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NILPOTENT CHARACTERS

GABRIEL NAVARRO

In this note we study modular characters of finite p-
solvable groups which are induced from p-nilpotent sub-
groups and its τr-version.

1. Introduct ion. There is at least one reason to study such
characters. In [2], for any block B of a finite group G, Alperin and
Broue found a successful and natural Sylow 2?-theory which synthe-
sized local group theory with several results on blocks by Brauer.
This approach led to the Broue-Puig idea of nilpotent blocks. From
the local representation point of view, therefore, the nilpotent blocks
are the most natural blocks.

It is well known that theorems on p-blocks, in general, become
far more accessible when we restrict our attention to the ^-solvable
groups. Sometimes, as it happens with the cyclic defect theory,
they almost become trivial. This is not the case with the nilpotent
blocks. Puig described the block algebra of a nilpotent block of a
p-solvable group in [11].

Here we focus ourselves with the characters of the block. If φ
is a modular character lying in a p-block B of a finite p-solvable
group, we show that B is nilpotent if and only if φ is induced from
a p-nilpotent subgroup. With this approach and applying Isaacs
π-theory we are able to introduce nilpotent π-blocks (π-blocks have
been studied by Robinson, Staszewski, Slattery and others) and
to describe them satisfactorily: they only have a unique modular
character φ (which is induced from a subgroup K with a normal Hall
π-subgroup), and its |IΓΓ(JD)| ordinary characters are also induced
from convenient characters of K (D is defect group of the block).
Finally, we will find the Fong characters associated with φ (the
characters a of a Hall π-subgroup with aG = Φφ).

Of course, when the set of primes π is just the complement of a
prime p, π-blocks are just the ordinary blocks.
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2. Subpairs and nilpotent blocks. If B is a p-block of a finite
group G, a J3-subpair is a pair (P, bp) where P is a p-subgroup of
G and bp is a block of PCQ{P) inducing B (we are using Alperin's
book notation [1]). If P is a defect group of B, then (P, bp) is said
to be a Sylow J3-subpair. It is one of the main results in [2] to show
that Sylow J5-subpairs are G-conjugate and that each J9-subpair
is contained in one Sylow jB-subpair (a natural but not obvious
definition of containment is given in [1]). It is worth to mention
that if the block B is the principal block, local block theory is just
Sylow theory.

Inspired by Frobenius Theorem, Broue and Puig defined nilpotent
blocks: a block B is said to be nilpotent if whenever (P, bP) is a B-
subpair then NG{P,bP)/CG{P) is ap-group.

We begin with a Lemma. It is not in general true that if bG is
defined and nilpotent, then b is nilpotent (we will give some example
below). However, in some special conditions more is true. (We recall
that notation used in [2] and [4], is entirely equivalent to that in
[1]: just apply V. 3.5 of [5]).

LEMMA 1. Let B be a block of a p-solυable group G. Let θ G
Irr(Op/(G)) be covered by B and let b G Bl(T) cover θ and induce
B, where T is the inertia group of θ in G. Then B is nilpotent if
and only if b is nilpotent.

Proof. Suppose that B is nilpotent and let (P, bp) be a 6-subpair.
We wish to show that NT(P, bP)/Cτ(P) is a p-group. Let us denote
by * : Irrp(O) -> Irr(Co(P)) the Glauberman Correspondence (see
Chapter 13 of [6]), where O = OP>(G).

By applying, for instance, Lemma (4.4) of [13] to T, we have that
if bp covers ^*, where ψ G Irrp(O), then b covers ψ. Therefore, we
have that bp lies over θ*. We observe that Nχ(P) is the inertia
subgroup of θ* in NG{P)- This is because NQ(P) acts on O fixing
the P-invariant characters and commuting with the correspondence
(see Theorem (13.1) (c) of [6]).

By Theorem (1.2.4) of [4], we know that bpCc{P) is nilpotent;
so let δ be the unique Brauer character in bP

 G^ . Since δ lies
over θ* and PCT(P) is the inertia group of θ* in PCG(P), let
μ G IBr(PC Γ (P)V) such that μp°G^ = δ. By Fong-Reynolds
(Theorem V.2.5 of [5]), we know that μ is the only modular char-
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acter in bP. Therefore, if x G Nτ(P,bP) then μx = μ, δx = δ and

consequently x G NG(P, bpCc{P)). Then NT(P, bP)/Cτ(P) is isomor-

phic to a subgroup of NG(P, bP

CG^P')/CG(P), which is a p-group by

hypothesis.
Now assume that b is nilpotent and let (P, bp) be a J9-subpair.

