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Based on the structure of the Z%actions by automorphisms
of compact, abelian groups and on techniques for proving the
triviality of the first cohomology of higher rank abelian group
actions we prove that, for d > 1, every real-valued Hoélder co-
cycle of an expansive and mixing Z%action by automorphisms
of a compact, abelian group in Hélder cohomologous to a ho-
momorphism.

1. Introduction.

In this paper we explore one of the facets of a rather striking phenomenon,
namely that the ‘good’ actions of the higher rank abelian groups, i.e. of Z¢
and R? for d > 2, are much more rare and ‘rigid’ than similar actions of
Z or R. While neither the total extent of this phenomenon nor the proper
definition of a ‘good’ action are as yet clear, it definitely manifests itself in
principal Anosov and partially hyperbolic actions of R¢, d > 2 ([KSp1]), in
Z* actions by automorphisms of compact abelian groups ([KSp2] and the
present paper), and for a large class of higher-dimensional shifts of finite
type ([S2]).

An essential part of rigidity present in the higher rank abelian group ac-
tions is due to the triviality of the untwisted first cohomology for sufficiently
regular classes of cocycles. Recall that, if I" is a group, and T : v — T,
is a continuous action of I" on a compact, metrizable space X, i.e. a ho-
momorphism from I' into the group of homeomorphisms of X, then a map
¢: I x X > Z is a continuous (1-)cocycle for T if ¢(y,-) : X > R is
continuous for every v € I', and

(1'1) C(’Y’Y,"’E) = c(’Y?T‘y’m) + c(fy',a;)

for all z € X and v, € I'. The cocycle c is a coboundary if there exists a
Borel map b: X — R with

(1.2) e(7,2) = b(T}a) — b(z)

105
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for all z € X, v € T. The function b in (1.2) is called the cobounding
function of the coboundary c¢. Two cocycles ¢;,¢, : T' X X — R are coho-
mologous (with transfer function b) if their difference ¢; — ¢, is a cobound-
ary with cobounding function b, and ¢;, ¢, are continuously cohomologous if
the transfer function b can be chosen to be continuous. Finally, a cocycle
c¢:I'x X > R is a homomorphism if ¢(7,-) is constant for every v € I". If
I" is a discrete group then, given a certain notion of regularity for functions
on X, such as smoothness, Holder continuity, etc., we will call a cocycle
c: I' x X —> R regular if, for each value y € I', the function c¢(vy,-) has
the required kind of regularity. Having fixed a notion of regularity for trans-
fer functions we will say that cocycles from a given class are trivial if they
are cohomologous to homomorphisms, with transfer functions of required
regularity.

To demonstrate the source of the difference between rank one and higher
rank let us consider the untwisted ¢;-cohomology of the action of Z¢ on itself
by translation for d = 1 and d = 2. This is both a model and a building
block for the cohomology trivialization results in the present paper as well
as in [KSp1], [S2].

For d = 1, an ¢, cocycle is represented by its value on the generator 1
of Z, i.e. by an absolutely summable sequence z = (z,,n € Z), and the
coboundary condition (1.2) means that z,, = y,+1 — yn for another sequence
y = (y,). Since z is absolutely summable we can define y* = (y;}) where,
for every n € Z,

n
y;zl,- = Z Z;,
1=—00
and obtain that z is a coboundary. However, if we want in addition the
cobounding function y to be in /;, or at least to vanish at infinity, an ob-
struction appears. Obviously, yF — >°_ z, as n — +o0, and y* vanishes
at infinity if and only if 3>z, = 0 or, equivalently, if y* = y~, where
Yo = — E?inﬂ T;-

Even if this obstruction vanishes, the (uniquely defined) cobounding func-
tion vanishing at infinity may itself not be absolutely summable. However,
this will be the case if = satisfies a reasonable decay condition at infinity: if
z decays super-polynomially, exponentially, or super-exponentially, so does
Y.

For d = 2, a cocycle is given by its values on the two generators (1,0) and
(0,1) of Z2, i.e. by two double sequences z(1? = (zgzg)) and (V) = (mﬁ,‘l’:}))
in £,(Z?) satisfying the equation

1,0 0 _ (01 ,
(1.3) Thmi1 = Toe) = Tl — T



COHOMOLOGY OF EXPANSIVE Z4ACTIONS 107

for every (m,n) € Z2. The cobounding relation (1.2) becomes

1,0) __ 0,1
"L"(-n,,n) = Ym+1,n — Ymn, .’L',(,n n) = Ymn+1l — Ym,n-

The cocycle equation (1.3) can be re-written as

ks =42 + 22— o0

and hence
m
1,0 f
Y ol = Z o + 2l = 2 G
i=—m i=—m
Since z(®V) is summable and hence vanishes at infinity one has, for every
n € Z,

o0 o0
Yo ozad= ) 3571;:2)4—1

m=—00 m=—00
Since (1 is absolutely summable we deduce that 3 o__ (1% = 0 for
every n € Z (the dzﬁerence between rank one and higher rank lies precisely
at this point). Hence y* = y~, where y} = ¥ = (10) and y,, ,, =

~ 3% 1 2hY. Thus y* is a cobounding function for z( 0 which vanishes
at infinity due to the summability of z(1:%). The cocycle equation (1.3) shows

that

201 — +
m n ym ,n+1 ym,n,

so that y* cobounds the cocycle. By imposing super-polynomial, exponen-
tial, or super-exponential decay conditions on the cocycle we obtain similar
conditions for the cobounding functions.

The proof of C°®-cohomology trivialization for a mixing action of Z¢,
d > 2, by automorphisms of a finite-dimensional torus or, more generally,
for a mixing action of Z4, by toral endomorphisms, is a more or less straight-
forward application of the above argument to the Fourier duals of the action
and the cocycle ([KSp1], Section 4.1). An approximation argument using
Livshitz’ theorem [Liv] extends this result to Holder cocycles if the action is
Anosov (i.e. expansive). For non-expansive mixing actions the result is prob-
ably not true for Holder cocycles, as Veech’s example for rank one indicates
V]

When one passes from finite dimensional tori to a Z%action a by auto-
morphisms of a more general compact, abelian group X, the notion of a
C™-structure becomes problematic, since the group is typically either not
locally connected, or infinite dimensional, or both. There is, however, a nat-
ural Holder structure associated with a given action, which coincides with
the usual one for an expansive action on the torus (cf. Section 2, (2.3)). As
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we indicated above, even on the torus the proof of cohomology trivialization
for Holder cocycles is not totally straightforward. Thus we have to take a
more indirect route, which also leads to trivialization results with continuous
transfer functions for cocycles with the weakest possible regularity condition
(summable variation—(2.2)). We abandon a direct reference to Fourier se-
ries in favour of a more geometric construction somewhat reminiscent of
the proof of Livshitz’ theorem [Liv]. In the Fourier series argument the
obstruction to cocycle triviality is the sum of the Fourier coefficients along
individual Z%orbits of the dual action. In the general situation this summa-
bility may no longer hold. We overcome this difficulty by constructing, for
a Holder cocycle c, a tentative solution on the set of points asymptotic to
a given one (the identity) along a certain double cone in Z9. An obstruc-
tion to extending this solution to a continuous transfer function is expressed
in (2.11), which is a geometric counterpart of a sum of Fourier coefficients
along an orbit of a regular element of the Z%action. In the simplest pos-
sible terms this obstruction can be described as follows: if an element y of
the group X is positive asymptotic to the identity element 0 with respect
to some element n € Z4, then the difference of the values of any possible
cobounding function at z and at z + y has to be equal to the infinite sum
S isolc(n, o n(z)) — ¢(n, agn(z + y))). A similar expression is obtained for
negative asymptotic points. Since both expressions are defined if y is ho-
moclinic to 0 with respect to n, they must coincide for any such y in order
for a cobounding function to exist. Proposition 2.6 not only shows that this
condition is sufficient, but establishes a relativised version of it, which is
used in an induction process.

As expansive Zd-actions by automorphisms of compact, abelian groups
may have a very complicated structure, this argument cannot be applied to
the action as a whole, but to a sequence of algebraic quotients of the original
action. These quotients are obtained as duals of a suitable prime filtration of
the dual group viewed as a Noetherian module. This structure is summarized
in Theorems 3.1 and 3.2, and Lemma 3.3. The individual quotients which
can appear in this decomposition are characterized in Corollaries 3.5 and
3.7. The key Proposition 2.6 allows us to carry out an inductive reduction of
the cocycle to cocycles for the successive quotient actions, assuming that the
geometric obstruction (2.11) vanishes for each of the successive quotients.

The vanishing of the obstructions is established in Section 4 for the four
different types of quotient actions (Lemmas 4.2, 4.4, 4.6, and 4.8). It is
interesting to note that in the last two of those cases we have to appeal to a
slightly weaker version of the summability of Fourier coefficients.

We would also like to point out somewhat unequal contributions by the
two authors of this paper. The original idea came in a conversation in
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December 1991 during the second author’s visit to Penn State, when we
realized that techniques for proving trivialization of cohomology developed
in [KSp1] could be combined with the structure theory of Z¢ actions by
automorphisms in [S1] and [KiS2] to produce trivialization results for such
actions. We found a proof which worked in many, but not all cases. The rest
is due to the second author who substantially modified the original approach
and put the complete proofs in final form.

Finally we would like to acknowledge the support from the Mathematical
Sciences Research Institute (now pronounced EMISSARY) during the final
stage in the preparation of this paper.

2. Statement of the main theorem, and a Livshitz-type result.

Let T be a continuous action of Z¢ on a compact, metric space (X,d). We
write |-| and (-) for the Euclidean norm and inner product on R? > Z¢, and
put B(r) = {n€Z%:|n| <r}. If f: X — R is a continuous function we
set, for every r > 0,

(21) wf(fa Ta 8) = sup ‘f("l") - f(l',)l )
{(z,2')EX X X:6(Tn(z),Tn(z'))<e for all neB(r)}

and we say that f has T-summable variation if there exists an € > 0 such

that

(2.2) W (f,Te) = Zw (f,T,¢) < 0.

r=1

The function f is T-Holder if there exist constants €,w’ > 0 and w with
0 < w < 1 such that

(2.3) w(f, Tye) < Ww'

for every r > 0. These notions are obviously independent of the specific
metric § on X, and every T-Holder function has T-summable variation. If
the Z%action T is understood we simply say that f has summable variation
or is Holder. Note that, if d > 1 and f has T-summable variation (or is
T-Holder), then f will in general not have the corresponding property with
respect to any of the Z-actions k +— Tyn, n € Z%. A cocycle c: Z4x X — R
for T' has T-summable variation (or is T-Holder) if ¢(n,-) : X —— R has
T-summable variation (or is T-Holder) for every n € Z¢.

Let X be a compact, additive, abelian group (always assumed to be
metrizable), with identity element Oy, and let Aut(X) be the group of con-
tinuous group-automorphisms of X. If d > 1, then a Z%-action by auto-
morphisms of X is a homomorphism « : Z? — Aut(X). The action « is
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ergodic or mizing if it is so with respect to the normalized Haar measure
Ax of X, and « is ezpansive if there exists an open set O C X such that
Nueze an(O) = {0x }, where Ox is the identity element of X. We shall prove
the following theorem.

Theorem 2.1. Let d > 1, and let « be an ezpansive and mizing Z%-action

by automorphisms of a compact, abelian group X.

(1) Ewvery cocycle ¢ : Z? x X — R with a-summable variation is continu-
ously cohomologous to a homomorphism;

(2) Every a-Hoélder cocycle c : Z¢ x X — R is cohomologous to a homo-
morphism, with Holder transfer function.

The proof of Theorem 2.1 will occupy Sections 2—4, and will depend on the
structure theory of Z%actions by automorphisms of compact, abelian groups
presented in Section 3, where we also discuss briefly the notions of functions
with a-summable variation and of a-Holder functions (Remark 3.10).

