.
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Using 3.9 and 3.10, we get the desired conclusion 3.2. On the other
hand,

D(z,z,s) = det L; fi(2, 2, s) = det sl?jk(z, zZ,5) = s™(det ?jk)(z, Z, s).
Hence, we have

L*D(z, 7, s) = L*(s"(det fx))(z, Z, s)

= s"’(L"(det E)(z, Z, 5) + Sk(Z’ 2, S))’

with k(z, Z, s) smooth. Using 3.2, we get the desired conclusion 3.4.
Let M given in normal coordinates by 1.2. Solving for @ in 1.2,
it is easily shown that M is also given by

(3.11)
D =Q(z,2,w) =w+uw"S(z,Z,w) =w+ Y Ri(z,z)w’,
j=m

with R;(z,0) = R;(0,2) = 0.
Let ko be defined by 1.9 and g be the CR function obtained from
G by restriction to M. We need the following lemmas:

LEMMA 3.12. Let (M, M',H) satisfy the hypothesis of the reflec-
tion principle, where M' is of infinite type at 0 and G # 0. Then
we have

(3.13) 9(2,2,8) = s*q1(2, 2, 5),
with g,(z, z, s) smooth and g,(0) # 0.
Proof. See Proof of Theorem 3 in [5]. UJ

LEMMA 3.14. Let (M, M', H) satisfy the hypothesis of the re-
flection principle, where M’ is of infinite type and G # 0. If
h(z,z,s + it) is holomorphic in R = {s + it such that |s| < r, 0 <
t<r}, C®in RU (—r,r) for |z| <e, if %(z, z,8) is C®(—r,r) for
|z| <€, then —S(z,z,s) ectends to R, for |z| < e.

Using Lemma 3.12, the proof of Lemma 3.14 is similar to that of
Corollary 4.8 in [5]. We shall say that a function t(z, z, s) extends
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down (resp. up) if s — #(z, Z, s) extends continuously to a function
s+t — T'(z, Z, s +it), holomorphically for small ¢ < 0 (resp. small
t > 0), uniformly in z.

We have the following proposition:

PROPOSITION 3.15. Let (M, M',H) satisfy the hypothesis of the
reflection principle. If either
(1) H is not totally degenerate at 0, or

(2) M is not flat, M' is of infinite type at 0 given by (3.11), G # 0
and aF
lj
det (azk (z)) Z0,

then Ryce(f, f) satisfies the following equation:

(3.16) Ruee (£, ) + Ko(f,u) =0,

where « is any multi-indez, with |a] > 1, K, is holomorphic at
(0,4(0)), u is a set of functions which extend down, and K,(Z,u(0))
=0, ZeC.

Proof. We shall prove Proposition 3.15 in the case (2). AsH(M) C
M', we have

(3.17) g=9+9"S(f. f,9)-
First, consider the case |a| = 1. Applying L;, j =1,...,n, to 3.17,
and using the fact that Lijg=L;f, =0, k=1,... ,n, we get
(318) ng = nglsﬁk(f’ fTi g)LJ.fk

k=1

Considering the n equations 3.18 with unknown ¢™ SCL( f, f,g) and
using Cramer’s rule, we obtain

(3.19) Dg™ S (f, f,9) = hx,

where h; extends down, and D given by 3.3. Choose §p of minimal
length satisfying 3.4. Taking the complex conjugate of 3.17, and
raising to the m’th power, we obtain

(3.20) g  =g" 1+ g S )™
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Replacing 3.20 in 3.19, and using Lemma 3.14, we obtain

(3.21) D +g™'8(f, £,9)™ S¢. (£, f,9)

h - -
= _—k, = hg, hi extending down.
gm

Applying L to both sides of 3.21, we get

(3.22)
(LRD)(1 + 3™ *5(f, £,8)™ S¢, (f, . 9)
+ X @D (L (A+3" S £ S f, f.9))

71+72=Po,727#0
= LPohy.

