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In this paper we prove that all solutions (y,m,n) of the
equation 3 m - 2yn = ± 1 , y,m,n G N, y > l,ra > l,n > 1,
satisfy y < 106 1 0 , m < 1,4 101 5 and n < 1,2 105.

1. Introduction. Let Z,N, P, Q be the sets of integers, posi-
tive integers, odd primes and rational numbers respectively. In [2],
Cresenzo considered the solutions (p, q, m, n, δ) of the equation

(l)pm-2qn = δ, p , g e P , m , n e N , r n > l , n > l,<f e {-1,1},

which is concerned with finite groups. He claimed that if (p, g, m, n,
ί) ^ (239,13,2,4,-1), then (m,n,δ) = (2,2,-1). However, we
notice that (1) has another solution (p, g,m, n, 5) = (3,11,5,2,1)
with(m, n, ί) φ (2,2,-1). Thus it can be seen that the above result
is not correct. If we follow the proof of Cresenzo, we can argue as
follows. The above result is deduced from the following lemma:

LEMMA A ([2, Lemma 1]). Suppose that q EF and x,m,n e N.

(2) xm - 2qn = ± 1 , x > 1, m > 1, n > 1,

then m is a power of 2. Furthermore, the sign of the term ± 1 must
be negative.

Notice that if 2 J(xm, then from (2) we get

2qk = x T 1

for some k € N with k < n. Now there are two cases:

r3, if k = 0,

2qk ±1, if k > 0.
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Hence, Lemma A is false since the first case of (3) was not con-
sidered in [2]. The lemma must be replaced by:

LEMMA A'. Suppose that q e F and x,m,n,e N. // (2) hold,
then either x = 3 or x > 3 and m is a power of 2. Furthermore, in
the last case, the sign of the term ± 1 of (2) must be negative.

Thus, the correct main statement of [2] should be that the so-
lutions (p, q,m, n, δ) of (1) satisfy either p = 3 or p > 3 and
(ra, n, δ) = (2, 2, -1) except when (p, g, m, n, 5) = (239,13, 2, 4, —1).
In this paper, we deal with the solutions of (1) with p — 3. We shall
prove a general result as follows:

T H E O R E M . The equation

( 4 ) 3 m - 2yn = δ, y , m , n , e N , y > l , m > l , n > l , ί G { - 1 , 1 } ,

only finitely many solutions (y,m, n, 5). Moreover, all solutions
of (4) sαίis/y y < 1061°9, m < 1.4 1015 and n < 1.2 105.

2. Lemmas.

L E M M A 1. LetkeN with gcd(6, k) = 1. If k > 1 and (X, Y, Z)

25 solution of the equation

x2 - 3Y2 - kz, x, y, z, G z, gcdpr, y) = 1, z > o,

ί/iere exist Xi,Fi G

λ G {-1,1},

where (n, i;) is a solution of the equation

(5) u2 -3υ2 = 1, u,x;G Z.

Proo/. Since the class number of the binary quadratic forms with
discriminant 12 is equal to 1 and 2 + Λ/3 is a fundamental solution
of (5), the lemma follows immediately from [6, Lemma 7]. D
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LEMMA 2 ([3]). Let α, b, k, n e Z \ {0} wiίΛ n > 3. A// solutions
(X, F) o/ ffte equation

aXn-bYn = k, I , F G Z ,

max(|X|, |Y|) < 2n(n-1)/2-1/nFn-3/n |A;|1/ r\ wΛere H =
max(|α|,

LEMMA 3 ([7]). The equation

1 + X2 = 2Fn, I , F , n G N , X > 1, F > 1,n > 2,

no solution (X,Y,ή).

LEMMA 4 ([9]). The equation

Xm — 1
(6) = Yn, X, Y, m, n e N, X > 1, F > 1, m > 2, n > 1,

^ί — 1

/ms on/y solution (X, Y, m, n) = (7, 20, 4, 2) ?i;iί/i 4|m.

LEMMA 5 ([10]). The equation (6) has only solutions (X,F,m,
n) = (3,11, 5, 2), (7, 20,4, 2) with 2\n.

Let a be an algebraic number with the minimal polynomial

d

aoz
d H h ad-ιz + ad = a0 Y[(z - a{a), a0 G N,

where σχθί, , σd(x are all conjugates of a. Then

1 ί
d V .tί /

is called the logarithmic absolute height of a.

