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From the special linear Lie algebra A, = sf{(n + 1,C) we
construct certain indefinite Kac-Moody Lie algebras A, (a,b)
and then use the representation theory of A, to determine
explicit closed form root multiplicity formulas for the roots a
of IA,(a,b) whose degree satisfies |deg(a)| < 2a + 1. These ex-
pressions involve the well-known Littlewood-Richardson coef-
ficients and Kostka numbers. Using the Euler-Poincaré Prin-
ciple and Kostant’s formula, we derive two expressions, one
of which is recursive and the other closed form, for the mul-
tiplicity of an arbitrary root a of IA,(a,b) as a polynomial in
Kostka numbers.

Introduction.

For Kac-Moody algebras the root multiplicities of only the finite and affine
algebras are explicitly known. In this paper, the third of a series of articles on
the structure of non-finite, non-affine Kac-Moody algebras, we study certain
indefinite Kac-Moody algebras coming from the special linear Lie algebra
A, = sl(n+1,C) of traceless (n + 1) x (n+ 1) complex matrices. The main
theme of these articles is that combinatorial results from the representation
theory of classical simple Lie algebras can be applied to the problem of
determining root multiplicities for Kac-Moody algebras. The starting point
is a well-known construction of graded Lie algebras of Kac-Moody type whose
ingredients are a Lie algebra G over C, two G-modules V and V', and a G-
module homomorphism ¢ : V' ® V. — G. The graded Lie algebra £ =
L(G,V,V' ) = 3,z Li built from these components contains no graded
ideals which intersect the local part V @ G @ V' trivially. The algebra G
is specialized to be gf(n + 1,C) = sf(n + 1,C) & CI. The G-module V
is assumed to be V(bA;) = V(be;), the irreducible G-module with highest
weight b times the first fundamental weight A;, or equivalently b times ¢,
where €; maps a matrix to its (1,1) entry. The homomorphism %) is the map
given by (2.1) below. A certain parameter “a” enters into the definition of .
We argue that the algebra £(G,V,V*, ) is isomorphic to the Kac-Moody
algebra having generalized Cartan matrix
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where C(A,,) is the Cartan matrix of Lie algebra A,. For almost all positive

integral values of a and b, the matrix C is of indefinite type, which we denote
by I4,(a,b).

Our investigations in [BKM2] focused on the b = 1 case where we deter-
mined closed form formulas for the multiplicities of roots a = kay + k1o +
-+ -+ kna, whose degree k satisfies —2a < k < 2a. We also considered in that
paper the analogous indefinite algebras 1B, (a,1), IC,(a,1), and ID,(a,1)
constructed from an algebra G which is a central extension of a simple Lie
algebra of type B, C, or D, respectively.

Section 1 of this present work reviews the basic construction and back-
ground results. In the next section the construction is specialized and
is shown to give the indefinite algebras IA,(a,b). In the third section
we develop closed form multiplicity formulas for the roots of IA,(a,b) up
to degree 2a + 1, that is, for all roots in the graded components L; for
k=0,%x1,...,%(2a + 1). The multiplicity formulas involve the well-known
Littlewood-Richardson coefficients and Kostka numbers and are similar in
spirit to the ones found in [BKM2] for the case b = 1 and in [BKM1] for
the case n = 1. However, there are added complications which must be dealt
with here in going from the b = 1 case to the general case.

In the final section we use the Euler-Poincaré Principle and Kostant’s
formula to derive two expressions, one of which is recursive and the other
closed form, for the root multiplicities of the Kac-Moody algebras I A4,,(a, b).
The closed form formula we obtain is related to the Berman-Moody formula
[BM] in that ours corresponds to a maximal proper subset of the simple
roots, while the Berman-Moody formula corresponds to the empty subset.
This connection is explained further in [Kan3]. These formulas enable us
to write the multiplicity of an arbitrary root of I4,(a,b) as a polynomial in
Kostka numbers.

Many interesting Kac-Moody algebras are indefinite Kac-Moody algebras
of special linear type. For example, the rank two Kac-Moody algebras are:
just the algebras I'A;(a,b). The hyperbolic algebra H A studied by Fein-
gold and Frenkel [FF| and Kang JKanl] [Kan2] is 1 A5(2,2) in our notation,
and the hyperbolic algebra HAS”, whose root multiplicities have been in-
vestigated in [Kan2], is 1A,(4,1). Similarly, the hyperbolic algebra H Ggl)
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is TA5(3,1) and HD{Y is I4;(1,3).

