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A well-known lower bound for the number of fixed points
of a self-map / : X -> X is the Nielsen number N(f). Unfortu-
nately, the Nielsen number is difficult to calculate. The Lef-
schetz number £(/), on the other hand, is readily computable,
but usually does not estimate the number of fixed points. It is
known that N(f) = \L(f)\ for all maps on nilmanifolds (homo-
geneous spaces of nilpotent Lie groups) and that N(f) > \L(f)\
for all maps on solvmanifolds (homogeneous spaces of solvable
Lie groups). Typically, though, the strict inequality holds, so
the Nielsen number cannot be completely computed from the
Lefschetz number. In the present work, we produce a large
class of solvmanifolds for which N(f) = \L(f)\ for all self maps.
This class includes exponential solvmanifolds: solvmanifolds
for which the corresponding exponential map is surjective.
Our methods provide Nielsen and Lefschetz number product
theorems for the Mostow fibrations of these solvmanifolds,
even though the maps on the fibers in general will belong to
varying homotopy classes.

1. Introduction.

If / : M -» M is a map on a compact manifold, the Nielsen number N(f)
provides a lower bound on the number of fixed points of any map in the
homotopy class of /. The classical Lefschetz fixed point theorem says that
if the Lefschetz number L(f) φ 0 then any map homotopic to / must have a
fixed point. Thus in so far as it is computable, the Nielsen number improves
this result, establishing of a minimum number of fixed points, not just the
existence of fixed points, for every map homotopic to /. However, the Nielsen
number has the disadvantage that it is not as readily computable as the
Lefschetz number. Thus relations between the two numbers, which allow
the increased information of the Nielsen number to be combined with the
greater computability of the Lefschetz number, are of great interest.

In 1975 Brooks, Brown, Pak and Taylor [7] showed that N(f) = \L(f)\
for any map / : T -> Γ on a torus. This theorem was extended to self maps
on nilmanifolds (homogeneous spaces of nilpotent Lie groups) by Anosov [5]
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and Fadell-Husseini [8] in 1985-86. We refer to results of this type, which es-
tablish equalities between Nielsen and Lefschetz numbers of maps, as Anosov
theorems. In 1991, McCord [14] showed that N(f) > \L(f)\ for all self maps
on solvmanifolds (homogeneous spaces of solvable Lie groups), and conjec-
tured that the equality N(f) — \L(f)\ would hold for all self maps on a
solvmanifold if and only if that solvmanifold was in fact a nilmanifold. In
this paper we disprove this conjecture by extending the Anosov theorem to a
large class of solvmanifolds. This class, which we label as ΛΛR-solvmanifolds,
includes all exponential solvmanifolds. The techniques used involve an anal-
ysis of the nonorientiable fibration, known as the Mostow fibration, for these
solvmanifolds. This fibration has the important property that every homo-
topy class contains a map which is fiber preserving, but the nonorientability
of the fibration forces us to make a very careful study of the relationship
between the maps on the fibers over different fixed point classes of the base
map. Our methods actually provide a Nielsen and Lefschetz number product
theorem for these fibrations, even though the maps on the fibers over the
different fixed points classes in the base are in different homotopy classes.

Throughout this paper G will denote a connected simply connected solv-
able Lie group. Each element g G G induces the inner automorphism on
G of conjugation by g, which in turn induces a Lie algebra automorphism
Ad(g) on the Lie algebra L(G) of G. Let £ denote the class of all such G
with the property that no Ad(g) has an eigenvalue other than one of unit
modulus. Auslander [2] shows that this is equivalent to being an exponen-
tial solvable Lie group: a solvable Lie group such that the exponential map
exp : L(G) —ϊGis surjective. A solvmanifold S = S/A is called exponential
if S is an exponential Lie group. We introduce here a class of solvman-
ifolds which contains exponential solvmanifolds, and which we denote as
ΛΛR-solvmanifolds. While precisely defined in the next section, it can be
heuristically understood as consisting of solvmanifolds S = G/A such that
no Ad(g) contains a root of unity as an eigenvalue other than one itself. The
main result of this paper is:

Theorem 1. // / : S —> S is a self map of a compact AfR-solvmanifold,
thenN(f) = \L(f)\.

As a source of examples consider the 3 dimensional special solvmanifolds
[3, 12]. These have the form 5 = J/Δ where J = R2 x̂ , R is the semidi-
rect product of R acting on R2 by a one parameter subgroup φ of SX2(R)
and Δ is the integer lattice in R3. Since Δ is a subgroup we have that
ψ(l) G SL2(Z). By a change of coordinates it is possible to assume, without
change to the homeomorphism type of S, that the eigenvalues oΐ φ(l) are
either positive real or complex roots of unity. In the first case we have an
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exponential solvmanifold while in the second we have what is called a ro-
tational solvmanifold. All of these 3 dimensional examples have a Mostow
fibration which fibers S over a circle with two dimensional torus as fiber.