Dividing 3.22 by LP°D = s™ Dg,, we get

(3.23)
A+ 3™ *S(F, £,9)™ S (f, F, 9)

+ ) ( 5, ) (L™ (@ +g™*S(F, £,9)™ S¢, (£, F.9)))

1
T1+72=0B0,72#0 5" Dﬁ"
_ LPo ;"k
- sMD 5o :

Taking the complex conjugate of 3.17 and using 3.11, we get

with T} holomorphic near 0. Since we work in normal coordinates;™
we have

1
(1+g™-15(f, f,9)™’

(3.25) b(f, f.9) =
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with b holomorphic near 0. Multiplying 3.23 by 3.25, and making
use of 3.24, we obtain

(326) Ry, (f,f)
s 5 (52)

T1+72=PB0,727#0

(e (a+gmsir fo sl 9))]

_ Lﬁoﬁk B _
+ b(f:fyg) [Snngojl - ng(f, f,g)
Put
ILmpD L B
— a 6= k
u= {S"IDB f,5,L*f,LPg, ——— S D; e, 18] < ﬂo}-
By 3.23, i
Lﬂohk
SnlDﬁ0

is smooth and hence extends down by Lemma 3.14. Hence, u is a
set of functions which extend down. Using 3.23, the minimality of
Bo, we obtain that

Lﬁoﬁk
3.27 = 2(0)=
(3.21) D (0 =0
Using the minimality of g, 3.26, and 3.27, we obtain the desired
conclusion 3.16 for |a| = 1. Consider the case |a| = 2. Dividing 3.19
by D, and applying L;, j = 1,...,n, to both sides of the obtained
equation, we get

h hy
Li(g™ Sq (£, F.9) = Ly = 33

with Ay, smooth, extending down. Therefore

hi
g" ngkgp £ 9Lif= ’”.
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Hence, by Cramer’s rule, Dg™ SC;CC;,(f’ f,9) = %, with ag, smooth,
extending down. Using 3.20, and Lemma 3.14, we obtain

(328) D3(1 + gMI_l‘g(.f, f7 g))m/SC,'c(z’, (fa fTa g) = &kpa
with ax, extending down. Define

B® = {3 € Z" of minimal length such that Dg(0) # 0 }.
with Ds defined by (3.4)

Define
B+ = {8 =(B,...,B,) € B*7 ! such that 3; is minimal}.

There exists jo such that [B'?J0| = 1. Take (3, to be the unique
element of B270. Applying L*% to both sides of 3.28, we get that

(3:29) (LPD)*(1+g™*S(F, £,9))™ Seyer (f Fr 9)
+ Z (LVID)(L”D)(L”’D)L“

7 +v2+73+74=380
(71 Y2 :73)¢(ﬂ0 )/BOaﬂO)

(004780, 190 S £.F.9)) = 1%
By the choice of 3y, a term of the form
(L™ D)(L=D)(L*D) (1 + g™ *5(f, £,9)™ S (£, F 9))
with |y1| = |v2] = |v3] = |Bo| cannot occur unless y; = v, = 3 = fo.

That means that

(L’Yl D)(L’72 D)(L’YsD)

(LﬁOD)3 (0) :07 71+’Y?+’Y3+”Y4 :3ﬂ07

by 3.4 and by minimality of §;,. We divide both sides of 3.29 by
(LP°D)® and we put

’f)g)Laf’Lﬂg’

B (L’nD) (L’mD)(L’YsD)
-
L¥oay,

W,W':Wl < |3ﬁo|}-
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We can apply the same process as for |a| = 1, in order to get the
desired conclusion for the case |a| = 2. For the general case, i.e. for
a multi-index o of any length, we observe that

" = do
9" Se=(f, f,9) = D2lal-1°
with d, extending down. We apply the same proof as in the case
of |a| = 1,2 to get the desired conclusion 3.16. This completes the

proof of Proposition 3.15. O
We need the following lemma:

LEMMA 3.30. Let M be given by (3.11). Suppose that M is m-
essential. Write

Rn(2,2) = ba(2)2%.
Then for every zy sufficiently small, there exrists a multi-inder o
such that by, (20) # 0.
The proof is left to the reader.