Let a be a Z4action by automorphisms of a compact, abelian (additive)
group X, and let

(2.4) A, = {z € X : lim on(z) = oX}
k—o0

be the homoclinic group of . For every nonzero element n € Z¢ and every
& with 0 < £ < 1 we define the cones

C*(n,¢) = {m € Z*: (m,n) > {|m]|n|},

(2.5) C (n,¢) = {m € Z*: (m,n) < —¢|m||n|},

and consider the group

A nf) ={zeX: lim z)=

k— o0

('
(2.6) ket med
= lim ax(z) = 0x for some ¢ € (0,€)
keg?(o:f)
Note that
(2'7) am(Aa(naf)) = Aa(n, 6)

for every m € Z°.
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Ezamples 2.2(1) Let F be a compact, abelian group, and let o be the shift-
action of Z¢ on FZ* defined by

(2.8) (OnT)m = Tmtn
for every n € Z? and z = () = (Tm, m € Z%) € F2°. Then

A,(0,8) DA, D {z=(zn) €EX : 2, =0
for all but finitely many n € 2%},

and these groups are therefore dense in X; if F is finite, then
A, = {z = (zn) € X : o = Op for all but finitely many n € Z%} .
(2) Let F be a finite, abelian group,

. d
X= {zc = (Za) € FX" : T(m,n) + Tme1,m) + E(m,nt1) = OF
for every (m,n) € Zz} )

and let a be the restriction of the shift-action o in (2.8) to X. It is easy to see
that A, = {Ox}, and that A,((1,1),£) is dense in X for every { € (-\}5, 1).

(3) If « is an expansive and mixing ZZ2-action by automorphisms of a finite
dimensional torus or solenoid X, then A, = {Ox}. However, if n € Z¢ is
an element such that o, is expansive (such elements obviously exist), then
A,(n,€) is dense in X for some & € (0,1) (this can be proved by looking at
the local product structure of «, at Ox, which is described in some detail in
Lemma 4.7).

Let a be an expansive Z%action by automorphisms of a compact, abelian
group X, and let c: Z¢ x X — R be a cocycle with a-summable variation.
We fix a primitive element n € Z% and £ € (0,1), and define a cocycle
c™ : A,(n,€) X X + R for the action of A,(n,¢) on X by translation by

(2.9) ™ (y,z) = (c(n, () — c(n, aa(z +9)))
k€EZ

for every y € A,(n,€) and z € X. Since y € A,(n,§), (2.9) is well defined,
and the cocycle equation (1.1) implies that

™ (ya $) =™ (am(y)’ am(x))
for every m € Z4 (cf. (2.7)). For y € A, C A,(n,£) we obtain

c(y,z) = lim ™ (am(y), am(z)) =0
m—00

(m,n)=0
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for every z € X, as a consequence of (2.1) and (2.4). In Example 2.2 (1),
A, is dense in A,(n,€), and an elementary approximation argument yields
that c¢™(y, ) = 0 for every y € A,(n,€). In general, however, A, will not
be dense in X (cf. Examples 2.2 (2)—(3)), and other techniques have to be
employed in order to show that c(™ (y,-) vanishes for all y € A, (n, §).

The next step of the argument is to show that the vanishing of ¢ implies
that c(n,-) is cohomologous to a constant. We begin with a definition. Let
0 be an invariant metric on a compact, abelian group X (invariant means
that d(z,y) = 6(z + 2,y + 2) for all z,y,2z € X), and let o a Z%action by
automorphisms of X

Definition 2.3. Let 0 # n € Z¢ and let £ € (0,1). The Z%action a has
weak (n, &)-specification if A,(n,€) is dense in X, and if there exist, for every
€ > 0, constants s’ > 1, ¢’ > 0, with the following property: for every r > 0,
and for every z € A,(n,&) with §(am(z),0x) < € for every m € B(s'r + '),
one can find a y € A,(n, &) with

§{an(y), an(z)) < € for all k € Ct(n, &) + B(r),

2.10
(2.10) §(ax(y)),0x < e for all k € C™(n,§) + B(r).

We say that « has weak n-specification if it has weak (n, {)-specification
for some ¢ € (0,1).

Ezamples 2.4(1) Let F be a compact, abelian group, and let o be the shift-
action (2.8) of Z% on X = F2°. Then o has weak (n,&)-specification for
every nonzero element n € Z¢ and every £ € (0, 1).

(2) Let a be an expansive Z%action by automorphisms of a finite-dimen-
sional torus or solenoid X. For every n € Z? for which «, is expansive,
« has weak n-specification. This is proved by looking at the local product
structure of o, (cf. Lemma 4.7).

Other examples of Z%-actions with weak n-specification will arise in Corol-
lary 3.5 and 3.7. Before describing how weak n-specification helps in proving
that the function ¢(n,-) is cohomologous to a constant if the cocycle ¢® in
(2.9) vanishes we have to establish a preliminary result. If X is a compact,
abelian group and Y C X a closed subgroup we denote by Ax and *Bx the
normalized Haar measure and the Borel field of X, write Bx,y C Bx for
the g-algebra of Borel cosets of Y, and consider the conditional expectation
E,, (f|®Bx/v) of a function f : X — R with respect to the o-algebra B x,y.

Lemma 2.5. Let o be a Z%-action by automorphisms of a compact, abelian
group X, and let f : X — R be a function with a-summable variation.
If Y C X is a closed, a-invariant subgroup, then E\,(f|Bx/vy) has a-
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summable variation. If f is a-Holder, then E,, (F|Bx/y) is again a-Holder.
Proof. We fix an invariant metric 6 on X, set

Xs(r,e) ={z € X : §(ax(z),0x) <e for every k € B(r)}
for every 7 > 0 and € > 0, and note that

sup max|f(z) — f(z +y)| = wl(f,a,¢).
YEXs(re) TEX

If f¥(z) = f(z +y), then
|Exx (f|Bx/y) (2) — Exx (F¥|Bx/y) (2)| < wl(f, o)

forallz € X and y = Xs(r, €), which proves that E,, (f|Bx,y) has summable
variation (or is Holder). 0

The following proposition is similar to Livshitz’ theorem ([Liv] and [KSp1],
Theorem 2.14), which guarantees the vanishing of Holder cocycles for an
Anosov system, given that the cocycle vanishes on all periodic orbits. This
proposition shows that the obstruction to reducing a cocycle to a cocycle on
a quotient group is given by the expression (2.11).

Proposition 2.6. Let a be a Z%-action by automorphisms of a compact,
abelian group X, Y C X a closed, a-invariant subgroup, and assume that
the restriction of a to Y has weak (n,§)-specification for some £ € (0,1)
and some nonzero n € Z%. Let f : X — R be a function with a-summable
variation. We set A(n,€) = A,(n, €)NY and define a cocycle cgt") : A(n, &) X
X — R for the action of A(n,€) on X by translation by

(2.11) P(y,2) =Y (f - arn(@) — f - tra(z +9))

kezZ

for every z € X and y € A(n,§). If c(f")(y,z) = 0 for all y € A(n,¢)
and £ € X, then f is cohomologous—with bounded transfer function—to
B (f[Bxyv)-

Suppose furthermore that there exists a closed, a-invariant subgroup Z C
X such that Y NZ = {0x} and X =Y + Z. Then f is continuously
cohomologous to Ex, (f |Bx/y). Moreover, if f is a-Holder, and if ¢ is a
metric on X, then the transfer function b: X — R can be chosen so that
there ezist positive constants €, w, w' with 0 < w < 1 and |b(z + y) — b(z)| <
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Ww" forallz € X, r>1, and y € Y4(r,e) = {y € Y : § (ax(y),0x) < ¢ for
all k € B(r)}.

Proof. For every z € X and y € A(n,£) we put

C+(y,$) = Z(f : akn(x) - f ) akn(m + y))’

k>0

C—(y’ 117) = Z(f . akn(x) - f : akn(-’l" + y)),

k<0

and note that the maps ¢* : A(n,£) x X — R are well-defined cocycles,
and that
c*(y,z) + ¢ (y,2) = ¢ (y,2) = 0

for every z € X and y € A(n,{).

We fix an invariant metric § on X and an € > Osuch that 3,5, w(f, a,€) <
00, and use the weak (n, £)-specification of a on Y to find constants s’ > 1,
t' > 0 with the following property: for every r > 0 and every y € A(n, £) with
d(am(y),0x) < € for all m € B(s'r+1t'), there exists an element y' € A(n,¢)
with §(ax(y'), ax(y)) < € for all k € Ct(n,€) + B(r), and d(au(y'),0x) < €
for all k € C~(n,&) + B(r). Then

o1z SO CWAl<0- &)Y wilf,a6) = C'(M),
le~ (', 2)| = |t (v, 2)| < C'(M), and |¢t(y,z)| < 2C" (M)

for every y € A(n,&)NY;(s’M +t',¢) and z € X. By varying M we see that

(2.13) lim max|ct(y,z)| =0.
y—0x TEX
yEA(n,E)

Since A(n,€) is dense in Y, (2.13) allows us to extend c¢* uniquely to a
continuous function ¢t : Y x X — R and ct is again a cocycle. We write
0 : X — XY for the quotient map and choose a Borel map ¢’ : X/Y — X
such that 0-6'(z+Y) =z +Y for every z € X (cf. [P], Lemma 1.5.1). The
map b:Y — R, defined by b(z) = ct(z—6'-0(z),0'-6(z)) for every z € X,
is bounded and Borel and satisfies that ¢t (y,z) = b(z + y) — b(z) for every
z€XandyeY.

If there exists a closed, a-invariant subgroup Z C X with Y N Z = {0}
and Y + Z = X, then we can write every z € X uniquely as z = y(z) + 2(2)
with y(z) € Y and 2(z) € Z, assume that

6(z,0x) = max {6(y(z),0x) + 6(2(z),0x)},
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and set §'(x +Y) = z(z). Then &' is continuous, and b : X —— R is
continuous.

If f is Holder we assume without loss of generality that e is sufficiently
small and choose 0 < w < 1, w' > 0, such that (2.3) is satisfied. From (2.12)
we see that there exists a positive constant @' such that |c* (y, z)| < @'wM for
allz € X andy € A(n,¢)NY;(s'"M +1',€), and we conclude that |ct (y, z)| <
@'wM for all z € X and y € Ys(s'M +t',€). Hence |b(z +y) — b(z)| < &'wM
forallz € X and y € Y3(s'M + ¢, ¢).

Let I' = Z x Y with the product topology, and with group operation
(n,y) - (n,y') = (n+n',awa(y) +¥'), (n,y), (n',y') €T, and let IV C T’ be
the subgroup consisting of all (n,y) with n € Z and y € A(n,¢). We write
T for the action of I' on X given by T(,,)(z) = ann(z + y) and define a
continuous map ¥ : I' x X —— R by setting, for every (n,y) € I" and z € X,

Ef‘ajn($+y)+c+(y,x) ifn>0,
=0

1/;((n,y),w) = 9 c+(y,z) ifn= 0,
L’Zf'a—jn($+y)+c+(y,m) ifn <0.