The Klein bottle K is an example of a 2 dimensional solvmanifold which
is not special (i.e. K cannot be written as the coset space of a connected
simply connected solvable Lie group modulo a discrete subgroup). K can be
represented as W/Θ where W = CxσR with σ(t)z = e27Titz and

ij) |n,m6Z,i/6 j .

Now (0, \) has an adjoint action with eigenvalue —1 and in fact it is shown in
[5, 14] that K has self maps / with \L(f)\ < N(f). Likewise, all of the three
dimensional rotational solvmanifolds admit self maps with N(f) > \L(f)\.
That is, the Anosov theorem is not true for all solvmanifolds.

The paper can be outlined as follows. Section 2 will describe the topology
of nilmanifolds and solvmanifolds, and develop the factorization of self maps
made possible by the Mostow fibration. In section 3, we present a brief review
of general Nielsen theory and the fibration theory considerations needed in
the proof of theorem 1, thereby reducing the problem to a question in linear
algebra. The matrix analysis needed to complete the proof is then carried
out in section 4.

2. Solvmanifolds and Nilmanifolds.

In this section, we describe the relevant topological properties of nilmanifolds
and solvmanifolds. The topology of nilmanifolds is thoroughly analyzed by
MaPcev [13]; solvmanifolds by Mostow and Auslander[l, 2, 17].

Suppose that G is a connected, simply connected nilpotent Lie group.
Let Γ C G be a discrete uniform subgroup of G. Then N = G/T is a
nilmanifold whose universal cover is G and whose fundamental group can
be identified with Γ. While the definition of nilmanifold is more general
than this, every nilmanifold has a representation of this form [13]. Since
G is simply connected nilpotent, the exponential map exp : L(G) —> G
is a homeomorphism. Thus, as in the case of tori, N is aspherical, and
homotopy classes of self maps on N are in one to one correspondence with
endomorphisms of Γ. Further, any endomorphism on Γ extends uniquely
to an endomorphism of G [8, 13], so every homotopy class of self maps on
N contains a unique map induced by an endomorphism F : G —> G with
F(Γ) C Γ.

Because G is nilpotent the descending central series of commutators G =
G\ 5 G2 2 ? where Gi+ι = [G, GrJ, terminates with some Gk = {!}• Let



146 E.C. KEPPELMANN AND C.K. MCCORD

I\ = Γ Π Gi, and let Λ4 = ΓV_i/ΓV The relevant properties of these groups
are summarized in the following

Proposition 2.1. If G is a connected simply connected nilpotent Lie group,
Γ C G a discrete uniform subgroup, then the series I\ and At have the
following properties:

1. Yi is a uniform subgroup of Gi.

2. [Γ,Γi] is a subgroup of finite index in Γ ί + 1 .

3. Ai is torsion-free abelian.

4. Each Yi is a fully invariant subgroup of Γ.

5. Γ acts trivially on each A^.

Proof The first assertion is proved in [13]. The second and the third each

follow immediately in turn. To prove the fourth assertion, let φ be an en-

domorphism of Γ, and let F : G —>> G be the extension of φ to G. Then

F(Gi) C G«, so fll\) C Yi.
Since each Γ; is fully invariant in Γ, it is normal in Γ. That is, if g G Γ and

cg : Γ -> Γ is conjugation by g, then cg(Yi) C IV Thus there is a well-defined
induced map cgi : A<+i -> Ai+1. The assertion is that, c^ = id for all i. To
see this, let h e IV Then gh~ιg~ιh G Γ i+χ, or ghg"λTi+1 = hYi+1. D

The significance of this is that all of these algebraic constructions and
properties have topological realizations. As each G is itself a connected
simply connected nilpotent Lie group, JVi = Gi/Yi is a compact nilmanifold
with fundamental group Yi. The quotient G;/G i + i is a connected, simply
connected abelian Lie group, with Λ i +i = Yi/Yi+ι a uniform subgroup, so

is a torus with fundamental group Ai+ι. The fibration G»+i -> Gi —> Gi/Gi+ι
induces a fibration JV<+1 -> Ni -* T ΐ + i . These are all aspherical, and there
is an isomorphism of short exact sequences

1 > Γ i + 1 >• Γi > Ai

If / : N —t N is a self map on N, we may assume (up to homotopy)
that / is given by an endomorphism F : G —> G. This endomorphism then
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induces endomorphisms on G{ and maps /$ : JVj —> iV*. These in turn define
endomorphisms F{ : Λ i + 1 -» Λ i + 1 and maps / ί + 1 : T i + 1 —>• T i + 1 . Clearly,
there are commutative diagrams

Λ +i

The collection of maps {Fι} will be referred to as the linearization of / : N -*
JV. The homotopy type of / is not uniquely determined by its linearization,
but we will see that, for the purposes of Nielsen theory, the linearization
carries sufficient information about /.