We want to prove that NG(P, bP)/CG{P) is a p-group. Let H —
PCG(P). We note that bf° covers 0*, for some x G G. This can be
seen, for instance, by taking an irreducible character of bp° lying
under some irreducible character of B (by Theorem B of [3]). Since
P is contained in a defect group of bp°, it follows that some O-
conjugate of P, say P°, stabilizes 0X, by Fong-Reynolds. Therefore,
P stabilizes θλ and b$° covers 0χ, where 0X = 0*0"1. Let Tλ be
the stabilizer of θ\ in G. If we denote by 0* G Irr(Co(P)) the
Glauberman correspondent of 0χ with respect to P, by an earlier
argument we have that NTι(P) is the stabilizer of θ{ in NG(P).

Now let 7* G Irr (Co (P)) be covered by bp. Then 7 is covered by
6f°, and therefore 7 = 0f, for some c G C G (P) . Thus θ\ = (7*)0"1 is
also covered by 6p. Since P C ^ (P) is the stabilizer in PCQ(P) of #£,
we find e G B/(PCΓ l(P)|0*) such that ePC°^ = bP. By an earlier
argument, eTl lies over #i, and, since it induces £?, it follows that
eT l is a G-conjugate of 6. Therefore, it is nilpotent. By Theorem
(1.2) of [4], e is also nilpotent and thus it contains a unique modular
character, say δ. By Fong-Reynolds, δpc°^ is the unique modular
character in bp.

Suppose now that y G NG(P,bP). Then y fixes P and δPCc^p\
By Clifford Theory, (0*)* = (0;)c, for some c G C G (P) . Thus
yc~ι G Nτλ{P) and by the uniqueness in the Clifford Correspon-
dence, δyc~ι = 5. Thence" 1 G iVΓl(P,e). Consequently, NG(P,bP) C
NTl(P,e)CG(P). Thus NG(P,bP)/CG(P) is isomorphic to a sub-
group of ΛΓ7Ί (P, e)/Cτi (-P)J which is a p-group. D

LEMMA 2. Lei B be a nilpotent block of a p-solυable group G
and let θ G Irr(Op/(C)) covered by B. If θ is G-invariant then G is
p-nilpotent.

Proof. We argue by induction on \G\. Write O — OP<{G).
By Fong Theory, (see, for instance, Theorem (2.1) of [13]), we

know that the Sylow p-subgroups of G are the defect groups of
B. Fix P a Sylow p-subgroup of G and let (P, bP) be a Sylow B-
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subpair. By Frobenius Theorem, it suffices to show that if Q is
any p-subgroup of P then NG(P)/CG(P) is a p-group. By Theo-
rem (16.3) of [1], let (Q,bo) < (P,bP). Since δg is nilpotent, let
δ be the unique Brauer character in δg. By earlier arguments in
Lemma 1, if θ* G lττ(Co(Q)) is the Q-Glauberman correspondent
of θ G Irrg(O), then 6g lies over θ* and θ* is JVG(Q)-invariant. By
local group theory, it is well known that Co(Q) = OP>(NG(Q)) If
QCG{Q) < G, by induction, we have that QCG(Q)/OP>(NG(Q)) is
a p-group. Therefore, by Green's Theorem (see, for instance, (3.1)
of [8]), δo ,(NG{Q)) — 0*, and since δ is the only Brauer charac-
ter lying over #*, we have that δ and θ* determine one each other
uniquely. Therefore, δ is NG(Q)-ΊnvdLήa,nt, and so it is δg. Thus,
N(Q,bQ)/CG(Q) = NG(Q)/CG(Q) is a p-group in any case, and
Frobenius Theorem applies. D

3. π-characters. If G is a π-separable group, we denote by
IΈ{G) the set of Isaacs π-characters of G. Of course, when π =
p^Iπ(G) is just the set of Brauer characters of G. We refer the
reader to [7] and [8], for definitions, notation and basic properties
of the set Iπ(G). We recall that there exists a canonical subset of
the irreducible characters of G,Bπ(G), such that restriction to π-
elements gives a bijection from Bπ(G) onto /π(G) (Theorem (9.3)
of [7]).

We certainly will use that any π-character is induced from a π-
degree π-character (Huppert's Theorem, see (3.4) of [8]), and other
fact proved recently in [9]. If φ G Iπ(G) and φ = δG = μG, where
δ G Iπ(K) and μ G Iπ(J) have τr-degree, then the Hall τr'-subgroups
of K and J are G-conjugate: this invariant is the vertex of a TΓ-
character.

We say that φ G Iπ(G) is nilpotent if φ = δG, where δ G IW(K)
with K = Oππ>(K).