A straightforward calculation shows that the restriction of 9 to IV x X is
a cocycle for the restriction T' of T to I, and the definition of ¢t as a
continuous extension of ¢t implies that 7 is a cocycle for the I'-action T. In
particular,

b(z + y) — b(z)
=c*(y,z) = %((0,y),z)
=9%((=1,0), an(z + y)) + ¥((0, 2 (y)), an(z)) + ¥((1,0),2)
=9((1,0), (z + y)) + %((0, 2 (y)), an(z)) + ¥((1,0), )
—f(z+y) +c(an(y), an(z)) + f(2)
—flz+y)+b-on(z+y) —b- an(z)

forallz € X, y €Y, so that f —b- a, + b is invariant under translation
by Y. Hence f —b-an+b=E\,(f —b-an+bBx/yv) = Ex,(f|Bx/v) —
E,\x (b'%x/y) -0+ E/\x (blfo/y), so that f — E)‘x (f[%x/y) =b- ay — b’ for
some bounded Borel map b' : X —— R. Finally, if the conditions of the last
assertion are satisfied, then b’ = b— E),, (b|Bx,y) is continuous or Holder in
the required sense (cf. Lemma 2.5). W

Corollary 2.7. Let X', X" be compact, abelian groups, o', " ergodic Z4-
actions by automorphisms of X' and X", respectively, and let 0 # n € Z2 be
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an element such that o' has weak n-specification. Put X = X' x X", a =
o x ", and assume that f : X —> R has a-summable variation. Suppose
that there exists a Borel map b: X —— R such that f = E;(f) +b- oy — b,
where Ey(f) = Ex; (f|Bx/104 xx7y)- Then there exists a continuous map
b : X — R such that f = E\(f) +b -an,— Y.

Proof. We set A = {0x:} x A, (n,€) and define a cocycle c&") :AXxX — R
by (2.11). Suppose that there exist elements £ € X and y € A such that
cﬁe“) (y,z) = a # 0. Then there exists a neighbourhood N(z) C X such that
'cffn)(y, z)l > a/2 for all z € N(z), and Ax(N(z)) is obviously positive.

On the other hand, since f = E;(f) + b- an — b for some Borel map
b : X > R, and since there exists, for every ¢ > 0, a compact subset

C. C X such that Ax(C.) > 1—¢ and the restriction of b to C; is continuous,
we obtain that c}")(y, ) =0 Ax-a.e., which contradicts the conclusion of

the first paragraph of this proof. Hence & (y,z) = 0 for all y € A and
z € X, and the conclusion follows from Proposition 2.6. O

3. The structure of Z%actions by automorphisms of compact,
abelian groups.

Let X be a compact, abelian group with dual group X. For all z € X and
a € X we denote by a(z) = (z,a) the value of the character a at , and we
write 7 for the automorphism of X dual to an automorphism n € Aut(X),
where 7j(a) = a -7 for all a € X.

Let d > 1, and let Ry = Z [uf’,... ,us'] be the ring of Laurent polyno-

mials with integral coefficients in the commuting variables u;,... ,uy. An
element f € M, will be written as f = Y czucs(n)u with ¢f(n) € Z,
Sonezeles(n)] < oo, and u™ = uf' ---uj? for every n = (ny,... ,nq) € Z4,

and we denote by S(f) = {n € Z%: ¢;(n) # 0} the support of f. If a is a
Z%-action by ‘automorphisms of a compact, abelian group X, then the dual
group M = X of X becomes an Rymodule under the R;-action defined by

(3.1) fra= Z cs(n)fn(a)

~

for all a € M and f € Ry, where B, = &y is the automorphism of 9t = X
dual to «,. In particular,

(3.2) &n(a) = Pula) =u”-a
for all n € Z% and a € M. Conversely, if M is an Ry-module, and if
(3.3) Ba) = u" - a
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for every n € Z¢ and a € M, then we obtain a Z%action

(3.4) ™ :n— =M

n

on the compact, abelian group
(3.5) X™ =0

dual to the Z%action 5™ : n — 87 on M.

If 991 is an R,z-module, then a prime ideal p C R, is associated with I if
p={f €Ras: [ a=0} for some a € M, and M is associated with a prime
ideal p C R, if p is the only prime ideal in R, associated with 91. For every
ideal J C R, we set

(3.6) Ve(J)={c=(c,...,ca) €EC*: f(c) =0 for every f € J}.

A nonzero Laurent polynomial f € R, is a generalized cyclotomic polynomial
if there exist m,n € Z¢, n # 0, and a cyclotomic polynomial c in a single
variable such that f = u™c(u™). The following assertions were proved in
[S1] and [KiS2], Theorem 3.3.

Theorem 3.1. Let o beAa Z%-action by automorphisms of a compact, abelian
group X, and let M = X be the R -module arising from « via (3.1)—(3.2).
(1) The following conditions are equivalent.
(a) « is expansive;
(b) The Ry-module M is Noetherian, and Ve(p) NS¢ = O for every
prime ideal p C Ry associated with M, where S = {c € C: |c| = 1}.
(2) The following conditions are equivalent.
(a) « is mizing;
(b) an is ergodic for every nonzero element n € Z%;
(c) o®¢/? is mizing for every prime ideal p C Ry associated with IM;
(d) None of the prime ideals associated with 9 contains a generalized
cyclotomic polynomial.

(3) If M is Noetherian, the following conditions are equivalent.
(a) a is ergodic;
(b) an is ergodic for some element n € Z¢;
(c) oa™¢/? is ergodic for every prime ideal p C Ry associated with M.

We identify Z with the set of constant polynomials in $R; and note that,
for every prime ideal p C Ry, p N Z is either equal to pZ for a unique
rational prime p = p(p), or to {0}, in which case we set p(p) = 0. The
next result is taken from [KiS1, Theorem 5.2 and Proposition 3.12] and
[S1, Theorem 3.3].
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Theorem 3.2. Let a be a Z%-action by automorphisms of a compact, abelian
group X. The following are equivalent.
(1) X is zero-dimensional and « is expansive;

(2) The Ry-module M defined in (3.1)—(3.2) is Noetherian, and p(p) > 0
for every prime ideal p C R, associated with IM;

(3) There exists a finite, abelian group F and a continuous, injective group
homomorphism ¢ : X — FZ° such that

(3.7) ¢-an=0n"¢

for every n € 2%, where o is the shift-action (2.8) on F%°. If a is ezpansive,
then a is ergodic if and only if Ry /p is infinite for every prime ideal p C Ry
associated with M.

Let 9t be a Noetherian R,;-module. Corollary V1.4.8 in [La] implies the
existence of Rz-modules

(38) {O}zmocm1C"'Cms=m

such that, for every j = 1,...,s, 9M;/9M;_1 = R,y/q; for some prime ideal
q; C R, containing one of the prime ideals associated with 2t (Corollary
2.2 in [S1]). The sequence My, C --- C N, in (3.8) is a prime filtration of
M. The following lemma helps to overcome the problem that the successive
quotients in a prime filtration of 9 may involve prime ideals which are not
associated with 91.

Lemma 3.3. Let 9 be a Noetherian Ry-module with associated primes
{p1,... ,pm}. Then there exists a Noetherian Ry-module M =NV & --- &
N and an injective R-module homomorphism ¢ : I —— N such that
each of the modules N9 has a prime filtration {0} =N c --- C ‘ﬂg) =
ND/ND | =R, /p; fork=1,...,7;.

FX=X"andY = X® = X7 x ... x X" then the homomor-
phism ¢ : Y > X dual to ¢ is surjective and satisfies that ¢ - o =
P - (af(l) X - X af(m)) =aX - ¢ for every n € Z°.

Proof. Theorem VI1.5.3 in [La] allows us to choose submodules 20, ... ,20,,
of 9 such that MM/20; is associated with p; for 1 = 1,... ,m, N, 2W; =
{0}, and ;cs20; # {0} for every subset S C {1,...,m}. In particular,
the map ¢ : a = (a + 204,... ,a + 20,,,) from 9N into ¢ = P, M/2; is
injective. We fix j € {1,... ,m} for the moment and apply Lemma 3.4 in
[KiS2] to find a prime filtration {0} = 9, C --- C N, = WM/, such that
‘ﬁscj)/‘ﬁfle = m,,/qgf’ for every £k = 1,...,s;, where qg) C R, is a prime
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ideal containing p;, and where there exists an r; € {1,...,s;} such that
(’)——p] for k =1,...,r;, andq(’)Dpj fork=r;+1,...,s;. If r; <s;
we choose Laurent polynomlals g9 e ¢ \py) for k =r; +1,...,s,, set

g9 = g(]) +-- g%, and note that the map %0 : /20, — NY) consisting
of multiplication by ¢¢) is injective. Since ‘Jtﬁf) has the prime filtration
o}=nY c...c MY whose successive quotients are all isomorphic to

Ra/p;, the module N = ‘ﬁﬁll) ®--- P ‘ﬂﬁ'n’f) has the required properties. The
last assertion follows from duality. W]

Let 20t be a Noetherian fR;-module, and let {0} =Ny C --- C N, = M be
a prime filtration of M with Mie/Me—1 = Ry/qe for k =1,...,s. We write
Xy =N{ ={z€ X" =M: (z,a) =1 for every a € N;} for the annihilator
subgroup of 9 in X™. and obtained closed, a™-invariant subgroups

(3.9) {0} =X,C---CXo=X"

such that

(3.10) X1/ Xe = M/ My = Rafau

for every £ = 1,...,s. In view of Theorem 3.1 we conclude that every

expansive Z%action by automorphisms of a compact, abelian group X has
the property that there exist closed, a-invariant subgroups {0} = X, C --- C
Xo = X such that, for every k = 1,... , s, the Z%action aX*-1/X* induced by
a on X;_;/X; is of the form ™4/ for some prime ideal q;, C Ry (cf. (3.3)-
(3.5)). In order to complete the picture we recall the explicit description of

a”4/? for a prime ideal p C R, given in [Sl] and [KiS2]: if T = R/Z, and if
o is the shift-action (2.8) of Z¢ on Ry = T%", then

(3.11) X/D:" = {z = (z,) € T2 ; f(0)(z) = Oz for every f € p},

where

(3.12) fo)(@) = Y ¢;(n)on(z)

nezd

for every f = ¥, czecr(n)u™ € Ry, and o™+/? is the restriction of o to X 7/P.
In the special case where p = p(p) > 0 we set F,, = {k/p(mod 1) : 0 < k <
p} C T and observe that X®«/» ¢ F2* 'H‘Zd. The obvious isomorphism
of F, with F, = Z/pZ allows us to regard X*¢/? as a closed, shift-invariant
subgroup of ]Fz

Our next task is to investigate in more detail the structure of Z%actions
of the form o = a™/?, where p C R, is a prime ideal. Recall that an
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element n = (ny,...,ny) € Z% is primitive if ged{n,,... ,n4} = 1; more
generally, a subgroup I' C Z< is primitive if the group Z¢/T is torsion-free.
If p = p(p) > 0, then the following proposition shows that there exists a
maximal primitive subgroup I' C Z? and a finite, abelian group G such that
the restriction of of o to I is topologically and algebraically conjugate to
the shift-action of ' on GT.

Proposition 3.4. Let p C R, be a prime ideal with p = p(p) > 0 such that
the Z%-action o = o®4/? on X = XRa/? = m - szd is ergodic (cf. (3.3)-
(3.5), Theorem 3.1, and (3.11)). Then there ezist an integer r € {1,... ,d},
a primitive subgroup ' C Z% and a finite set Q C Z% with the following
properties.

(1) Tz,

(2) 0€Q@, and QN (Q +m) =0 whenever 0 #m eI

(3) IfI‘ I'+Q={m+n:meT,n € Q}, then the coordinate projection
X ]FF which restricts any pointx € X C ]FZ to its coordinates
n I‘ s a contmuous group isomorphism; in partzcular the T'-action

of :n— oy, n €T, is a Bernoulli action with finite alphabet F3.

Proof. This is Noether’s normalization lemma in disguise. We write md(” ) =
F, [uf',... ,u¥"] for the ring of Laurent polynomials in u, . .. ,u4 with coef-
ﬁc1ents in the prime field F,, and define a surjective homomorphism f +— f/,
from R, to R,P by reducing every coefficient of a Laurent polynomial
f € R, modulo p. Then q = {f/, : f € p} is a prime ideal in R, P,
and Ry/p = R,P /q.