In comparison with nilmanifolds, every compact solvmanifold can be rep-
resented as the coset space S = G/A of a connected, simply connected
solvable Lie group G by a uniform closed subgroup Δ. Both the similar-
ities and the differences in the two constructions will be of interest to us.
Properties common to solvmanifolds and nilmanifolds are:

1. The fundamental group π = π1(S') is a torsion-free finitely generated
group, and is represented by Δ/Δo, where Δ o is the connected component
of the identity in Δ.

2. S is a compact aspherical manifold, and in particular, a if (π, 1).

3. Two such manifolds are homeomorphic if and only if their fundamental
groups are isomorphic.

4. There is a one-to-one correspondence between homotopy classes of
self-maps [S,S] and endomorphisms Hom(π,π).

A strongly torsion-free S-group is a group π with a finitely generated
torsion-free nilpotent normal subgroup Γ < π such that π/Γ is free abelian.
Clearly, such a group is solvable, but not every finitely generated torsion-free
solvable group is a strongly torsion-free S-group. A group π can be realized
as the fundamental group of a nilmanifold if and only if π is torsion-free
finitely generated nilpotent. It can be realized as the fundamental group of
a solvmanifold if and only if it is a discrete strongly torsion-free 5-group.

The differences between nilmanifolds and solvmanifolds will be equally
important. The essential difference, from which all others follow, is that the
exponential map exp : L(G) —» G is a surjection if G is nilpotent (and a
homeomorphism if G is simply connected), but may not be surjective if G is
solvable. Other properties which hold for nilmanifolds, but not necessarily
for solvmanifolds, are:
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1. If M = G/A is a nilmanifold, G and Δ may be chosen so that Δ is
discrete, hence π = Δ.

2. Every homomorphism π -» π extends to a homomorphism G -> G.

A connected, simply connected solvable Lie group for which exp : L(G) —>•
G is surjective is called an exponential (solvable) Lie group. The class of such
groups will be denoted £, and we will refer to solvmanifolds which can be
represented as G/Δ, G G 8 as exponential solvmanifolds. Solvmanifolds for
which π can be embedded as a uniform subgroup of a connected simply
connected solvable Lie group (i.e. for which π = Δ) have been referred to
in a variety of names by different authors. We will employ the language of
[4] and refer to them as special solvmanifolds. Both classes of solvmanifolds
can be characterized algebraically, in terms of the fundamental group π.
The characterization of special solvmanifolds (which can be found in [1])
is involved, and not directly relevant to our work, so we will omit it. The
description of exponential solvmanifolds, however, will be of some interest in
our work. To give this description, we introduce a construction that will be
of central importance in the development of Nielsen theory for solvmanifolds:
the Mostow fibration.

Suppose π is a finitely generated torsion-free 5-group and Γ < π any
nilpotent normal subgroup. Let Λ = π/Γ. The factorization Γ -» π —> Λ
can be realized as the fundamental group sequence of a fibration N —> S -»
Γ, with N a manifold and T a torus. We refer to such a fibration as a
Mostow fibration. For us, there is one such Mostow fibration that is of
particular importance. Let p : π —> π* be the abelianization of π. Decompose
the abelianization π* as F φ T , with F free abelian and Γ finite, and let
Γ = p~ι(T). Since π is a strongly torsion-free 5-group, Γ is nilpotent, and
Λo = π/Γ is clearly torsion-free abelian. Since [π, π] is fully invariant, as is
T in the product F φ T , we see that Γ is a fully invariant subgroup of π.
Thus we have the following

Proposition 2.2 [14]. Let S be a compact solvmanifold with π = πχ(S).
Suppose that Γ is the (unique) nilpotent subgroup of π such that [π,π] is a
subgroup of finite index in Γ and Λo = π/Γ is torsion free. Then there is a
Mostow fibration N -> S -+ To in which N is a nilmanifold with TΓI (N) = Γ
and To is a torus with τri(T0) = Λo. Furthermore, in every homotopy class
of self maps on S there is a fiber preserving map of this Mostow fibration.

This fibration is usually referred to as the minimal Mostow fibration, but
as this is the only Mostow fibration we will consider in this work, we will
simply refer to it as the Mostow fibration of S. The action of Λo = τri(T0)
on the fiber N will be of particular importance to us. If λ G Λo, then the
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lifting function can be chosen so that the fiber translation map τ λ is given
by a conjugation cg for some g £ π that projects to λ. This does not provide
a well-defined action of Λo on Γ, but it does produce well-defined actions of
Λo on the Λf,i > 1. That is, conjugation by any element of π preserves the
I\, and so produces an automorphism on Λ;. But conjugation by elements
of Γ is trivial, so there is a well-defined action of Λo on Λ;. This action can
be viewed as a homomorphism Ai : Λo —> Aut(Λ ). We will refer to the
collection {Ai}™=1 as the linearization of the action of Λo on N. The factor
group Λo of the Mostow fibration, together with the subquotients Ax,..., Ak

of Γ and the actions {^.i}^ of Λo on Λ; together constitute the linearization
ofS^AiiAi}.