PROPOSITION 3.31. Let (M, M', H) satisfy the hypothesis of the
reflection principle, with M non flat, M’ m'-essential at 0, of infinite

OF;
type, det(az ())iOandGaéO Then each f;j, j =1,...,n,
k

satisfies a polinomial equation with analytic coefficients dependzng
on functions which extend down.

Proof. Let M’ given in normal coordinates by 3.11. Using Lemma
3.30 and the Nullstellensatz, we can find IV and r such that

(3.32) z';-v =Y ca(Z)a(?), i=1,...,n,
a=1
with ¢;q(2') convergent power series. We also have
(333) lecla (ZI, 2) = Ol'b + Z das s
|s|>1

with dy(2') convergent power series. As f;(0) = 0, we can substi-
tute f; in 3.32 and we get

(3.34) cha F)ba(f).



REFLECTION PRINCIPLE IN COMPLEX SPACE 155

Using Proposition 3.15, 3.33 and 3.34, we obtain
(3.35) f+ Hi(f,u) =0,

with H; holomorphic at (0,u(0)), H;(Z,u(0)) = 0,Z € C*, and u
a set of functions which extend down. Using 3.35, the Weierstrass
Preparation Theorem and the classical Newton’s Theorem for sym-
metric functions, we claim that f;, 1 < j < n, satisfies a polyno-
mial equation with holomorphic coefficients depending on the set
of functions u which extend down. The proof of the claim follows
by inspecting the very end of Lemma 6.1 in [3]. Hence, we get the
desired conclusion. Ol

We have the following proposition:

PROPOSITION 3.36. Let (M, M',H) satisfy the hypothesis of the
reflection principle. If either
(1) *H is not totally degenerate at 0, or

(2) M is not ﬁat M’ is of infinite type at 0 given by (3.11), G 0
8 l]
and det ( )] #0,

then there e:czsts T > 0 such that for every zp € C* fized, |2| < T
and every multi-indez , there ezist functions a(s+1t) and b(s+it)
holomorphic in the domain

R = {s + it such that|s| <7, —r <t < 0},

smooth in RU(—r,+r), such that

Q("‘(f) f—"g)(anZO;S) = 'a—((si))', |S| <rT.

The proof is similar to that of Lemma 5.3 in [3] and is left to the
reader.

Proof of Theorem 1 and Theorem 3. By Proposition 2.11, (1)~
implies (2) in Theorem 1. Therefore we only have to prove Theorem
1 for condition (2) or (3). As 1.7 implies 1.6, we only have to prove
Theorem 1 for condition (3) and Theorem 3 for condition (2). Using
Proposition 3.31 and Lemma 7.1 in [3], we conclude that for each



156 FRANCINE MEYLAN

o, Q¢a(f, f, g) satisfies a polynomial relation with coefficients which
are analytic functions depending on functions which extend down.
Using Proposition 3.36, Lemma 7.1 in [3] and Lemma 8.15 in [1],
we conclude that Qc=(f, f,g) extends down for every o, and that

IQ("‘(fa .f’ g)(z,z, s+ 'Lt)' < C%!

Therefore, following the proof of Theorem 1 in [3], we can conclude
that

Q(fa)‘ag)(za Z, 3) = i MQ(“(f: f) g)(z’ Z, S)

!
a=0 a »

extends up and down, uniformly in A. Taking A = 0, we get that g
extends down, as we work in normal coordinates. Consider

Q(f,\g9) —g

— =S5(f, A 9)-

By Lemma 3.14, S(f, ), g) extends up and down. Again, inspecting
the proof of Theorem 1 in [3], using the Weierstrass Preparation
Theorem, we obtain that f extends down. We are able to complete
the proof of (3) of Theorem 1 and the proof of (2) of Theorem 3 by
using the following Criterion proved in [2]: H extends holomorphi-
cally through 0 in C**! if and only if the function s — H(z, z, s)
extends holomorphically through 0 in C, uniformly in z.