1. The Construction.

We begin this section by recalling some necessary background results which
can be found in [BKM1]. The first is the construction whose basic in-
gredients are a Lie algebra G, two G-modules V' and V', and a G-module
homomorphism 9 : V'V — G. Set Fy =G, F_;, =V,and F, = V.
Let F~ = Y 4oy F—k (resp. F* = Y .5, Fx) be the free Lie algebra gen-
erated by f_l—(resp. Fi1). Then F_; —(resp. Fi) for k > 1 is the space
of all products of k vectors from F_; (resp. F;). In particular, the set of
elements [z1[z,, -, [Zk—1,Zk]...]], where the vectors z; are chosen from a
basis for F_; (resp. Fi), spans F_; (resp. F;). There is a Lie bracket for
F =F & F, ® F* which extends the products in F~, F*, and Fy. Thus,
for g € Fo, v € F_;, and w € Fq,

(1.1) lg,z] =g -z=—[z,9] if z=v,w,
and
(12) [w, ] = $(w @ v) = —[v, u].

Under this bracket, 7 = Y, ., Fi becomes a graded Lie algebra which is
generated by its local part F_; + Fo + Fi.
For k£ > 1 define the subspaces

(1.3)
J:tk = {.’II S f:i:k ' [yl,[- e [yk...l,il,‘]] v ] =0 for all Y1y -9y Yr—1 € .7::F1},

and set

(1.4) J =Y Jux JT=) J

k>1 k>1

Then by ((BKM1], Proposition 1.7 or [FF], Proposition 4.2) J~ and J*
are ideals of F, and the ideal J = J~ @ J7 is the largest graded ideal of F

trivially intersecting F_; 4+ Fp + F;. Our main object of study is the graded
Lie algebra
(1.5) L=LGV,V p)EFjJ-eFeFt)J*

= @BLLBDL  DLBDL, DL, D

where £; = F; for i = £1,0 and £; = F,;/J;, for i % £1,0. The algebra
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L = ® ) ;cz Ly has no graded ideals which trivially intersect the local part
VeGeV'.

Let £* = F£/J* = 3,5, Lix, and for a fixed choice of G, V, V', 1, let
m > 2 denote the smallest integer such that J_,, # (0). Then J,, # (0) must
hold. We will consider cases where J~ = 3,5, J_& (resp. J* =Y 15, Jk)
is the graded ideal of F~ (resp. F*) generated by J_,, (resp. Jp).

Suppose now that G = gf(n + 1,C) = sf(n + 1,C) & CI and let H be
the Cartan subalgebra of diagonal matrices in G. Assume V is a faithful
irreducible highest weight G-module relative to 7. Then the dual space
V* of V is a lowest weight module for G. The free Lie algebra F* (resp.
F~) generated by F; = V* (resp. F_; = V) is a module for F, = G with
finite dimensional weight spaces relative to 7, and the multiplicities of those
weight spaces can be computed using the following generalization of the Witt
formula.

Proposition 1.6 ([Kanl], [Kan2]). Let§ = {wi,ws,...} be an enumeration
of the weights of F_, =V relative to H. Then for any weight v of F~,

(1.7) dimF = Zu <%> gD(w)

wly

where p denotes the classical Mobius function; w | 7y if v = kw for some

positive integer K, in which case L =k and £ = 1; and
w vy K

(Zitd) =Dy .
(1.8) D(w) = =it 2 T(dim V)%
(t);;(w) L&Y 1:1

where T'(w) = {(t) = (t1,t2,...) | t: € Z2%and ¥, tiw; = w}.