Exponential solvmanifolds can be easily characterized in terms of this lin-
earization (cf. [2]). Suppose S is a solvmanifold with linearization {Λ;, A{}.
Then S is an exponential solvmanifold if and only if no Ai(\) has an eigen-
value other than 1 on the unit circle. We will refer to a solvmanifold as
an ΛΛR-solvmanifold (for "no roots") if no A(λ) has a root of unity other
than 1 as an eigenvalue. Clearly, all exponential solvmanifolds are ΛfR-
solvmanifolds.

However, not all ΛΛR-solvmanifolds are exponential solvmanifolds. For
example, consider the semi-direct product π = Z8 x Z, with Z acting on Z 8

by
^ 0 1 0 0 0 0 0 0'

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

- 1 0 12 0 -6 0 12 0

The eigenvalues of A axe ±a, ±^, ±β, ± ^ , where a = \j2 - \/2+iy y/2 - 1

and β = Y 2 + v ^ + y V ^ + l None of these are roots of unity, but \a\ — 1.
The solvmanifold with fundamental group π is then an example of an ΛfR-
solvmanifold which is not an exponential solvmanifold.

Just as a solvmanifold S has a linearization, so too does a self-map on 5.
If / : S -¥ S is a self-map, then we may assume (up to homotopy) that / is
a fiber-preserving map of the Mostow fibration, covering a homomorphism
/o : To —» To. /o has a corresponding homomorphism Fo : Λo —> Λo. Since
0 G To is fixed by /o, the fiber No over 0 is invariant under /. As a self-map
of a nilmanifold, f\N0 then has a linearization {Fi}i=v If λ G Λo, then
(f\N0) ° τ λ ~ τFoλ o (/|JV0). This implies that F< o ̂ ( λ ) = Λ(Foλ) o Ft for

A =
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all i = 1, ...,&. The linearization of self-map on S, then, is a collection of
homomorphisms {F^ : Λ< -> Λj}*l0 such that Fi o Ai(λ) = Ai(F0X) o F{ for
all i = 1,... ,fc.

We can make these linearizations even more concrete. Let Πi = dim(T^).
Then hi = Z n i the action of Λo on A< is given by a homomorphism Ai :
Zn° -> SLni(Z); and the linearization of F : £ -> 5 is given by a collec-
tion of maps Fi G <7Zn, (Z) such that FiA^υ) = A^FovJi^. We will see in
the next section that these linearizations of solvmanifolds and self-maps on
solvmanifolds carry all of the information needed for Nielsen theory.

3 Nielsen and Lefschetz numbers.

Having established the necessary algebraic-topological properties of the
spaces involved, we now turn to a brief exposition of Nielsen theory, and its
application to nilmanifolds and solvmanifolds.

Suppose that / : M —> M is a map on a compact manifold. Then the
Nielsen number N(f) is defined in two steps as follows. (For more details see
[11].) First, the set of fixed points of /, Fix(/), is partitioned into Nielsen
classes by the relation that x ~/ y if there is a path c from x to y with
c ~ fc. Now each Nielsen fixed point class F C Fix(/) is both compact and
open in Fix(/) and thus has an integer valued index, indexM(/,F), defined.
The Nielsen number N(f) is then defined as the number of essential Nielsen
classes, i.e. those with nonzero index. N(f) is a homotopy invariant as well
as a lower bound for |Fix(#)| for any g ~ /. For all compact manifolds
save surfaces with negative Euler characteristic, any inessential class can
be homotoped away and any essential class reduces to a singleton. Since
all infrasolvmanifolds have χ(M) = 0, N(f) = min{| Fix(#)| : g ~ f} for all
self maps on infrasolvmanifolds.

The Lefschetz number, in contrast, can be defined as the sum of the
indices of the Nielsen fixed point classes. The natural route to establishing
the equality N(f) — | i ( / ) | is to show that every Nielsen class has the same
index, and that that index is either —1,0 or +1. This is precisely what is done
in [7] for torus maps. Let T = E n /Z n be the torus of dimension n. Given
/ : T —> T, the asphericity of T makes it possible to assume, up to homotopy,
that / is covered by a linear map F : W1 —> En whose matrix with respect to
the usual basis has integer entries. Then every Nielsen fixed point class has
the same index, which is either —1,0, or +1, and L(f) = det(F — I). Thus
for torus maps, N(f) = |L(/)| = |det(F - J)|. Note that N(f) = 0 if and
only if 1 is an eigenvalue of F. In this case, an arbitrarily small perturbation
of / will be fixed point free. If 1 is not an eigenvalue, then every point of
Fix(/) will be an isolated fixed point and a Nielsen fixed point class. All of
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these will have a fixed point index of ±1.
For self-maps of nilmanifolds, the orientable fibrations

carry Nielsen and Lefschetz number product theorems, i.e.