We write el for the i-th unit vector in Z¢ and claim that there exists a
matrix A e GL(d,Z) and an integer r, 1 < r < d, such that the elements
v; = ut*” + q are algebralcally independent 1n the ring R = R4P) /q for
i=1,...,r, and both v; = u”® D4 q and v;" = =y 4?4 q are algebraic
integers over the subring F, [v1 PN Vi 1] C ’R, forj=r+1,...,d. Indeed,
ifu; =u1+4q,... ,u); =uy+qare algebralcally independent elements of R,
then q = {0}, and the assertion holds with r = d, and with A equal to the
d x d identity matrix. Assume therefore (after renumbering the variables, if
necessary) that there exists an irreducible Laurent polynomial f € q of the
form f = go + giug + - - - g1ul, where g; € F, [uf',... ,uf';] and gog; # 0.

If the supports of gy and g, are both singletons, then ug and u;' are both

integral over the subring F, [u’ o uﬁi_lﬂ] C R. If the support of either

go Or g; is not a singleton one can find integers ki,...,k; such that the
substitution of the variables w; = uiug", i =1,...,d—1, in f leads to
a Laurent polynomial g(wy,... ,wg_1,uq) = uﬁ"f(ul, . ,uq) of the form

g = gh+ giug + ---ghuly, where g! € F, [wf',... ,wi!,], and where the
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supports of g; and g;, are both singletons. We set

10 - 0 kp
01 -+ 0 k2
B = . '.. : )

00 - 1ka

00 -0 1
w, =w;+q = uBe? 4 g, 4 = 1,...,d — 1, and note that w’, and w/,”"
are integral over I, [w;il, e ,w;_lil] C R. If the elements wi,... ,w)_,
are algebraically independent in R, then our claim is proved; if not, then
we can apply the same argument to w,... ,wy_, instead of u,,... ,uq, and
iteration of this procedure leads to a matrix A € GL(d,Z) and an integer
r 2> 0 such that the elements v; = u?*” 4 q € R satisfy that Viyeon UL

are algebraically independent, and v; and v}'l are integral over RU-1 =

F, [v{il,... ,v}_lil] C R for j > r, where R©® = F, if r = 0 (in which
case R must be finite). From Theorem 3.2 it is clear that the ergodicity of
« implies that r > 1, and this completes the proof of our claim.

For the remainder of this proof we assume for simplicity that A is the dxd
identity matrix, so that v; = u; fori = 1,... ,d (this is—in effect—equivalent
to replacing o by the Z%action o' : n — o/, = a4,). The argument in the
preceding paragraph gives us, for each j = r+1,... ,d, an irreducible polyno-

mial f;(z) = Sy, 9" z* with coefficients in the ring F, [ui*",... u}_,*'|

R such that hj(u;) = hj(uq,... ,uj_1,u;) € q and the supports of ¢ and
g,(jj) are singletons. Let I' C Z¢ be the group generated by {e®,... e},
Q = {0} x--- x {0} x {0,... 0,41 — 1} x {0,... ,lg — 1} C Z% and let
Ir'=T+Q={m+n:melneQ} Wewritem—an—)IFS for the
coordinate projection which restricts every z € X to its coordinates in I" and
note that 7 : X — ]FZ is a continuous group isomorphism. In other words,

the restriction of a to the group I' = Z" is a Bernoulli shift with alphabet
FQ. O

P

Corollary 3.5. Let p C Ry be a prime ideal such that p = p(p) > 0 and
r = r(p) > 1, and o™¢/? is ergodic. Choose a primitive subgroup T' = Z"
in Z¢ according to Proposition 3.4 and fiz a primitive element n € T'. Then
™'/ has weak n-specification. Furthermore, if M is an Ry-module with a
prime decomposition {0} = Ny C --- C Ny = N such that N;/N;_; = Ry/p
for every 5 =1,...,s, then o® has weak n-specification.

Proof. We assume for simplicity that I' C Z¢ is the subgroup generated by
the unit vectors eV, ... ,e(™, and that n = e). Choose a finite set Q C Z¢
with the properties stated in Proposition 3.4, set I' = I' + @, and note that
the projection 7y : XR4/P —y ]FE is a continuous group isomorphism.
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From Proposition 3.4 it is clear that there exist £ € (0,1) and ¢ > 0,
which depend on the supports of the polynomials f;, 7 =7r+1,... ,d, in the
proof of that proposition, and on the set Q C Z¢, such that the following
condition is satisfied.

For every & = (Zm) € X®4/? C F2°, let y* € X be the unique
points with

. foe ifk=(ky,... k) €T with ky > —t/,
=\ 0r, ifk=(ki,...  ka) €T with ky < —t/,
() _ [me ifk=(ky,... ka) €T with ky < -,
= 0s, ifk = (k.. k) €T with by > .
Then To+ (e ¢) (z) = To+ (et ¢) (y*) and m,_ (e.¢) (z)

= o= (et ) (y™)

The weak (e, ¢)-specification of ”¢/* is an easy consequence of (*).

If 9N is an arbitrary RR;-module satisfying the assumptions of this corollary,
we choose elements by, ... ,b, € 91 such that M; =Ry -b; +--- + Ry - b; for
j=1,...,s write6: X r—> (T’)zd = 97%\5 for the injective homomorphism
dual to the surjective map 6 : (hy,... ,h,) — hy-by +---+ h, - b, from RS =
Ry®-- DRy to N = Ry-by +- - -+Ry-b,, and identify X with 6(z) C (T*)%".
Under this identification the Z%action a” becomes the restriction to X of
the shift-action o of Z4 on (T*)%*

We set F,, = {k/m:0<k< m} C T, m > 2, and claim the followmg

(1) The restriction to X of the projection map =r : (T*)%* — (T*)T
injective.

(2) There exist £ € (0,1) and ¢’ > 0 such that the following conditions are
satisfied

For every z = (zm) € X C (T*)%, let y*= € X be the unique
points with
Ty ifk = (ky,...,kq) €T with k; > —#/,
{O(T,)o ifk = (ki,... ko) € T with k; < —#/,
N if k= (ky,...,kq) €T with k, < —¢/,
e = {O(T,)Q if k = (ki,... k) € T with ky > —¢'.
Then 7oy (ome)(@) = Tor(em g)(yT) and 7o (o ¢)(2)
= o= (et ) (y7)-

Y=

2
(3) There exists a continuous group isomorphism ¢ : mp(X) — (F;|Q|)

Z"‘
which intertwines the shift-actions of I' = Z” on n+(X) and (F;|Q|)
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In order to prove the first assertion we identify (T*)%* with (']I‘Zd)s in the

obvious manner, write each z € X as z = (z\9,... ,z2(®) with 29 € TZ¢,
and denote by 1) : z — z(9) the j-th coordinate projection. Put X; = 91 C
X and observe that X; ={z=(W,...,z)) e X : gV = ... = 2D =0}
and 70)(X,_;) = X;_ I/X for j =1,...,s. Proposition 3.4 implies that any
z = (zM,...,2¥) € X with 7r(z) = 0 must lie in X,. Furthermore, since
7@ (X,) Xl/Xz = ml =] ﬁm, we know that z® € X%¢/p c T2,
and Proposition 3.4 implies that z(*> = 0. By repeating this argument we
eventually obtain that x = 0, i.e. that =« is injective on X, as claimed in
(1).

If we choose & € (0,1) as in (*), then (2) is an immediate consequence of
the proof of (1).

For the third assertion we set R, = Z [uf’,... ,u!] C Ry, view 9N as
a Noetherian R,-module 9, and observe that ‘Jt’ is associated with the
prime ideal (p) = pR,. Fix an enumeration Q@ = {0 = m®,... m(9D} of Q,

where |Q)| is the cardinality of @, set aj_1)|gj+x = um(k)b]- forj=1,...,s
and k = 1,...,|Q|, and put N = {0} and N} = R, -a; +--- + R, -
for I = 1,...,5|Q|. The prime filtration {0} = 9, C --- C N, ol = =N

satisfies that O;/9;_; = R, /(p) for j = 1,..., 5|Q| and Mo is equal
to N, (regarded as an R,-module) for every j = 0,...,s. Write Yj
‘ﬁ}l for the annihilator of 91 in X = X" =9 for j =0,... ,s|Q|,
and note that each Y; is invariant under the Z'™-action o' = o™, X =
Yo D --+ D Yy = {0}, and Y;_,/Y; & X%/ for j = 1,...,5]|Q|
The dual of the surjective homomorphism @ : RIQ — N defined by
O(f1y--- s foiQ) = fl a; + - + fs)q| - asj is an injective homomorphism
w:X +— ('JI‘3|Q|) and we identify X with w(X) C (']1‘”|Q')Zr and o' with
the restriction to X of the shift-action o of Z" on (T31Q|)Zr. Each z € X can
be written as z = (z(,... ,z¢I9) with n@(z) = 2 € F& c T%, and
Y; = {z=(zV,...,z¢1) € X : 2V = ... = 20D =0} for every j. Note
that YU /YW = gG)(Y;_,) = R, /(p) C T for j = 1,... ,s|Q)|, so that
) € F,forevery j=1,...,s/Q|—1,z€Y;_,,and m € Z".

Put F = Fyua, F' = F/F,, write ¢ : F — F' for the quotient map,
choose a map 9 : F' — F such that ¢ - 9 is the identity map on F’, and
define maps ¢ : FZ" — F'® and v : F'* +— FZ by setting (¢(u))m =

¢(um) and ( 1,b(}) = P(vy) for every m € Z", u = (um) € FZ', and
u = (v) € F'* The map

= (x(n,___ ,x(lel)) — ((x“),--- ,x(lel—l)) g1 g ¢(ws|cex))

is a shift-commuting homeomorphism from X onto X/X -1 X Fz;zr. Since
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X/Xqg-1 C ('H"]Ql“")zr is the dual group of MM g-1, we can repeat this
argument and construct inductively a shift-commuting homeomorphism ¢’ :

zr s|Q| . : ' -1
X — (Fp ) . The proof of (3) is completed by setting ( = (' - 7" :

-\ sI@|
mo(X) — (F? ) = (Fge) z.
In order to prove the weak e(!)-specification of o™ we go back to the
description of X as a closed, shift-invariant subgroup of (T*)%* used for the

proof of (1) and (2). From the proof of (3) we know that p*'?lz = 0x for
27

every £ € X. In particular, np(X) C (F,,au:»l)F = (F:J,%',) , and the shift-

commuting homeomorphism ¢ : 7p(X) — (F;|Q|)Z is a block-map, which
means that there exists a finite set Q' C Z" such that, for every v € mp(X)
and k € Z", the coordinate ¢'(v)y of {'(v) is completely determined by the
coordinates of v in the set k + Q'. If £ € (0,1) is the constant chosen in (2),
and if ¢’ = ¢ - 7y, then (2) implies that there exists a constant ¢” > 0 such
that the following condition is satisfied.

For every z = (zm) € X C (T#)%%, let y* € X be the unique
points with

,kq) € T with k; > —t,
kq) € T with k; < —¢,

(@) k= (k...
C’(y+)k - C ( )k ‘ ( 1
O(Ta)Q ifk = (kl, ‘e
(g = {C @ ie= (b k) €T with by <
Y= 0o ifk = (ki,...  ka) € with ky > —t".