The algebra £ = L(G,V, V*, 1) has finite dimensional root spaces relative
to H, and to compute the multiplicities of those roots we need additional
information about the spaces Ji; in the ideal J. This information comes
from considering the homology module H3(L~) which inherits a Z-grading
from that of L~ = F~/J~. Suppose that d is the smallest integer with
H3(L™)_q # (0). As Kang shows in ([Kanl], [Kan2]), the value of d deter-
mines the structure of certain of the homogeneous components of J:

Proposition 1.9. Let F~ =) -, F_i be the free Lie algebra generated
by the G-module F_, =V . Let J~ = > k>m J—& be the ideal of F~ generated
by J_p, C F_m for some m > 2. For L= = F~/J~ let d be the smallest
integer such that H3(L™)_4 # (0). Then

(1) for m < j < min(2m,d),
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J;i2V® - Ve,

(j—m) times

(2) If d < 2m, then

J.x2|Ve---eveln. /H3(L‘,‘)_d.

(d—m) times

In the next section we consider the algebra £(G,V,V*, 1) under more
stringent restrictions on the module V.

2. Indefinite Kac-Moody Algebras of Type IA,(a,b).

The module V = V(bA;) = V(be;) for G = g€(n + 1,C) can be explicitly
realized as the C-vector space of homogeneous polynomials of total degree b
in the indeterminates z,, ..., 2,4+1. We adopt the shorthand 2~ for the mono-
mial z]25% - - -z correspondlng to the (n+ 1)-tuple r = (r1,72,- .., Tnt1),
and let £ be the (n + 1)-tuple with 1 in the ith position and 0 elsewhere.
Then the action of the matrix unit E; ; in gf(n + 1,C) on 2~ is afforded by

— r+§i—§;
E; j2t = rjztte=4,

where it is understood that z1+€"“€f is 0 if any component of the (n+1)-tuple
r+&—& = (r,...,ri+1,. —1,...,7n41) is negative. Thus, E; ; acts as
2;0/0,;. Assume V* is the dual space of V,and let {02 | s = (s1,...,5n41)
and Z:’_“Lll s; = b} be the dual basis to the basis {27} so that 8’(7,-) = by,
We define

n+1
(2.1) P02 Q@ 2F) = T Z Tilsr+e;-6Big + (a— 5) Og,r 1
1,j=1

where I is the identity matrix in G = gf(n + 1,C). Then % is a G-module
homomorphism, which can be seen by direct computation or by using ([FF],
Proposition 4.1) coupled with the fact that the basis of matrix units E; ;
forms an orthonormal basis for G relative to the trace form (g, g') = tr(gg’).

Suppose ap = —be; and a; =€; —€;4y fori =1,...,n, wheree; : H — C
is the projection of a matrix in the Cartan subalgebra H onto its (i, %) entry.
Then the monomial 2% = 2! is a maximal vector for V of highest weight
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bA; = be; and 8% is a minimal vector of lowest weight —bA; = —be;, and
the weights of V' are given by

{mie; + moes + - +Mmyi1€040 | m; > 0and my + -+ + myp = b}

Let e; = E; i1, fi = Eit14, hi = Ej; — Ejy1441, where < = 1,...,n, denote
the canonical generators for [G,G] = sf(n + 1,C), and let

eo =0 and f,=2" =2\
Set

2
] ho = [eo,fo] = _a'El,l + (a - 'l')') I

Then it is easy to verify using the maximality of f, = 2% and the minimality
of eg = 8% that the relations

(2.3) [hiyhj] =0
[hi, €] = aj(hi)e;
[his f] = —a;(h:) f;
[es, fi] = 6ijhi

hold in L(G,V,V*,4). If C = (C; ;)7 ;=0 is the matrix whose (4,j) entry is
given by C; ; = a;(h;), then as in [BKM1] we have,

Theorem 2.4. The Lie algebra L(G,V,V*,¢) with G = gf(n + 1,C),

V = V(bA,) and ¢ as in (2.1) is isomorphic to the Kac-Moody algebra
IA,(a,b) with Cartan matriz

where C(A,) is the Cartan matriz of A, = sf(n + 1,C).
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3. Root Multiplicities in IA,(a,b).