\L(fi)\ =

fi) = N(fi)N(fi+ι).

From these, it follows that

N(f) = Π N(fi) = Π I d e t ( ^ " *)l = Π Wi)\ = W)\.
i=l i=l i=l

For self maps on solvmanifolds, the Mostow fibration is nonorientable, so
the product formulas do not immediately obtain. Instead, a more general
pattern is observed. As noted above, we have for any homotopy class of
maps on a solvmanifold S a commutative diagram

N —

I
N —

—> S

I '
-+ s —

- > To

I*
- » • T o

with /o a torus endomorphism. If N(f0) = 0, then f0 is homotopic to a fixed
point free map. This homotopy lifts to a homotopy on S which perturbs /
to a fixed point free map. Then it is trivial that N(f) = \L(f)\ = 0. We
will therefore assume henceforth that N(f0) φ 0. In this case, each point in
Fix(/o) forms a distinct Nielsen fixed point class (hence Fix(/0) is a finite
subset of To), and every Nielsen class of / lies in a distinct fiber.

For b e Fix(/o) let Nb denote the fiber over b and fb — f\Nb : Nb -» Nb.
To avoid notational confusion, denote the map on the fiber over 0 G To by
fe. The result of the analysis in [14] is that

N(f)= Σ W»)= Σ
(>eFix(/o) 6eFix(/o)

\L(f)\ =
66Fix(/o)
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Thus we will have the equality N(f) = \L(f)\ if and only if every L(fb)
has the same sign. Since the Mostow fibration is nonorientable, the fiber
maps fb need not have the same homotopy type. The next step is therefore
to determine how these maps are related to one another.

Suppose that c is a path from 0 to a point b G Fix(/0). Then in terms of
fiber translation maps, fb o τc ~ τ/oC o /e, or fb ~ τ(c)r(c~ι * /oc)/er(c~1).
Thus if {Fi} is the linearization of /e, then the linearization of fb is (up
to conjugation), {Ai(ωb)Fi}, where ωb = c~λ * /oc G πi(To,0) = Λ0. Note
that the homotopy type of fb will clearly be different than that of fe when
{Ai(ωb)Fi} is different than {Fi}. The nonorientability of our fibration makes
the action of the base on the fiber nontrivial so we could expect that this is
often the case. We can rewrite the Nielsen and Lefschetz formulas as

= Σ f
6€Fix(/o) *=1

\L(f)\ =
6€Fix(/o) »=

Clearly, N(f) = |ί/(/)| whenever the determinants det(Ai(ω)Fi — I) are
independent of ω G Λo for all«. In fact, when this happens, we get, despite
the previously mentioned variance in homotopy, the even stronger result of
uniformity of L(fb).

Theorem 3.1. Suppose that f : S —» S is a self map of an ΛίR-solvmanifold
S, with linearization {Fi}![=ι. Then the product formula

N(f) = Π N(fi) = ΠI d e t ( ^ - 7)l = Π

holds.

Thus the proof of this theorem has been reduced to a problem in linear
algebra: given Fo G #Zno(Z) which does not have 1 as an eigenvalue, Fi G
glni(Ί) and A{ : Z£ -> SLni{Z) such that FiA^v) = Ai(Fov)Fi and no A^v)
has a root of unity other than 1 as an eigenvalue, show that det(Ai(υ)Fi — I)
is independent of v (i.e. that det(Ai(v)Fi — I) — det(Fi — /) for all υ). This
matrix analysis is undertaken in the next section.

4. Matrix Analysis.

In this section, we will consider the following setting: X G gln(Ίj)^A : Z m —>•
5Ln(Z), and Φ G glm(%) such that XA(υ) = A(Φv)X for all v G Z m . We
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will refer to this assumption by saying that X Φ-commutes with A(v). The
goal of this section is to prove the following

Theorem 4.1. // no A(v) has a root of unity other than 1 as an eigenvalue
and Φ does not have 1 as an eigenvalue, then det(A(v)X — I) is independent
of v; that is, det(A(v) - I) = det(X - /) for all v e Z n .