Then 7rc+(e<1>,g)($) = Tot+(em ) (y*) and m,_ (e(l),g)(x)

= M- (e(l),g)(y—)'
The weak (e(!)| £)-specification of o™ is again a straightforward consequence
of (**). O

If the prime ideal p C R, satisfies that p(p) = 0, then the analysis of the
action a¢/® becomes slightly more complicated. We write K = Q for the
dual group of Q and denote by k : K — T the surjective group homomor-
phism dual to the inclusion & : Z +— Q. If p C R, is a prime ideal with
p(p) = 0 we regard X™/? as the subgroup (3.11) of T2*, and define a closed,
shift-invariant subgroup X%¢/» ¢ K2* by

(3.13) XTalv = {:v = (zn) € K2*: f(o)(z) = Oz for every f € p} ,

where o is the shift-action (2.8) on KZ* and f(o) is again defined by (3.12).
The restriction of o to X®¢/? will be denoted by &*+/?. Define a continuous,
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surjective homomorphism & : KZ* — T2 by (k(z))n = k(zy) for every
d .
T = (Trm) € K¢* and n € Z4, and write

(3.14) KARa/p . XRa/p xRa/p

for the restriction of & to X®4/p,

In order to obtain an algebraic description of X%¢/? @®4¢/? and k®e/?,
and to define the corresponding objects X™, a™, and k™ for an arbitrary
Noetherian PR4-module associated with p we consider the ring

ﬁd=‘@[ulﬂ,--- aufl] = Q ®z R4

of Laurent polynomials with rational coefficients in u,, ... ,u4, regard R, as
the subring of %R, consisting of all polynomials with integral coefficients, and
denote by p = Q ®zp C R, the prime ideal in R, corresponding to p. Since
p(p) = 0, every Ry-module N associated with p is embedded injectively in
the Ry-module N = Q ®z N by

(3.15) M:a—1®za

for every a € M, and N associated with p. Since R, C R, N is an Ry-
module, and we can define the Zaction a™ on X as in (3.1)-(3.2). Note
that the set of prime ideals associated with the JR4-module M is the same as
that of 91; in particular, o™ is ergodic if and only if a” is ergodic and, for
every € Z4, o is ergodic if and only if o is ergodic. The homomorphism

(3.16) M X X7
dual to
(3.17) P N—N

is surjective, and for M = R, /p we obtain that
XTalb = XRal,

(3.18) aRl? = anele

JRalp — nmd/l’_

Proposition 3.6. Let p C R, be a prime ideal with p = p(p) = 0 such that

the Z%-action a = o™/’ on X = XRe/? = m C F2° is ergodic. Then

there ezists an integer r € {0,... ,d} with the following properties.

(1) Ifr = 0 then X has finite topological dimension, i.e. X is a finite-
dimensional torus or solenoid.
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(2) Ifr > 1 there ezist a primitive subgroup T' C Z? and a finite set Q C Z¢
such that
(i) r=zd
(i) 0€@, and QN (Q+ m) =0 whenever 0 #m e T,
i) FT=T+Q ={m+n:m € I',n € Q}, then the coordi-
nate projection mp : X%4/* — KT, which restricts any point
T € X%/ ¢ K&° 1o its coordinates in T', is a continuous group
isomorphism; in particular, the T-action n — aX¢/* n €T, isa
Bernoulli action with alphabet K2 .

Proof. The proof is completely analogous to that of Proposition 3.4. We
find a matrix A € GL(d,Z) and an integer r € {0, ... ,d} with the following
properties: if v; = u1*” and v;=wv;+pforj=1,...,d, then v;,... ,u;
are algebraically 1ndependent elements of R = Ry /p, and there ex1sts, for
each j =r+1,...,d, an 1rreduc1ble polynomial f;(z) = 22—0 g(’)x" with
coefficients in the rlngZ [vi,... ,vf4] C Rysuch that f;(vy,... ,vj-1,v;) €
q and the supports of g§ and g(] ) are singletons.

If r = 0, then Vc(p) is the orbit of a single point ¢ € C? under the
Galois group, and X is a finite-dimensional torus or solenoid ([S1], Section
5). If r > 0 we assume again that A is the d x d identity matrix, so that
v; = u; for j = ,d and ' & Z" is generated by e, ... e set
Q = {0} x -- x{O}x{O cylppr — 1} x - x {0,... ,l3 — 1} C Z¢ and
complete the proof in the same way as that of Proposition 3.4, using (3.13)
instead of (3.11). O

Corollary 3.7. Let p C R, be a prime ideal such that p(p) =0, r(p) > 1,
and a™¢/? is ergodic, choose a primitive subgroup T' = Z" in Z® according
to Proposition 3.6, and fix a primitive element n € T'. Then &™¢/* has
weak n-specification. More generally, if M is an Ry-module with a prime
filtration {0} = Ny C -+ C Ny = N such that N;/N;_, = Ry/p for every
j =1,...,s, then o™ has weak n-specification. Finally, if Fiz(al) =
{:c € X% :al (z) = z} for every k > 1, then (5, Fiz (o) is dense in X™.

Proof. Put 9N, = Q ®z N, and note that M, /N,;_; = Ry/p = R,/p for every
j=1,...,s. We write X; = ﬁ; for the annihilator of 91; in X = X™ for
j=1,...,s. Each )_(J- is invariant under the Z%action & = aﬁ, X=X,D

- D X, ={0}, and X, ,/X; >~ X%4/v for j =1,...,s. Choose elements
ai,...as in 9 such that N; = N,;_; +R,-a; and hence ‘.YI =M; +£R -i(ay)
for Jj =1,...,s. The dual of the surjective homomorphism 6 : iRd — N

defined by 9( fl, .y fs) = fi-a1+ -+ f, - a, is an injective homomorphism
6 : X — (K°)%, and we identify X with 8(X) C (K°)%" and & with
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the restriction to X of the shift-action o of Z% on (K*)?". Every element
z € X will be written as z = (z(V,... ,z(®) with £\ = 70)(z) € K2* for
j=1,...,s

We choose a set Q C Z? according to Proposition 3. 6, set r=T+Q,
and claim that the coordinate projection g : X — (Ks) which sends any
z € X C (K*)%* to its coordinates in T', is a continuous group isomorphism.
Since 7V (X) = X Ra/p ¥ Proposition 3.6 shows that the coordinate projection
mp : 7T (X) — KT is a continuous group isomorphism. Furthermore, since
7 (X;) = X%/ and hence 7p - 7® (X,) — KT, and since each element in
7(®(X,) is completely determined by its coordinates in ', we can prescribe,
for any z € X, the coordinates of z() and z(® in T arbitrarily and thereby
specify = uniquely up to an element in X,. By applying this argument s times
we obtain that 7r : X — (K*)T is indeed a continuous group isomorphism.
In particular, if n € T is a primitive element, then @&, is the shift on ZZ,
where Z is a compact group isomorphic to KZ"™", and the set of @y,-periodic
points is dense in X.

The weak n-specification of @%+/® and & is proved exactly as in Corollary

3.5. O

Remarks 3.8. (1) The integer » = r(p) appearing in the Propositions 3.4
and 3.6 will be called the free rank of the Z%action o = o®+/? on X. If
X is zero-dimensional, then the proof of Proposition 3.4 shows that the free
rank of « is equal to the smallest integer r > 1 such that Z¢ has a primitive
subgroup I' = Z" for which the restriction of a to I is expansive, and to the
smallest integer » > 1 such that there exists a primitive subgroup I' = Z" of
Z° such that o' has finite entropy.

If X is connected the restriction of o to the group I' C Z? obtained in
Proposition 3.6 has infinite entropy; however, of has finite entropy if I C Z¢
is a subgroup which is isomorphic to Z" for any r’ > r(p).

_(2) Even if the Z%action o™ in Proposition 3.6 is expansive, the action
o™ is nonexpansive. By proving a more intricate version of Proposition 3.6
one can analyze the structure of the group X 7 directly, without passing
to X™. However, the weak n-specification of o™ is a little more difficult
to see than that of a”, which explains the apparent detour of Proposition
3.6 and Corollary 3.7. For 91 = R,/p one can show that the projection
7r + X/ 5 TT is still surjective, but no longer injective, and that the
kernel of 71 is of the form YT for some compact, zero-dimensional group Y
(cf. Example 3.9 (2)).

(3) There is considerable freedom in the choice of the subgroup I in Propo-
sition 3.4 and 3.6, which will be exploited later in the proof of Theorem 2.1

(2)-



128 A.B. KATOK AND K. SCHMIDT

Ezamples 3.9 (1) Let p = (2,1 + u; + u2) = 2R, + (1 + u; + u2)R, C R,.
Then p(p) = 2, r(p) = 1, and we may set I' = {(k,k) : Kk € Z} =¥ Z and
Q@ = {(0,0),(1,0)} C Z? in Proposition 3.4. In this example X = X%:/v =
{2 = (Tem) € FE": T(ny ma) + T(ma41,mz) F T(my,mat1) = 01F2 for all (my,m;) €
Z?}, and the projection mr : X — FL sends the shift aq’ 1/) = 0@,y on X

to the shift on F§ = (Z/4Z)% Note that, although (1) acts expansively
on X, other elements of Z* may not be expansive; for example, o ) is
nonexpansive.

(2) Let p = (3+u1+2uy) C Ry. Thenp(p) =0, r(p) =1, and I" and Q may
be chosen as in Example (1). Note that X®*/* = X = {z = (z,,) € T?"
T(my,ms) + T(my+1,m2) + T(my,mp+1) = Or for all (my,my) € Z?}; the coordinate
projection 7y : X — T' in Proposition 3.5 is not injective; for every z € X,
the coordinates Z(m, ,m,) with m; > m, are completely determined by 7r(z),
but each of the coordinates z(,x+1), k € Z, has two possible values. Similarly,
if we know the coordinates Z(m, m,), M1 > me—7 of a point z = (zm) € X for
any r > 0, then there are exactly two (independent) choices for each of the
coordinates T gyr41), K € Z. This shows that the kernel of the surjective
homomorphism 77 : X — TT(T2)Z is isomorphic to Z%, where Y = Z,
denotes the group of dyadic integers.

If p is replaced by the prime ideal q' = (1+3u; +2u,) C R,, then I' and Q
remain unchanged, but the kernel of 1+ becomes isomorphic to (Z, x Zg) ,
where Z; is the group of tri-adic integers.

We end this section with a brief discussion of the notions of Hélder con-
tinuity and summable variation.

Remark 3.10. If a is an expansive Z%action by automorphisms of a com-
pact, abelian, zero-dimensional group X, then Theorem 3.2 allows us to
embed X as a closed, shift-invariant subgroup of FZ° for some finite, abelian
group F and to assume that « is the shift-action of Z¢ on X C FZ°. Any
function f : X — R which depends on only finitely many coordinates is a-
Holder, and other examples of Holder functions and functions with summable
variation can be constructed quite easily. If X = X%¢/? and a = o™¢/? for
some prime ideal p C R, with pNZ = {0} (so that X is connected), then
we regard X as the closed, shift-invariant subgroup (3.11) of T%*. For every
t € T we write |t| = mingez |t — k| for the usual arc-length distance of ¢ from
0. Then one can prove that there exist constants € > 0 and ¢ € (0,1) with
the following property: for every finite set F' C Z¢ we can find a K > 0 such
that, for every r > 1,

(3.19) {z € X : |zm| < € for every m € B(r)}
C{z € X :|zm| < Kc for every m € F}.



COHOMOLOGY OF EXPANSIVE Z%ACTIONS 129

If the free rank r(p) is equal to 0, then X = X™4/? is a finite-dimensional
torus or solenoid, (3.19) can be obtained from the proof of Lemma 4.7.
If 7(p) > 0, then (3.19) follows from the estimate used in the calculation of
entropy in [LiSW]. If F C Z“is a finite set and f : T —— R a function which
is Holder in the usual sense, then (3.19) shows that the map f' = f - #p :
X+— R is o-Holder. The last statement can be generalized as follows: if
« is an expansive Z%action by automorphisms of a compact, abelian group
X, then there exists an integer n > 1 and a continuous, injective embedding
¢ : X — (T")2" of X as a closed, shift-invariant subgroup of (T")%" which
sends « to the shift-action o of Z% on X. If F C Z¢ is a finite set and
f : (T")F— R a Holder function, then one can again show that the map
f'=f-mp: X+— Ris a-Holder. There exist, of course, a-Holder functions
on ¢(X) C (T")%* which do not depend on only finitely many coordinates.