LEMMA 3. Let G be a π-separable group and let φ G Iπ(G) be
nilpotent. If θ G Irr(Oπ(G)) is G-invariant and lies under φ then
G = Oππ,(G).

Proof. Write φ = δG, where δ G Iπ(K) with K = Oππ>(K), and let
O = Oπ(G). Since OK has a normal Hall π-subgroup, by replacing
(K,δ) by (OK,δoκ), we may assume that O C K. Now, by (3.4)
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of [8], let β G Iπ(R) with π-degree be such that βκ = δ. Since βOR

has also π-degree (because \OR : R\ is a π-number), we also may
assume that δ has π-degree.

By comments above, observe that if P is a Hall π'-subgroup of
K, then P is a vertex of ψ.

Let U — OπiΓ*(G). We claim that φυ — eη, where η G Iπ(U) and
ηo = 0. To see this, let χ G Bπ(G) be a lifting of <p (see Theorem
(9.3) of [7]), and let φ G Bπ(U) be under χ ((7.5) of [7]). Then, by
(6.3) and (6.5) of [7], ψu = θ and φ is the only ^-character lying
over θ. Therefore, φ is G-invariant and so it is φ° — η G Iπ(U), its
restriction to π-elements. This proves the claim.

Now, since φ has π-degree, by (5.4) of [7], φ is π-special and
therefore, ([/, ̂ ) is a subnormal π-factorable pair in the sense of [7].
Therefore, ([/, φ) < (W, α), where (W, α), α a π-special character of
W, is a nucleous of χ (definition (4.6) of [7]). Thus a° = ψ, and
by Theorem B of [9], it follows that Px is a Hall π'-subgroup of W,
for some x G G . Then Px Π U is a Hall π'-subgroup of U, and thus
U COPCK.

Now, since ί//O and Oπ(K)/O are normal subgroups of K/O
of coprime order it follows that Oπ(K)/O C CG/O(U/O) C C//O,
by Lemma 1.2.3. Therefore, we conclude that Oπ(K) = O. Let
y = Oπ7Γ/π(G). Since JFί/C/ and V/U have coprime orders it follows
that V Γ) K = U. Observe that δv = r], by (3.1) of [8], and that
δκv has π-degree. Therefore, ηv - (δκv)v e /π(V). Since ^ lifts
77, necessarily ^ ^ G Iττ(V). Since -0 is G-invariant, by problem (6.1)
of [6], for instance, it follows that U = V = G, as wanted. D

LEMMA 4. Let G be a π-separable group and let Y be a normal
π-subgroup of G. Let ψ G Iπ(G), let θ G Irr(F) under ψ and let
δ G Iπ(T\θ) with δG = φ, where T is the stabilizer of θ in G. Then
φ is nilpotent if and only if δ is nilpotent.

Proof. By the definition, certainly φ is nilpotent if δ is nilpotent.
So assume that φ is nilpotent and write ψ = ψG\ where φ G Iπ(K),
with K having a normal Hall π-subgroup. Since YK has alsό^a
normal Hall π-subgroup, we may replace K by YK and assume
that K contains Y. Also, by replacing K by some G-conjugate,
we may assume that φ lies over θ. If a G Iπ(K Γ\T\Θ) induces φ,
by uniqueness in the Clifford correspondence, (3.2) of [8], it follows
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that aτ = £, and the proof of the Lemma is complete. D

Now we prove.

THEOREM 5. Let B be a p-block of a p-solυable group and let
φ G IBr(β). Then B is nilpotent if and only if φ is nilpotent.

Proof. We argue by induction on |G|. Let θ G Irr(Op/(G)) be
under 92, let δ G IBr(T\θ) with δG — φ, where T is the stabilizer of
θ in G, and let b G Bl(T) be the block of δ. If T = G, by Lemma
2 and Lemma 3, we have that, in both cases, G is p-nilpotent and
so every block and every character are nilpotent. If T < G, by
induction and Lemma 1 and Lemma 4, we have that ψ is nilpotent
if and only if δ is nilpotent if and only if b is nilpotent if and only if
B is nilpotent. D

4. π-Blocks. Brauer himself considered the idea of generaliz-
ing p-blocks to π-blocks, for a set of primes π. Later, Robinson
and others introduced several definitions of π-blocks. We will fol-
low the Isaacs-Slattery's approach which certainly coincides with
Robinson's when the group is τr-separable. We refer the reader to
[12] and [13], for definition, notation and further comments on the
subject.

THEOREM 6. Let G be a π-separable group and let φ G Iπ(G) be
nilpotent. Let B be the π-block of φ. Then

(a) φ is the only modular character in B.