First, consider the map A : Z m —> SXn(Z). We can view this as choosing
a collection of commuting n x n integer matrices Aλ,..., Am with integer
inverses. Then if v € Zm is given as υ = (vι,... , t>m), we can write A(v)
as A\ι .. -Av^. If λj is an eigenvalue of Aί? let Ei(λi) be the correspond-
ing generalized eigenspace, and let E(XU..., λm) = E1(Xλ) Π Π Em(Xm).
Since the matrices Ai,..., Am commute, W1 has a direct-sum decomposition
into the E(Xι,..., λm), as λ l 5 . . ., λm range over the spectra of A l 5 . . . , Am

respectively. Since every A{ leaves all # ( λ i , . . . , λm) invariant, every A(v)
likewise leaves all of them invariant, and has the single eigenvalue X^1 λ^1

on ϋ?(λi,...,λm).
This gives in a natural way the semisimple-unipotent decompositions

of the matrices A(v). Let T(v) be the transformation such that T(v) —
XI1 - \V^I on E(XU..., λm) and let U(v) = A{v)T(v)~l. Then all trans-
formations in the collection {T(Ϊ ), U(V)} commute with one another; all the
T(v)'s are semisimple and all of the [/(Ϊ )'S are unipotent. Of course, this is
the unique decomposition with these properties.

Now, let us consider the transformation X and the relation XA(v) —
A(Φυ)X.

Lemma 4.2. If XA = BX, then X maps ker(A - XI)k into ker(£ - XI)k,
for every X G C and k > 1.

Lemma 4.3. If XA(v) — A(Φv)X and A(v) = T(υ)U(v) is the semisimple-
unipotent decomposition of A(v), then XT(υ) = T(Φυ)X and XU(υ) =
U(Φv)X for allv.

Proof. Since X maps the λ generalized eigenspace of A(v) to the λ gener-
alized eigenspace of A(Φv),XT(υ) — XX = T(Φv)X on the λ generalized
eigenspace of A(v). Thus XT(υ) = T(Φv)X. Since U(v) = A^T^)'1 and
both A(v) and T(v) Φ-commute with X, it follows immediately that U(v)
also Φ-commutes with X. D

We will be interested in the quantity det(A(v)X — /), and in particular,
we will be interested in discovering when this quantity is independent of υ.
We begin with a few obvious assertions.
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Lemma 4.4. // {e,-} is a basis for Z m and det(A(ej)X - I) = det(X - /)
for all j , then det(A(υ)X - I) = det(X - /) for all v G Z m .

Lemma 4.5. The quantity det(A(v) — I) is constant on orbits of Φ. That
is, det(A(Φkv)X - J) = det(A(υ)X - I) for all k.

This allows us (among other things) to assume without loss of generality
that Φ does not have 0 as an eigenvalue. Let V̂  be the generalized 0-
eigenspace of Φ and let Vλ = Im(Φm). Then Rm = Vo 0 Vu and Z m = (Vo Π
Zm) 0(Vi Π Zm). Clearly, for every υ 6 Zm, Φm(v) e Vu and det(XA(v) -
I) = det(XA(Φm(v)) — I). Moreover, Φ leaves Vi invariant, and does not
have 0 as an eigenvalue on Vλ. So if we restrict Φ to Vλ and show that
det(XA(v) — 7) is independent of v on y b then it will be independent of v
on Mm. We will assume for the rest of this section that 0 is not an eigenvalue
ofΦ.

We will prove theorem 4.1 by first reducing to the separate cases where
the action matrices A(v) are either all unipotent or all semisimple.

Lemma 4.6. If det(T(υ)X — I) and det(U(υ)X — I) are independent of v
for all X which Φ-commute with T(υ) and U(v), then det(A(v)X — I) is
independent of υ for all X which Φ-commute with A(v).

Proof. Since T(υ) commutes with U(v) and X Φ-commutes with U(v), their
product T(υ)X Φ-commutes with U(υ). Thus

det{A(v)X - I) = det(T(v)U{v)X - I) = det{T(v)X - I) = detpΓ - J).

D

The unipotent case is considerably easier, and we will dispose of it first.

Lemma 4.7. If Φ does not have 0 or 1 as an eigenvalue, U : Z m -> SLn

is a homomorphism whose image consists of unipotent matrices U(υ), and X
is a matrix which Φ-commutes with U{υ), then det(U(v)X—I) is independent
of v.

Proof. Proceed inductively on n. For n = 1, each U(v) = id and the state-
ment is trivial.

For the general case, let

K= fϊ kev(U(v)-I),
υGZm

and let
keτ(U(Φv) - I).
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Note that, since the matrices commute, they preserve each others 1-
eigenspaces, so K φ 0. Then 0 φ K c ϋfΦ, and X(K) C Kφ. In fact,
K = ίίφ. That is, since Φ is injective, Φ(Zm) has finite index in Z m . In
particular, if v G Zm, there is some p such that pυ G Φ(Zm). If w G ϋΓφ,
then it; = U(pv)w = U(v)pw. But since t/(υ) is unipotent, this implies that
U(v)w = tϋ. Thus X and all C/(v)'s leave if invariant.