4. The proof of Theorem 2.1.
For the proof of Theorem 2.1 we need several lemmas.

Lemma 4.1. Let d > 1, and let p C Ry be a prime ideal such that p(p) =0
and the Z%-action a = a™4/? is expansive, mizing, and has free rank r =
r(p) > 1. We define the Z%-action & = &™¢/? on X = X™4/? as in (3.13) and
set, for every nonzero element n € Z4, Fiz(ay,) = {x € X : an(z) = z}. Let
[ = Z" be a subgroup of Z¢ with the properties described in Proposition 3.6,
and let n € T be a primitive element. Then there exists an integer K > 1
with the following property: for every k > K there exists an element m € Z¢
such that the restriction of &m to Fiz(ag,) C X is ergodic.

Proof. 'We assume for simplicity that I' is generated by e(,...,
e, and that n = e(!). If k is greater than the maximum K of the de-
grees in the variable u; of the polynomials f;, j = r +1,... ,d, occurring
in the proof of Proposition 3.6, then the explicit description of the group
X = X™4/% in (3.13) allows us to conclude that Fix(@y,) is (isomorphic to)
KT* and hence connected, where v, = {0,... ,k—1} x Z" "' x {0} x - -- x {0}
and Ty =T + Q. If r > 2, then the restriction of &23)/” to Y; = Fix (Ggem)
is obviously ergodic, which implies our assertion.

Consider therefore the case r = 1, and assume that the Z%action induced
by @& on Yj is nonergodic. By Lemma 2.2 in [KiS1] there exists a nonzero

element a € 1/7; = R, / (f) + (uf — 1) -ﬁd) and an integer N > 1 such
that (u;\’— 1) .a=0for j =1,...,d We choose an f € R, such that

a= f+p+ (uf —1)-R, and obtain that (uf’—l)f €p+ (uf —1)- R, for
j=1,...,d. Since Y; is connected, mf ¢ p + (uf — 1) -R, for every m > 1,
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andwechoosem>1sothatmf€£Rdand(-—1)f€p+( ~1)- R,
forj=1,...,d

We have found a nonzero element b = mf +p + (uf —1) - Ry € Ry/p +
(u¥ —1) - R, such that (uj —1) b=0forj=1..,d SetY, =
Fiz (o) C X = X™¢/? and note that, according to (3.13), Y3 = k%4/? (V}),
where k%¢/? is defined in (3.14). In particular, Y}, is a connected, uncount-
able, a-invariant subgroup of X, and the restriction of « to Y, must obviously
be expansive, and hence ergodic by Theorem 3.3 and 3.7 in [S1]. On the
other hand, Y; = Ra/p + (uf — 1) - Ry, and the existence of the element
b = mf found above shows that « is nonergodic on Y). This contradiction
implies that & is ergodic on Y;.

Now assume that the restriction of &, to Y is nonergodic for every m €
Z*. The argument in the preceding paragraph shows that we can find, for
every m € Z¢ a Laurent polynomial g € SRy such that (u™ —1)g € p +
(u¥ — 1) -R,, which implies that a,, is nonergodic on Y;. Since Y = Ra/p+
(u¥ —1) - R, is a Noetherian R -module, Theorem 3.1 implies that « is
nonergodic on Y}, which is absurd. We conclude that there must exist an
element m € Z< such that &,, is ergodic on Yy, as claimed. O

Lemma 4.2. Let d > 1, p C Ry a prime ideal such that p(p) = 0 and
r(p) > 1, and let T' = Z" be a subgroup of Z¢ with the properties described in
Proposition 3.6. Suppose furthermore that !, £ are Noetherian R,-modules,
and that £ has a prime filtration {0} = £, C --- C £, = £ such that
2]'/.8]'_1 = i)‘{d/p fOTj = 1, ,S. Put X, = Xﬁ, X, = Xr', X=X, xX,
and a = o® x a®. Then every cocycle ¢ : Z* x X— R with a-summable
variation is continuously cohomologous to the cocycle E;(c) : Z¢ x X— R
defined by E(c)(k, (z,2')) = [ c(k, (z,y))dAx, (y) for every k € Z¢, z € X,
and 7' € X,.

Proof. We choose a primitive subgroup I' C Z? for p with the properties
described in Proposition 3.6, and fix a primitive element n € I'. But X =
X x X% a=o0xat, ¥ ={0x,} x Y,_1, where Y; = 2_]‘_'_ C X7 for every
J=0,...,s, and define a continuous, surjective homomorphism p : X— X
by p(z,z') = (x,:5(z')) for every (z,z') € X, where 1 : X* 3 X, is
defined by (3.16). For every j = 0,...,s we set Y; = £/ C X, and note
that £ (Y;) = Y;.

Apply Corollary 3.7, choose ¢ € (0,1) such that &™¢/® has weak (n,¢)-
specification, put A = Az(n,£) NY, and consider the cocycle cg-ln) T A X
X+ R defined by (2 11) with @ replacing @, and with h = ¢(n, p(-)).

We claim that c— Jy,z) =0 for all y € A and z € X. From Theorem 7.3
in [KiS1] we know that J,>, Fiz (af,) is dense in X;, and the density of
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U1 Fiz (akEn) in X% was proved in Corollary 3.7. Since the restriction of

a® to Y,_; is (algebraically ad topologically isomorphic to) a®¢/P = a%e/p,
Corollary 3.7 also implies that |, (Fz’x (afn) n 178_1) is dense in Y,_;. If

there exist y € A and z € X such that c(") (y,xz) # 0, then we can also
find an integer £ > K and elements y € sz (Grn) NY, z € Fiz (Gn),
such that Hy(z) — Hy(z + y) # 0, where Hy = Zk 1h @;n. The cocycle
equation (1.1) implies that Hy(z) — Hi(z +y) = Hy - am(x) Hy-am(z+y)
for every m € Z¢, so that the continuous function Fj : (Fiz (&) NY) x
Fiz (@gn) — R, defined by Fi(y,z) = Hy(z) — Hi(z +y), is invariant under
the Z%action & induced by @& on (Fiz (&n) NY) X Fiz (Gxn). If k is large
enough, then Lemma 4.1 guarantees the existence of an element m € Z¢
such that @y, is ergodic—and hence mixing—on Fiz (&4,)NY. This implies
that the &'-invariant function F; must be constant in the first variable,
so that Hy(z) — Hy(z + y) = Fi(y,z) = Fi(0,z) = 0 for every (y,z) €
(Fiz (84n) NY) X Fiz (an). As explained above, this contradiction shows
that the cocycle c\* ") vanishes on A x X.

Since @ has weak (n,¢)-specification on Y = X®alp = X%a/? by Corol-
lary 3.7, Proposition 2.6 implies that there exists a bounded Borel map
b : X+ R such that ok = E,, (h|Bx/y) +b- &, —b. We regard b =
B\, (b]p™'(®8Bx)) as a bounded Borel map from X to R and obtain that
E)x (h|®Bx/y) =h+b-an—b, whereY = {0x,} xY,_; C X and h = ¢(n,-).

Since X/Y = ﬁ@_l we can regard E), (h|®Bx/y) as a function on X/Y
with summable variation and repeat the above argument with £,_; replacing
£ = £,. After s steps we obtain that h is cohomologous—with bounded
transfer function—to the function h; = E,, (h[SB x/{ox; }x Xz). Put h, =
hi-p=E,; (B'%X/{OXI}XXE>: X+ R and note that hy = h+b'-a, —b' for
some (bounded) Borel map b’ : X— R. Since & has weak (n, £)-specification
on {0x,} x X* by Corollary 3.7, Corollary 2.7 implies that there exists a
continuous function 5” : X+ R such that h, = h +b" - @, — b". We regard
b = E, (b"|p7*(Bx)) as a continuous map from X to R and obtain that
hy=h+b" a,—0b".

The proof is concluded by noting that the ergodicity of o, and the co-
cycle equation (1.1) together imply that c is cohomologous to E;(c), with
continuous transfer function b". O

Lemma 4.3. Let d > 1, and let p C R, be a prime ideal such that the
Z*-action a = o™4/? is mizing, p = p(p) > 0, and r = r(p) > 1. Choose
a subgroup T' = Z" of 7% with the properties described in Proposition 3.4,
and let n € T be a primitive element. Then there exists an integer K > 1
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such that the Z%-action induced by o on the closed, a-invariant subgroup
Fiz (a) C X is ergodic for every k > K.

Proof. This is proved in the same way as Lemma 4.1, by using Proposition
3.4 instead of Proposition 3.6. O

Lemma 4.4. Let d > 1, p C Ry a prime ideal such that p(p) > 0 and
r(p) > 1, and let T' = Z" be a subgroup of Z¢ with the properties described in
Proposition 3.4. Suppose furthermore that &, £ are Noetherian Ry-modules,
and that £ has a prime filtration {0} = £, C --- C £, = £ such that
£;/Lici = Ryfp forj=1,...,8 Put X; = X% X, = X%, X =X; x X,
and o = a® x a*. Then every cocycle ¢ : Z? x X+—s R with a-summable
variation is continuously cohomologous to the cocycle E;(c) : Z¢ x X— R
defined as in Lemma 4.3.

Proof. The argument is slightly simpler than, but otherwise completely
analogous to, the proof of Lemma 4.2, and-uses Proposition 3.4, Corollary
3.5 and Lemma 4.3, instead of Proposition 3.6, Corollary 3.7 and Lemma

4.1. a

Lemma 4.5. Letd > 1, p C Ry a prime ideal such that p = p(p) > 0,
r(p) = 1, and a = o™/ is mizing, and choose a subgroup T = Z in Z2 with
the properties described in Proposition 3.4 and a primitive element n € I'. If
h: X = X%/P— R is a function with a-summable variation and Fourier
transform h : Ry/p — C, then

(4.1) lim )" \i} (= - a)| =0

m—
(m,n,)=0 k€Z
for every nonzero element a € Ry/p.

Proof. Let Q € Z* be the set defined in Proposition 3.4 and let F = F3.
The coordinate projection 7y : X ]FI; >~ FZ = Y defines a continu-
ous group isomorphism 7 : X +~— Y, and we denote by o the shift on
Y = FZ and note that - @, = o - 7. There exist constants L,L' >
0 (which depend on @ and on the polynomials f;, j = 2,...,d, in the
proof of Proposition 3.4), such that, for every r > 1, m(_, . (n(z)) =
Ti—r,...r}(n(z")) whenever 1g(,+1)(z) = TB(r+1)(z), and T () = T (Z')
whenever m_p, . pr3(n(2)) = T_pr,... 1ry(n(z’)) (here mg again denotes
the coordinate projection onto a set of coordinates E). For every r > 1 we
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set

wr (k) = sup |h(z) — h(z')],

{(@2)eXxX:mp(r)(2)=mp(r)(2") }

wi(h') = sup |h'(y) — h'(y'),

{wyneyxyim_, . @=rr. . ")}

where h' : Y R is defined by h = A’ - 5. Since h has summable variation,
Y rs>1wr(h) < oo; furthermore w,(h) > wi,.(h') for every r > 1, so that

Pz Wh(R') < o0.

For every r > 1 we can find a function h; : Y— R, which only depends
on the coordinates {—r,... ,r} € Z, such that |h'(y) — hl.(y)| < wi.(h') for
every y €Y. If 7 : Y — MRa/p is the isomorphism dual to : X +— Y,

then liL (1(x)) — i/zZ(x)l < w!.(W) for every x € Y and r > 1. We set

S(h,r) = {a € Ra/p |ﬁ(a)| > wi(k)}
and observe that
77 (S(h,)) = S(B,r) = {x €V : [ (3(x)| > witr)}

(4.2) L
C S(h) = {x € ¥ : R0 #0}.