LEMMA 6. Lei αi, α^ 6β reα/ algebraic numbers with o>\ > 1, 0̂ 2 >
1 ; αnrf /eΐ D denote the degree o / Q ^ i , ^ ) . Lβί 61,62 £ N, and /eί
b = bι/Dh(a2) + b2/Dh(aι). For any T withT
T and Λ = b\ log ai — b2 log Qf2 / 0; then

( 0
l
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Proof. Let B = Iog(5c4/c:) + \ogb,K = [ciD3Bh(a1)h(a2)],L =
[c2DB},R1 = [c3D^2B1/2h(a2)]+l,S1 = [c3D

3/2Bι/2h(a1)]+l,R2 =
[c4D

2Bh{a2)}, S2 = [c4D
2Bh{a!)], R = i?i + R2 -1, S = SΊ + S2 -1,

where ci, 02,03,04 are positive numbers. Notice that (u — 1/T)v <
[uv] < uυ for any real numbers u, υ with u > 0 and v > T. By the
proof of [4, Theorem 1 and 3], if B > T,

(logp)3 Tlogp ' logp'

cz =

for any p with p > 1, then

(8) log|Λ| > - ( c l C 2 l o g p + l)D 4Λ(αi)Λ(α 2)S 2.

Setting p = 5.803. We may choose c\, c2, C3, c4 which make (7) hold
and

/ Q1137\ 2

(9) C l c 2 logp + 1 < 70 ί 1 + —γ—J , B < 0.52 + log6.

Substituting (9) into (8), the lemma is proved. D

3. Proof of Theorem. Let (y,m,n,δ) be a solution of (4).
Since

m ord2(3~+„.{;• ifjm:

for any m G N, if δ = — 1, then m must be even. Further, by Lemma
3, it is impossible. By Lemma 4, (4) has no solution with δ = 1 and
4|m, and by Lemma 5, (4) has only solutions (?/, m, n, ί) = (2, 2, 2,1)
and (11,5,2,1) with 5 = 1 and 2|n. If 2\m and 2 /n, then from (4)
we get

(11) 3m/ 2 + 1 = y», 3m/ 2 - 1 = 2y2

n, y l l / 2 = y, y i , y 2 € N,2|j/i.

Since n > 2, (11) is impossible by (10). Therefore, if (y,m, n, 5) ^
(2,2,2,1) or (11,5,3,1), then 5 = 1 and 2 J(mn. It is a well known
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fact that (3 m — l)/(3 — 1) has a prime factor / with / = 1 (modm)
(see [1]). So by (4) we have

(12) y > 2 m + 1 > 2 n + l .

If 2 Ira, then from (4) we get

(13) A2-3B2 = yn, A,BeN,

where

o(m+l)/2 _ i Q(m-l)/2 _ 1

(14) Λ = L__i,β = ^ _ .

Since gcd(6, y) = gcd(A, B) = 1 by Lemma 1, we see from (13) that

(15) A + BVZ = (Xi + \Yχ\/Z)n{u + vy/S), λ € {-1,1},

where (u, υ) is a solution of (5), Xi, Y\ £ N such that

(16) Xl - 3FX

2 = y,

Let

(18)p = 2 + \/3, p = 2-\/3, ε = Xi + yχ>/3, ε = Xi - Yi

Since A = 35 + 1 by (14), we have

l A

Hence, by (15) and (17), we have

(19) A + Brt-l ABV3l
^ ' \e*ff, \εnps, if A = - 1 ,

where s e Z with 0 < s < n. From (19),

eV(V3 - λ) = t'p'iVs + λ) - 2λ,
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whence we obtain

(20) (2s + λ) log/? — nlog - <
4

Let a.χ = p and a2 = ε/ε. Then Q(c*i, a2) = Q(\/3). We see from
(5), (16) and (18) that

(21) h()
2

Furthermore, since 3 m > 2yn, by (17) and (21),

(22) h(a2)< log Py/y.

Let b = (2n + l)/2h{a2) + n/2Λ(«i). Recall that 0 < s < n. By
Lemma 6, if n > 105, then

(23)

log

Since

(2s + λ) log p — n log -

2 n + l n 2 n + l n
< 2logpjy + ϊόgp < 21og3.732v

/2n+T + 1.317 < ' U'

by (12) and (22), the combination of (20) and (23) yields

1 + 760(log v^)(0.3 + logn)2 > nlo g λ /y,

whence we deduce that

(24) n< 1.2 105.

Let m = rn +1, where r, ί G Z with r > 0 and 0 < ί < n. Then
(4) can be written as

(25) 3*(3Γ)n - 2yn = 1.

It implies that (X, Y) — (3 r, y) is a solution of the equation

3'xn-2rn = i, x,γ ez.

Thus, by Lemma 2, we get from (24) and (25) that y < 106Λ°9 and
m < 1.4 1015. The theorem is proved.

REMARK. By a better estimates for the lower bound of linear
forms in two logarithms by Laurent, Mignotte and Nesterenko [5],
the upper bound of solutions of (4) in Theorem can be improved.
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