Now let L = Rn/K and let Xx : K ->• if and X2 : L -> L be the
restriction and quotient of X respectively. Similarly, let Uι(v) : K —> K
and U2(v) : L -* L be the factorization of U(υ). Then det([/(?;)X - /) =
det(Uι(v)X1 - Iκ)det(U2(υ)X2 - h)- On K, all Uι{v) = id, so it is trivial
that det(i7!(i;)Xi — Iκ) is independent of?;. By induction, det(U2(υ)X2 — Iι)
is independent of v, so det(C/(ι;)X — /) is as well. D

Lemma 4.8. //Φ does not have 0 or 1 as an eigenvalue, T : Z m —> SLn(Z)
is a homomorphism whose image consists of semisimple matrices T(v) which
have no roots of unity (other than 1) as eigenvalues, and X is a matrix which
Φ-commutes with T(υ), then det(Γ(t;)X — /) is independent of v.

To prove this lemma, and so complete the proof of theorem 4.1, we will
need to make careful use of the relationship between the eigenvalues of the
matrices T(v) (which cannot be roots of unity other than 1) and the eigen-
values of Φ (which cannot be 0 or 1). The first step will be to reformulate
the problem to fully display this relationship. To do so, choose a basis {βj}
for Z m and a basis of common eigenvectors {/,} of the operators T(v) on
IRn. To avoid overburdening the notation, we adopt the following conven-
tion. Suppose σ G Sn has a cycle of length s(l < s <n). Choose an integer
h in that cycle and denote σ^h) by σ(i). Let Xi(υ) be the eigenvalue of T(v)
on /σ(i), and let λij = λi(βj). Let Y = [y^ ] be the matrix of X — / in terms
of the basis {/J. Then from the standard theory of determinants and the
fact that every permutation factors into a product of cyclic ones, we have

Proposition 4.9. Every term in det(T(υ)X — I) is a product of factors of
the form

where σ is a cyclic permutation of order s. Such a factor is nonzero only if
λi(Φw) — λ i +i(w) for all i and all w.

Note: we will show the independence on v by proving that Πi=i \(v) — l
Except for the diagonal entries (i.e. when s = 1) the matrix for X — I is the
same as the matrix for X. In this case we will thus see that λi(υ) = 1 as
needed to give the above predicted form.
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Thus, for the remainder of this section, in order to make our computation
more concrete we fix s and define a specific basis Δ = {βj}^L1 for Z as follows.
The βi are to be chosen so that {βi,..., β/}(l < I < m) spanK = ker(Φs — I)
and J = span{e/+i,... , em} meets K only trivially. This is possible since
Φs — I has a representation as an integer matrix so that K Π Z m is uniform
in if.

If Φ is expressed as [φij] in the basis {e^}, the condition for a factor to be
nonzero is equivalent to

Write λij = exp(r i j + 2πiθij), with θij defined modi. The condition then
becomes

/ m \

i+i,j + 2πiθi+ιJ) = exp ΣiΦkj^k + 2πiφkjθiik) ]

or

k=l

m

k=l

Now, let Ri, Θi G Mm be the vectors whose jth components are r ^ and θitj
respectively. The equations then become

Ri+ι = ΦτRi

(1)
θ i + 1 - Φ τ θ ί m o d Z m .

Our goal is to prove that άet{XT(eό) - I) = det(X - /) for all j . This
can be done by showing that Πi=i ^ij ~ 1 f°Γ e v e r y i whenever (1) is
satisfied. In our (r, θ) notation, Πi=i ^ίj ~ e x P(Σi=i ri,j + 27ri#^), so we
must show Yfi=ι Vij — 0 and Σi=i «̂,j ^ ^ ^o r e v e r v i That is, we must
show Σi=i R% — ® and Σ* = 1 θ^ G Z m . In other words, we have reduced the
problem to proving the following in the basis Δ.

Proposition 4.10. Suppose Φ £ GLm(Z) does noί /ιαυe 1 as an eigenvalue,
and suppose Ru . . . , Rs e Rm and θu . . . , θs E Rm (defined modulo Zm) are
vectors such that

1. Ri+ι = Φi?i αncί Θ i+i = ΦΘiinodZm ( t/ ΐί/i i counted mods).
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2. IfTij = 0, then θiyj is either irrational or 0.

Then ΣUi #i = 0 and Σϊ=i ®i e Z m .

Proof. The assumption that ϋ i + 1 = ΦR{ means that ΦSR{ = Ri for every
i. Similarly, the assumption that Θ i+i = ΦΘiinodZ771 means that Θ; =
Φ^Θ modZ™ for every i. That is, each R{ G ker(Φ5 - /) so ru = 0 for
j > I. This implies that θ^ is either irrational or 0 for j > I. Let Φ' be the
submatrix of Φ8 — / which maps J to J, and let θ / be the J-component of
Θi. Then the J-component of (Φs - 7)0; is given by Φ'Θ/, so Φ'Θ/ G Z m .
Since Φ' is an invertible integer matrix, this implies that all components of
θ/ are rational, hence Θ/ = 0.