(b) If δG — φ, where δ G Iπ(K) has π-degree and K has a nor-
mal Hall π-subgroup, then the map φ -> ψG from lττ(K\δon(κ)) ~^
iττ(B) is a bisection.

(c) With the notation of (b) ; (δoπ(κ))G = Φ^ Thus, if H is a
Hall π-subgroup of G containing Oπ(K), then (δoπ(κ))H £ Iττ(H) is
a Fong character for φ.

Proof, (a) Let θ G Irr(O) under φ, where O = OV(G). Let δ G
Iπ(T\θ) with δG = φ, where Γ is the stabilizer of θ in G, and let
b be the π-block of δ. If T = G, by Lemma 3, G has a normal
Hall π-subgroup. Also by (2.8) of [12], we know that the modular
characters in B are the π-characters over θ. By (6.3) of [7], it follows



NILPOTENT CHARACTERS 349

that φ is the only one. On the other hand, if T < G, by Lemma 3,
induction and Theorem (2.10) of [12], the result follows.

(b) We argue by induction on \G\.
Since δ has π-degree, we have that a — δoπ(κ) 6 lττ(Oπ(K)).
Let V — OOπ(K). Since \OK : V\ is a π'-number, we have that

av = ^oκ)v G Irr(l/). Since a is X-invariant, by (4.3) of [7],
it follows that the map φ -> φoκ is a bijection from lττ(K\a) ->
Iττ(OK\av). Now let θ G Irr(O) be under av and let e G / π (T Π
Oif|0) be such that 6°^ = δoκ, where Γ is the stabilizer of θ in
G. If μ = e τ, observe that μ G 7π(T|0) and /iG = y>. By Lemma 4,
notice that μ is nilpotent. If T — G, by Lemma 3, we have that O
is a Hall τr-subgroup of G. Also, ψo — θ, which forces OK = G. In
this case, V̂  = O, α κ = θ and we know that φ —>• ^ G is a bijection
from I r r ( l φ ) -^ Irr(G|0). Since Irr(B) = Irr(G|θ), by (2.8) of
[12], in this case, we are done. So we may assume that T < G
and by induction we have that the map φ —» ψT is a bijection
from Irr(Γ Π OX|6Tny) -> Irr(fe).Since eT nv is T Π Oiί-invariant
and induces av, by (4.3) of [7], it follows that the map φ -» t/^07^
is a bijection from Irr(Γ ΓΊ OK\βτnv) —> lττ(OK\av) (observe that
(T Π OK)V — OK,because they have coprime indices). By the
above and Theorem (2.10) of [12], we have that the map φ —>• φG

is a bijection from Irr(Γ Π OK\eTrw) —> Irr(-B) and therefore so it
is the map φ -» φG from lrr(OK\av) -> Irr(S). This proves (b).

(c) By Lemma (2.3) of [10], it suffices to show that (5oπ(^))G =
%. If x G Irr(β), by (b), we have that χ° = (χ( l)/^(l)) y>. Then,

It is not difficult to show that all Fong characters associated with
ψ arise this way. D

We think it is worth to remark that if an irreducible character χ
is induced from a p-nilpotent character the p-block of χ need not
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to be nilpotent. For instance, consider χ an irreducible character
of degree 3 in the symmetric group on four letters and p — 2. The
block of x is the principal block which is not nilpotent (because G
is not ^-nilpotent). However, χ is induced from a Sylow 2-subgroup
of G.

5. An example. We mentioned above that if a block bG is de-
fined and nilpotent, then b needs not to be nilpotent. More sur-
prisingly, if a block nilpotent b covers a block e, e needs not to be
nilpotent (this fact was communicated to the author by L. Puig,
and we take this opportunity for thanking him). We give an easy

EXAMPLE 7. Let D = (x,y) be the dihedral group of order 8,
with C = (x) of order 4 and xy = x~ι and let D act on P = (z)
of order 3 by zy — z~ι and C acting trivially. Let G = PD be the
semidirect product and put p — 3. Let λ £ Irr(C) of order 4 and
λ - Λ x 1 P G Irr(P x C). Then χ = (λ)G G Irr(G). Observe that,
by (7.1) of [7], x G B2(G) and thus, φ = x° e IBr(G). Observe
that φ is nilpotent. Let J — P(y) and let H = J x Z o G, where
Z — (:r2). Then χ/f = μi+μ 2 5 where μi G lττ(H/P), and μ̂  is linear.
Then, μ i? which is normal constituent of a nilpotent character φ,
is not nilpotent (since H is not p-nilpotent). This shows that, in
general, nilpotent characters do not lie over nilpotent characters.
Also, μf — φ, and hence the nonnilpotent block of μ̂  induces the
block of φ.
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