For every nonzero element a € R,/p,

S(r,0) = {k € Z: B (7™ (a) - o*) # 0}
D T(r,a) = {k €EZ: Iil (ubm - a)' > w:'(h’l)}

and
|T(r,a)| <|S(r,a)| <2r+1

whenever 0 # a € £ and r > 1, where |S| denotes the cardinality of a set S.
In particular, if wj(h') = max,cy |h'(y)| and T(0,a) = 0, then

43) Y[R a)| £ (@i (W) —wr(R)) IT(r, )] < o0

keZ r>1

for every nonzero element a € Ry/p.

We fix a nonzero element a € R,/p. Since h! depends only on the coordi-
nates {—r,... ,r}, (4.2) shows that |S(h )| = (S(h’ r)| < |S(R)| < |F|2’+1
Furthermore since a is mixing, u™ - a # u™ - a whenever m # m' € Z¢,
so that there exist, for every r > 1, at most |F|*"*! elements m € Z? with
T(r,u™ -a) # 0. In particular we can find, for every M > 1, an integer
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M' > 1 such that T(r,u™ - a) = @ whenever r < M, (m,n) = 0, and
[lm|| > M’, in which case (4.3) implies that

3[R @ a)| < 3 (Wio(h) - wlh)) (2r + 1)

kEZ r>M
<2 > wi(h).
r>M-1
By letting M — oo we obtain (4.1). O

Lemma 4.6. Let d > 1, and let p C R, be a prime ideal with p = p(p) > 0
andr = r(p) = 1. Suppose furthermore that R, £ are Noetherian R -modules
with the following properties.

(1) The Z%-actions o® and o are ezpansive and mizing;

(2) FEvery prime ideal ¢ C R, associated with R satisfies that either p(q) =
r(q) =0, or p(q) >0 and r(q) = 1;

(3) £ has a prime filtration {0} = £, C--- C L, =L with £;/£,_1 = Ry/p
forij=1,...s.

Let X, = X%, X, = X%, X = X; x X, = X®®% o = o® x of, and

let ¢ : Z¢ x X— R be a cocycle with a-summable variation. Then c is

continuously cohomologous to the cocycle E;(c) : Z¢ x X— R defined as in

Lemma 4.2.

Proof. We choose a primitive subgroup I' & Z in Z? for p with properties
stated in Proposition 3.4, fix a primitive element n € I and a £ € (0,1)
such that o® has weak (n,¢)-specification (Corollary 3.5), set h = ¢(n,),
and put Y; =£;" C X, forj=0,...,s. Then X, =Y, D--- DY, ={0}.
Weset Y = {0x,} xY,_; C X, A ={0x,} X (Ape(n,€)NY,_;) C X, and
consider the cocycle ¢; = ¢{™ : A x X R defined in (2.11). We claim
that ™ (y,z) = 0 for every y € A and z € X; since the set Uy, Fiz (n)
is dense in X by Corollary 7.4 or Theorem 7.5 in [KiS1] this is easily seen
to be equivalent to the assertion that csln)(y,x) = 0 for all y € A and
T € Uz, Fiz (Qhn)-
Suppose that there exist k > 1 and z € Fiz (a4y,) such that

(4.4) ™ (y,2) #0

for some y € §. The conditions (1)—(2) imply that aX4/9 is ergodic and has
finite entropy for every prime ideal q C R, associated with & @ £, so that
Fiz (agy) is finite (cf. [S1]).

For every j € Z we define a function g; : Y— R with summable variation
by g;(y) = h(ajn(2) +y) for every y € Y, and consider the cocycle ¢ :



COHOMOLOGY OF EXPANSIVE Z4ACTIONS 135

A X Y— R defined by

c(y, Z gj ]n O‘jn(x + y)
jez
fory € A, z € Y. Since Fiz (y) is finite, Q(n)’ = {m € Z% ( n) =0
and am(z) = 2z} has finite index in Q(n) {m €Z%: (m,n) = 0}. As
Y = X%4/? Lemma 4.5 shows that
(4.5) hm > |k @™ a)| =0
mEQ (n) kez

for every nonzero element o € Y. The cocycle equation (1.1) implies that

D (95 jn(z) — g5 - nlz + )
(4.6) 1€t
= Z 9i " %nim(T) — g; - Jn+m(x +y))

JEZ
for every m € Q'(n). By combining (4.5) and (4.6) we obtain that the
cocycle ¢ vanishes. This contradicts (4.4) and proves that the cocycle c( =)
A X X+— R vanishes.

The proof is completed in exactly the same manner as that of Lemma
4.2. Proposition 2.6 implies that h is cohomologous to E,, (h|Bx/y), with
bounded transfer function, and by viewing E\, (h|Bx/y) as a function on
X/Y with summable variation we can apply the above argument again and
obtain after s steps that h is cohomologous F, (hliB x/({ox; } % Xz)). Since

a* has weak n-specification by Corollary 3.5, we conclude as in the proof of
Lemma 4.2 that h is continuously cohomologous to Ej, (hl% x/({ox, } x Xz)) )
and that c is therefore continuously cohomologous to F;(c).

Lemma 4.7. Suppose that d > 1, and that p C Ry s a prime ideal such
that p(p) = r(p) = 0 and a = a™+/® is ezpansive and mizing. Then there
exist primitive elements m,n € Z¢ with the following property: if h : X =
XRa/v— R is a function with a-summable variation and Fourier transform

h:MRy/p+— C, then

(4.7) lim $° |k (u*Hm . 0)| =0

for every nonzero element a € Ry/p.

Proof. There exists a point ¢ = (¢;,... ,¢q) € @d C C¢ such that p = {f €
R, : f(c) =0} and Vi (p) is the orbit of ¢ under the Galois group of [@ : Q] ,
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where Q is the algebraic closure of Q. We write Q(c) for the algebraic
number field generated by {cy, ... ,cq}, o(c) for the ring of integers in Q(c),
and B, Py, Po for the sets of places, finite places, and infinite places of Q(c).
for each v € P we write Q(c), for the corresponding completion of Q(c),,
choose a Haar measure )\, on the locally compact field Q(c), (regarded as
an additive group) and a compact set C, C Q(c), with nonempty interior,
and define the valuation | - |, : Q(c),— R by |a], = A\, (aC,)/\,(C,) for
every a € Q(c),, where aC, = {ay : y € C,}. With this choice of |- |,,
v € P, we have that [],cplal, = 1 for every a € Q(c). If v € P; we
write 0, = {y € Q(c), : |y|, < 1} for the maximal compact subring of Q(c),
and choose a prime element 7, € 0,, i.e. an element such that m,ov is the
maximal ideal in 0,. For v € P, we set 0, = 0(c).

Let PBs(c) = {v € By : |cil, # 1 for some i € {1,... ,d}}, S(c) = Ps(c) U
P, and denote by 7 : Q(c) > [l es() Qc), the diagonal embedding
a—(a,...,a),acQe). If

R.={a€Qc) :|a|l, <1 for every v € P\ S(c)},

and if . : f — f(c), f € Ry, is the evaluation map, then n.(R,;) = Ra/p,
and 7,(R,) is a subgroup of finite index in R, (Lemma 5.1 in [S1]). We
continue as in Section 5 in [S1]. The subgroup j(R.) C Z = [],cs() Qc).
is discrete and co-compact, and Y = R, = Z/3(R.). A typical element
of y € Y will be written as y = (v,) = (v,v € S(¢)) + y(R.), where
y, € Q(c), for every v € S(c). For every v € S(c) and & > 0 we set
Qu(€) = {y € QO). : lyl, < &'}, and put Q') = [1,eo( Qu(e"). Since(R.)
is a discrete subgroup of Z there exists, for every sufficiently small ¢’ > 0, a
neighbourhood N(¢') of Oy in Y which is homeomorphic to Q(¢') C Z, and
we identify these neighbourhoods and regard Q(¢’) as a neighbourhood of
Oy inY.

In order to understand how an element of R, defines a charactw Y we
follow [W]: there exists, for every v € B, a character x, € oy C Q(c), with
the following properties.

(1) Ifv € Py, then x, (7, %0,) = {e**Inl . k€ Z} CS;

(2) Tl,esx»(b) =1 for every b € Q(c).

For every z = (2,,v € S) C Z we set ¢(z) = [],cs X,,(z,,) and obtain that
¥(s(a)) =1 for every a € R,, so that 9 € j(R. )+ € Z. Hence v induces a
character x € Y. Every character in Y is of the form x® : y — x(a - y) =
[T,es xv(a-y,) for some a € R, where y = (y,) €Y and a -y = (ay, ).

We define a Z%action o' by automorphisms of Y by an(y) = c" -y for
every n = (nl, ..,ng) € Z% and y € Y, where ¢® = c1 <.y, write B :
n — (! = o, for the Z%action on Y = R, dual to o, and observe that
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BL(b) = c®b for every n € Z? and b € R.. The homomorphism 7: Y — X
dual to the inclusion map R,/p = 1.(R4) — R, is surjective and finite-to-
one, and a, -7 = 7-0/, for every n € Z? We shall prove (4.7) for the function
f'= f-7: Y~ R, which has o'-summable variation, and for every nonzero
a € R.; this will imply that (4.7) holds for the function f.

If Ve(p) = {c = ¢(1),... ,e(t)} with e(j) = (c(j)1,-- ,c(5)a) for every
j =1,...,t, then Theorem 3.1 (1) implies that c(j) ¢ S% for j = 1,... ,t.
Since a and o' are mixing, oy, is ergodic whenever 0 # k = (ki,... ,kq) € Z°,
so that the eigenvalues c(§)* = c(j)%* --- c(j)%¢, i = 1,... , ¢, cannot all have
modulus 1. An element k € Z? will be called hyperbolic if none of these
eigenvalues has modulus 1, which is equivalent to saying that |c¥| # 1 for
all v € P. Note that there exist finitely many one-dimensional linear
subspaces L; C R? such that every n € Z¢\ |J L, is hyperbolic.

We claim that there exist primitive, hyperbolic elements

m= (my,...,mg), n=(ng,...,ny)

in Z? with the following properties.

(1) For every v € P, either |¢™|, > 1 and ||, > 1, or |c™|, < 1 and
le?l, < 1;

(2) There exists at least one v € P, such that |c*|, > 1;

(3) If |c*|lv > 1 for all v € Po, then there exists a v/ € Py(c) with
c™ o Huemw [c™], < 1 and |c”[, Huemm e*], < 1.

In order to prove that such choices are possible we set a; = H;=1 c(r €Q
for k =1,...,d, and let ¢ > 0. Then there exist relatively prime integers
k1, ky such that ‘a'f‘a;” — 1’ < g, and we set k = k(e) = (k1,k2,0,...,0) €
Z4. 1f a¥*a%? = 1 then the product of the eigenvalues of the ergodic automor-
phism o}, is equal to 1, and we conclude that there exist j, j' € {1,...,t}
such that |c(j)*| < 1 < |e(j')%|, which is equivalent to saying that there
exists valuations v, V' € Py, with |*| < 1 < |¥|,. Put k' = mk + e
for some large m > 1, and divide the entries of k' by their highest common
factor, so that k' becomes primitive. Then Ic“' . > 1 for every v € P, with

|| > 1, and *ck" < 1 for every v € P, with |c¥| < 1. If either k or k'

are nonhyperbolic we choose a primitive hyperbolic element n' € Z? and set
n = n' + mk, m = n' + mk’ for a suitably large m > 1 (if these elements
turn out not to be primitive, divide them by the highest common factor of
their entries). Then m, n are hyperbolic and satisfy (1)—(2).