That is, we may assume that all Ri and Θ̂  lie in If, or equivalently, we may
assume that Φs = /. In particular, we can now choose the representatives
Θ 2 , . . . ,Θ S so that Θi+i = ΦΘ; (again, with i counted mods). Now, it is
easily seen that Φ(EΓ=i Ri) = Σ7=i Ri a n d HΣU θ<) = ΣΓ=i θ<- Since Φ
does not have 1 as an eigenvalue, Σ<=i Ri = Σi=i θj = 0. D

5. Concluding remarks.

The full strength of our result, theorem 3.1, is not just the equality N(f) =
|L(/)| for self maps on ΛΛR-solvmanifolds, but the product theorem N(f) =
ΠN(fi) = Π|det(Fi — J)|. This product formula was not established by
using any of the standard product formula theorems, such as those in [18],
but by direct calculation. The important difference between our result and
most product formula results is that we do not assume (and indeed, do not
conclude) that the maps on different fibers are homotopic. That is, we are
using the strong algebraic information available to us to conclude that N(fb)
is constant, even when the homotopy type [fb] is not.

We have established that N(f) = \L(f)\ for all self maps on a large class
of solvmanifolds. On the other hand, there are examples of solvmanifolds
(e.g. the Klein bottle) for which it is not true that N(f) = \L(f)\ for all
maps [5]. It is therefore reasonable to ask if we can classify which compact
solvmanifolds (or, more generally, which compact aspherical manifolds) have
N(f) = \L(f)\ for all / : S -> S. We expect that this classification (if ever
found) will be stated solely in terms of the fundamental group of S. For
example, it seems quite possible that a solvmanifold has N(f) = \L(f)\ for
all / : S -> S if and only if S G MR. To prove this, we would have to
show that for every solvmanifold S £ ΛΛR, there exists an / : S -> S with
N(f) > |L(/)|. In considering the possibility of such a result, it is worth
noting that we only used the linearization of S G MR and / : S -> S in
proving theorem 1. A natural approach to the converse would be to show
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that, given a linearization {Λ;, Ai} where some Ai(\) has a root of unity as an
eigenvalue, then there exists a collection Fi such that FiA^X) = Ai(F0X)Fi
and sgn(Ai(X)Fi — I) = — sgn(F; — /) for an odd number of i.

The problem with such an approach is that such a collection of maps
{Fi} may not be the linearization of a topological map / : S —» S. That
is, since the linearizations neglect some of the algebraic information of the
fundamental group, it is not always possible to reconstruct the fundamental
group π from {Λj, A;}, nor to construct a map / : S -> S from {Fi}. Thus
characterizing solvmanifolds which admit counterexamples (i.e. maps with
N(f) > |L(/)|) will probably require using more complete information on π
and fφ : π —> π than just the linearizations.

Of course, the more general problem is that of computing N(f) (and
hence MF(f)). The formula N(f) = |L(/)| - Π t o \det(Fi - /) | for maps
on ΛΛR-solvmanifolds not only allows us to compute N(f) for such maps; it
also leads the way to computing N(f) for all maps on infrasolvmanifolds.
An infrasolvmanifold M can be defined as a manifold which admits a solv-
manifold as a finite regular cover. In fact, all such manifolds admit a finite
regular cover by an ΛΛR-solvmanifold [2]. The techniques of [16] then show
that N(f) for / : M —> M can be computed from the Nielsen coincidence
numbers JV(/,p), where Sχ,S2 are Λ/*ϋ-solvmanifolds which are finite reg-
ular covers of M, p : Sλ -> S2 is a covering projection, and f : Sλ -+ S2

ranges over all lifts of / : M -» M. Thus Nielsen numbers for self maps
on infrasolvmanifolds will be computable in terms of Lefschetz (coincidence)
numbers provided we can establish the equality N(f,p) = |L(/,p)|.

This is a special case of the more general problem of computing Nielsen
coincidence numbers N(f^g) for pairs of maps f^g'Si-^S2- This problem
has been considered in [6, 10, 15]. The most general result is that of [15],
that N(f,g) > |L(/,ρ)| when Sχ,S2 are compact orientable manifolds of
the same dimension and S2 is a solvmanifold, and that N(f,g) = \L(f,g)\
when we further assume that S2 is a nilmanifold. In light of theorem 1, it
seems reasonable to conjecture that N(f,g) = \L(f,g)\ when S2 is an λίR-
solvmanifold. We will consider this conjecture, and in particular the special
case fiP:Sχ^S2 needed to compute Nielsen numbers on infrasolvmani-
folds, in a future work.
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