An integral combination 6 = 6y¢; + -+ + 6,,11€,4,1 of the ¢;’s is a dominant
weight of G = gf(n + 1,C) relative to H if and only if {6; > 6, > -+ >
6,41 > 0} determines a partition of | |2 S°>"*'6;. Thus, if

a=—(joo +kiog +--- + knay)
= (]b at kl)él -+ (kl - k2)62 + - (kn—l - kn)en + knen-«}-l

isaroot of L = L(G,V,V*,¢) = IA,(a,b) of degree —j, then « is a dominant
weight if and only if {jb—k; > k; —k2 > -+ > kp1 — kn > k, > 0} forms
a partition of jb into at most n 4+ 1 nonzero parts. We identify a with
the partition {6, > 6, > --- > 0, > 6,4, > 0} having 6, = jb — k;, and
0, = k.4 — k; for + > 2 and write a + jb to signify that o determines a
partition of jb. It suffices to compute the multiplicities of roots that are
dominant weights, for the others are conjugate to those under action of the
Weyl group of L. It also suffices to determine the multiplicity mult(a) of «
for a a root of £~ as mult(—ca) = mult(a). Now by Section 1,

(3.1) mult(a) = dim £,

=dim L

= dim F, — dim J_.
Thus, our strategy for computing mult(a) is to invoke (1.7) for dim F]
and to use Proposition 1.9 for dim J;. The latter involves determining the
homology H3(L~). Throughout this calculation we use V(\) to denote the

irreducible G-module with highest weight A\. In particular, £L_; = V =
V(—ap) = V(be;). Our first result in this direction is

Proposition 3.2. For 1 < j<a, L_; = F_;, so mult(a) = dim(F_;), for
all roots of degree —j.

Proof. By the Gabber-Kac Theorem [GK], the ideal J~ of F~ is generated
by the element (ad f,)!*°f;, which has degree —(a + 1) and weight —(a +
)ag — a; = (ab+ b — 1)e; + €;,. Hence, J~ is generated by the space

(3.3) Jo(at1)y 2V (—(a+1)ag —a;) = V((ab+ b - 1)e; + ¢).
The assertions then follow. O

Let A C H* be the set of roots of £ and let ag = —bey, a; = €; — €41
for i = 1,...,n, be the simple roots in A. Use A* (resp. A~) to denote
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the positive (resp. negative) roots of L relative to oy, y,...,a,. The Weyl
group W of L is generated by the set {s; | i = 0,1,...,n}, where s; is the
reflection s;(y) = v —7(h;)a; determined by the simple root a;. For w € W,
I[(w) is the length of w relative to these generators. Let Al (resp. Ap)
denote the set of positive (resp. negative) roots in £ of degree 0, so that
every root in A is a combination of {a; | i = 1,...,n}. Set AZ, L AT\AZ,
and let
W' ={weW|w'A} C At}

as in ([GL], Proposition 8.1). This leads to the following useful lemma:

Lemma 3.4([Kanl], Lemma 4.3). Suppose w = w's; and l(w) = I(w') + 1.
Then w € W' if and only if w' € W' and w'(a;) € AL,.

By Kostant’s formula (see Garland and Lepowsky ([GL], Theorem 8.6)
or Liu [Li]), we have for the homology module H;(L~),

(3.5) H(L) =D Y V(wp—p).

wew/’
U(w)=k

where p € H* satisfies p(h;) =1 for ¢ = 0,1,...,n. Combining these results
gives

Proposition 3.6. Suppose that a > 2 and b > 1. Then
Ha(L™) = V(-a(b+1)ao — (b+ 1)) for n=1
8 T 1 V(-a(db+1)ao — (b+1)a1) ®V(—(2a + 1)ao — 2010 — a2) for n>2.

Proof. By (3.5), H3(L™) = EBEI.(”E)VZ; V(wp — p). Using Lemma 3.4 it easy
to verify for n = 1, that s¢s;5¢ is the only element of length 3 in W' and for
n > 2, the only elements of length 3 in W' are

805150 and S0S182-
Hence, the result follows since
s08150p — p = —a(b+1)ap — (b+ 1oy

and
5051820 — p = —(2a + D)oy — 204 — as.
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Observe from Proposition 3.6 that when & = 1, the smallest d with
H3(L7)_4 # (0) is 2a, while when b > 2, the smallest value is 2a + 1.
We assume henceforth that b > 2, as the case b = 1 can be found in
[BKM2] or can be gotten by modifying the argument below. Now from
Propositions 1.9 and 3.6 we have

Corollary 3.7. Fora+1<j < 2a,

(3.8) J;i2VR---3V eV(y)
e

j—a—1 times

and

(3.9 T-ge = (V- 0V oV0)) V),
a times

where

v=_(ab+b—-1)e + e+ bla+1)
¢ = (2ab+b—2)e; + €2+ €3+ b(2a + 1).