Now assume that, for every primitive k € Z¢, either lck|u > 1 for all
v € Poo, or |c*¥| <1 for all v € P, in which case the preceding paragraph
shows that a¥a¥* # 1 whenever (0,0) # (ki,k.) € Z2, and that 1 is a limit
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point of {af‘a;“z :(0,0) # (k1,ks) € Zz}. For every ¢ > 0 we can choose
k() = (ki(e),ks(),0,... ,0) € Z? as above, but with considerably more
freedom, such that k(e) is hyperbolic, and |c*()| > 1 for every v € Po.
Then 1 < [[,eqp, |<®], = a¥9a%© < 1 + ¢. However, Lesilel, =1,
which implies that, if € is small, some of the valuations |c¥| , v € PB;(c), must
be very large, and others very small, as their product is close, but not equal,
to 1. In particular there exists, for every M > 1, a primitive, hyperbolic
element k € Z? such that |¢*|, [T,ep |c*], < M~ for some v' € Py(c).
By increasing M we obtain distinct primitive, hyperbolic elements n, m in
Z* and a V' € P(c) such that |c™|, > 1 and |c*|, > 1 for all v € P, and
lcmlv’ Hyemw |Cm'v < 17 lcn|”, I_L/einoo |cn|y for some V' € ‘»pf(C)-

Having found primitive, hyperbolic elements m, n in Z¢ satisfying (1)—(3)
we estimate the Fourier coefficients ‘ i (c’“‘)l, k € Z. Choose an invariant
metric 6 on Y and € > 0, and find a (small) &’ > 0 such that

(4.8) Yi(e) ={y €Y : 8(y,0v) <&} D Q(e")

and hence

(4.9) N em®s5(2) 2 Q(/lel),
meB(r)

where

el = max, max {Iefl, , |7, }
for every r > 1. We claim that, for every » > 1 and a € R,,
(4.10) |F'(@)] < wi(f,,e)

whenever

(4.11)
a€P(e/ll) = {be Re: x® (Q(£/1lel)) =}

Indeed, write Y(®) = ker (x®)) C Y for the kernel of the homomorphism
x¥ : Y — S and choose a Borel set

BDcQ(e/lelP) c () chm(Ys(e))

meB(r)

which intersects each coset of Y{¥ C Y in exactly one point ([P], Lemma
1.5.1). Next choose a probability measure u on Y such that u (B@) =1
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and [y #(B+y)diy@ (y) = A(B) for all B € Py, and set h'(y) = [ f'(y+
z) du(z) for every y € Y(@. Then |h/(y) — f'(y)| < w‘s(f’ a,e)forally ey,

0= fixdv = [y fy Xy +2) du(z) Dy (y) = fy X (2) du(2), and
flla)=[ (f h'(2)x(@) (z) d\,(2) dAy (y) = O), Wthh proves (4.10).
The next step is to investigate, for every ( > 0, the set

P(¢) ={a € R : x(Q(0) =S}.
There exists, for every v € Py, a t,(¢) > 0 such that

X (Qu(Q) = {e*™ : t] < t,({)} CS;

for v € P;(c) there exists a unique integer m(v,¢) > 1 such that Q,(¢) =
w90, and hence x, (Q,(¢)) = {ez"ik[”" “like Z}, and we set ¢,(¢) =

|, ™| . A nonzero element a € R, lies in P({) if

1
4. to( v > =
(4.12) > t(Olaly 2 3,

vEP oo

or if there exists a v € P;(c) with

(4.13) ( > tu'(C)laluf) “1,(¢) 2

v Emco

DI

We also note that, for every v € S and r > 1,
(4.14) t, (¢/1ell$?) = () /Mlell$.

For every nonzero element a € R, we put P(a,1,¢') = {k € Z:
c*a € P(r,e')}. Then we can estimate the cardinality |P(a,r,€')| as fol-
lows. According to property (2) of n there exists a valuation v € B, with
lc®|, > 1, and we denote by M = M/(a,v) the smallest nonnegative real
number such that 2 |c"‘|y t,(e)al, > el for every r > 1. If there exists

a V' € P such that |c®|, < 1, then we can find a smallest nonnegative real
number M’ = M'(a,v') > 1 such that 2 |c"“|y’ t,(e)ale = ||l for every
r > 1. If no such v/ exists, then the property (3) of n and (4.14) imply that
there is a valuation ' € PB;(c) and a smallest nonnegative real number M' =

M'(a,v') such that 2 (Zﬁemm te (5')[a|€)-|c"“lyl > lle)l% for every r > 1. In
either case (4.12)-(4.13) imply that |P(a,r,€')| < r(M(a,v) + M'(a,v')) for
all 7 > 1, and hence that l{k €EZ: 'B’ (c’“’a)l > Wi(M,a, 6)}[ <r(M(a,v)+
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M'(a,v')) for all » > 1. Since h' has summable variation this shows that
Y kez Iiz’ (c"’“a)‘ < oo for every nonzero element a € R..

If we replace a by ¢™™q for I > 1 then M (c™'™a,v) < M(a,v) a
M' (c7'™a,v') < M'(a,v'), and there exists an I’ > 1 with M (c™'™a,v)
M’ (c7'™a,') = 0 for every | > I'. Hence limy_,o, 3 ez Vl’ (c"“""‘a)‘

which proves (4.7) (after replacing m by —m). O

Lemma 4.8. Let d > 1, and let p C R, be a prime ideal with p(p) =
r(p) = 0. Suppose furthermore that R, £ are Noetherian Ry-modules with
the following properties.

(1) The Z4-actions a® and a* are ezpansive and mizing;

(2) Every prime ideal q C R, associated with K satisfies that either p(q) =
r(q) =0, or p(q) >0 and r(q) = 1;

(3) £ has a prime filtration {0} = £, C --- C £, = L with £;/L;_1 = Ry/p
forg=1,...,s.

Let X, = X%, X, = X5, X = X1 x Xy = X% o = of x of, and

let ¢ : Z% x X R be a cocycle with a-summable variation. Then c is

continuously cohomologous to the cocycle E;(c) : Z¢ x X— R defined as in

Lemma 4.2.

Proof. The proof of this lemma is completely analogous to that of Lemma
4.6, except that we use Lemma 4.7 instead of 4.5. O

Proof of Theorem 2.1 (1). Let 9 = X be the Noetherian R,~-module arising
from (3.1)-(3.2) (cf. Theorem 3.2), and let {p;,..., p,n} be the set of prime
ideals associated with 9. Lemma 3.3 implies the existence of a Noethe-
rian R -module N with associated primes {p;,... ,p,n} and of an injective
module-homomorphism ¢ : 9t — 9N such that 91 = ND @ .- & NM),
where each 91 has a prime filtration {0} = MY’ c --- C NY with
ny )/‘ﬂfle = R,/p; for k =1,...,r;. We assume without loss in generality
that exist integers s, s', s, 0 < s < s’ < s"” < m, such that p(p;) =r(q;) =0
for j =1,...,s, p(p) >0and r(q;) =1for j =s+1,...,5, p(p) =0
and r(q;) > 1 for 5 = s’ +1,...,s", and p(p) > 0 and r(p;) > 2 for
738" +1,...,m. From Theorem 3.1 we know that o™ s mixing for
j=1,...,m We write p : X' = X% s X = X" for the surjec-
tive homomorphism dual to ¢ and define a cocycle ¢’ : Z¢ x X'— R with
summable variation by ¢'(k,-) = c(k,(-)). Repeated application of Lemma
4.4 shows that ¢’ is continuously cohomologous to the cocycle E(y,. .. s (c'),
where E;,_j)(¢') : Z¢ x X% R is defined as in the last paragraph of Sec-
tion 2 for every j = 1,... ,m. By applying Lemma 4.2 repeatedly we see that
Eq,... s (c') (and hence ¢') is continuously cohomologous to E(; ... (c'), and

yore
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Lemma 4.6 implies that ¢’ is continuously cohomologous to E,.. 4 (c¢'). Fi-
nally we use Lemma 4.8 to conclude that ¢’ is continuously cohomologous to
the homomorphism k — [,  ¢'(k, )dA x. We choose a continuous function

b' : X' Rsuch that ¢(k :1;) f)‘ ) )dAx: +b'-al—b' for every k € Z9,
set b= E,_, (b]y~! (Bx)), and obtam that ck,z) = fA c(k,-)dAx +b-as—b
for every k € Z¢, which completes the proof. O

Proof of Theorem 2.1 (2). Let py,...,pn be the prime ideals associated
with the R;-module M = X, and assume as in the proof of part (1) of this
theorem that there exist integers s, s', s, 0 < s < s’ < s < m, with the
properties described there. We fix j € {s+1,... ,m} for the moment and
consider the subgroup I' = I'; & Z"(%) associated with the prime ideal p; by
Proposition 3.4 or 3.6. Fix the polynomials f,(p,)41,--. , fa in the proof of the
relevant proposition, denote by C(f;) C R? the convex hull of the support
S(f;) C Z4, and write Hi(k), k =1,...,l;, for the finitely many distinct
hyperplanes which are parallel to the faces of C(f;). Then any primitive
subgroup I'; & Z7 in Z¢ will satisfy the conditions (1)—(3) in Proposition
3.4 or 3.6, if it is not contained in any of these hyperplanes. By varying
j € {s+1,...,m} we obtain a finite collection of hyperplanes to be avoided.
Furthermore, if we fix j € {1,...,s}, and if V¢(p;) is the variety of p; (cf.
Lemma 4.7), then there exist finitely many elements vgk) eERk=1,...,l;
such that |¢;|" - -|eca|™ # 1 for all ¢ = (cy,... ,cq) 6 Vc(p]) whenever
v = (vy,... ,v4) € R? is not orthogonal to any of the v yk=1,...,l;. In

particular, om nalPi g expansive whenever m is not orthogonal to any v( )
k =1,...,l;, and by varying j € {1,...,s} we obtain a finite collectlon
of hyperplanes of R? which have to be a.voided. By taking into account all
these restrictions we can choose a primitive element n € Z¢ and, for every
Jj = s+1,...,m, a primitive subgroup I'; = Z7®:) in Z? which satisfies
the requirements of Proposition 3.4 or 3.6, such that a™¢/? is expansive for
j=1,...,s,andnel;forj=2+1,...,m.

We choose ¢ : M +— N = NV @ --- @ 9N™ as in the proof of Theorem
2.1 (1) and write 9 : X® — X for the dual surjection. For every j €
{s'+1,...,5"} we define NG, M, XN and MY . XNy XN a5
in the discussion preceding Proposition 3.6, set

X — Xm(]') X ene X Xm(a') x Xm(,l+1) . Xm(,//)
("' +1) (m)
x X7 x X
_ nG me" Nls'+1) Ne")
a=«o X Xa X o X oo X

(s +1) (m)
x o™ Xoexat
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and consider the surjective homomorphism 1 -+ : X — X induced by ap-
plying either the identity map or 1 to each factor of X , and by composing
the resulting map from X to X™ with 4 : X™ — X. Our choice of n guar-
antees that &, is ergodic and has weak (n,¢)-specification on X for some
€ € (0,1) (Corollaries 3.5 and 3.7). We put h = ¢(n, ) and know from The-
orem 2.1 (1) that there exists a continuous function b : X+—— R such that
h—[yhd\x =b-an—b. Puth=h-1: X— R, b=b-1: X+ R, and note
that h — Iz hd\x =b- an — b. Hence the cocycle c%“) :Az(n,€) x X— R
in (2.11) vanishes, and Proposition 2.6 (with X =Y = X) implies that b is
a-Holder (note that b is determined uniquely up to a constant). By Lemma
2.5, b is Holder, and the ergodicity of «, implies that ¢ is cohomologous to
a homomorphism, with transfer function b. O
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