4. Proof of Theorem 2 and Theorem 4.

Proof of Theorem 2. The case m = 0 has been considered in [3]
and [4]. Assume m > 0. Using Propositions 2.2 and 2.11, Theorem
2 is proved for condition (1). We have to prove Theorem 2 under
condition (2). Inspecting the proof of Proposition 2.11, and using
Proposition 2.2, we conclude that

h(z,2)p(z, z,0) = ¢(F(z,0), F(z,0),0),

with h(z, Z) a formal power series such that 72(0) # 0. Inspecting the
proof of Theorem 2 in [3], which uses tools of commutative algebra,
we conclude that M is m-essential. Using condition (1), we get the
desired conclusion.
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Proof of Theorem 4. By 3.11, M’ can be parametrized by
w —w = ZP "2

with P;(2',0) = P;(0,Z') = 0. M can be parametrized by
w = w(1 + 0™ ' R(z, Z,W)) = s\,

where s = w and A = 1 + @™ ' R(z, z,w), with

(4.1) R(0,z,w) = R(z,0,w) = 0.

As H(M) C M', we have

l

(4.2) G(z,sX) — ) = iP] F(z,8)\),F(z,5))(G(z,3s)).

j=1
Putting z =0 in 4.2, we get
(4.3)  G(z,8) =G(0,s) + i P;(F(z,s),F(0,s))G(0,s).

j=1
Taking the complex conjugate of 4.3, we get (s taken to be real)

G(z,5) = G(0,s) + i?}(?(z, s), F(0,5))G(0, s)’.

j=1
Substituting for G(Z, s) in the right hand side of 4.2, we get
(4.4) G(z,8\) — G(z,8)

= ZP (z,80), F(z, 3))<G(0’3)

iﬁq F(z,s), F(0,s))G(0, s) ) )

g=1

From 4.4, we get
(4.5) (sA)FoGko(z,5)) - koG (Z, s)

i

in(F(z, s)), F(z,s)) (s’“OG‘“O(O, s)
+ i P,(F(z,s), F(0, s))s*G* (0, s)q> .

q=1

157
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By the binomial formula,

(4.6) (s+ s™R)kG*(z,s))
= Gk (2, 5)) + Cs™ L R(G* (2, s)) + (2, Z, 5)),

with C' a constant different from 0, and «(z, Z, s) another formal

power series such that «(0,Zz,s) = a(z,0,s) = 0. Hence, we get
from 4.5

(4.7) sPG*(z, s)) — 550G (Z, s)
+ Cs™hTIR(G* (2, 5)) + a(z, Z, 5))

On the other hand,by Taylor’s expansion, we have
(4.8) F(z,8\) = F(z,3) + s"R(z,%,8)T (2,2, s),
with T another formal power series. Therefore, 4.7 becomes

(4.9) sMGF(z, s)) — sMG (2, s)

+ Csm+ko-—1R(Gko( ) ( ))

Z,
< k"Gk" 0,s)

i
NgE
v
3
‘N
&/
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where T; is another formal power series. We can rewrite 4.9 as

(4.10) "GP (z,s + s™R) — MG (2, 5)
+ Cs™ko-1R(GFo(2, 5)
+ a(z,2,8)) + s™RU(2, 2, 5)

= i F(z,s),F(z, s))(sk"Gk"(O, s)

+§: P (F(z,s), F(0,5))s™1G*(0, 5) )

q=1

with U(z, Z, s) another formal power series.

Write F(z,5) = aps? + ... + F*(0)s' + s'F*, with F*(z,s) =
F(z)—F}(0)+s7, where v is another formal power series. Therefore
the right hand side of 4.10 can be written as

s™hy(8) + 8™ hy(F*, F*, 8) + s™hs(F*, F*, s),

where hy, hy, hs are formal power series and h;(0) # 0, ha(z,y,0) #
0, hy contains only pure power of F* and F*, h3(x,y,0) # 0 and hs
contains no pure power of * and F*.

We claim that m+ko—1 = n3. The proof of the claim is similar to
that of (2) of Proposition 2.2 and is left to the reader. Differentiating
4.10 with respect to s m + kg — 1 = n3 times and putting s = 0, we
get

h’(z’ z, O)R(Z, z, 0) = h3(Fl*(z) - E*(O)7—F;(Z) - —F-;(O)a O):

with h a formal power series such that h(0) # 0, by (1) of Proposi-
tion 2.2. The rest of the proof is similar to that of Proposition 2.11
and is left to the reader.
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