From Corollary 3.7 we see that determining the structure of J_; for j =
a+2,...,2a+1 involves knowing how to decompose the tensor product V®™
of m = j—a—1 copies of the representation V into irreducible G-summands
V(A) and then how to write V() ® V(v) as a sum of irreducible G-modules
for A, v dominant weights. The first step in this analysis is the following

Proposition 3.10. Let V be the g¢(n+1,C)-module V(bA;) = V (be;). Then

vemz N Ky V(A
AFmb
{A)<n+1, m

where {b™} denotes the partition of mb having m parts equal to b, and K smy
is the Kostka number.

Proof. From the Littlewood-Richardson Rule (see for example, the discussion
in [M], [BKMZ2], or [BBL], Chap. 7) we can derive the multiplicity of
the irreducible summand V()) in ®™V as follows: Let A; I b denote the
partition of b having just one part of size b. Associate to A, its frame, which
has just one row with b boxes, and fill in those boxes with “1’s”. Append b
boxes to the frame of A; in such a way that no two lie in the same column
and the result is the frame of some partition A, + 2b. Fill in the adjoined
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boxes with “2’s”. Proceed in this fashion to arrive at a partition A = A,
of mb whose frame has been filled with b “i’s” for 4 = 1,...,m in such a
way that the numbers weakly increase across the rows and strictly increase
down the columns. The result is a “semistandard tableau” of shape A where
A F mb. The tableau’s content is the partition {b™}, as it contains b “i’s”
fori =1,...,m. The number of nonzero parts £()\) of A, which is at most m
by the construction, must not exceed n + 1. By the Littlewood-Richardson
Rule, the multiplicity of V()) in @™V is the number of such semistandard
tableaux, which is the Kostka number K (ym}. O

Theorem 3.11. Let j be an integer such thata+1 < j < 2a+ 1. Assume
@ = _(jao‘FZ?:l kiai) = (jb“k1)€1+(k1—k2)62+‘ : '+(kn—1—kn)€n+knfn+1
s dominant so that o+ 3b. Then

(3.12) dimJ; = dim(J_;),

= { Z ( Z K/\,{bj—“_]}CK,V> Kn,a}

=) AF(j—a—1)b
£(m)<n+1, j—a+1 LA <n+1, j—a—1
- 52a+1,jK¢,aa

where

v={(ab+b—1)e; + e ={ab+b—-1,1} Fab+b

¢=(2ab+b—2)e; + €+ €3 ={2ab+b—2,1°} - 2ab +b.
Proof. Corollary 3.7 gives

J, =2V T V()

fora+1 <5 <2aand
T = (V¥ 8V () [V(9)

where v = (ab+b—1)e, +€; - ab+b and ¢ = (2ab+b—2)e; +€e2+€3 - 2ab+0.
Therefore by Proposition 3.10, we have

1%

J_; > Ky p--13 V() ® V(v),

A-(j—a~1)b
N <nt1, j—a-1

fora+1 < j < 2a, and
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J_(2a+1) = ( Z K,\ {ba}V )\) ®V 1/)) /V

Abab
¢(A)<n+l,a

Now if A F j —a — 1, then since v has two nonzero parts, we have by the
Littlewood-Richardson Rule,

V) eV(v) = > 5, V(m),
wk3jb
£(m)<n+1, j—a+1

where c} , is the Littlewood-Richardson coefficient (see [M] ). Since the
multiplicity of @ in V() is the Kostka number K, ,, the assertions in (3.12)
follow. 0

Remark. For A  m, the Kostka number K {;»} is just the number of
standard tableaux (strictly increasing along each row and column) of shape
X with entries in {1,...,m}. That number equals m!/h()\) where h(}\) is the
hook length of the partition A. Thus, (3.12) in the case that b = 1 is just
(4.11) of BKM2].

Now we need to compute the multiplicity dim ¥, of « in the free part.
Recall that the weights of V' are

Wt={m161+---+mn+1en+1 ImiZOandml—f----—i—mnH =b},

and each weight has multiplicity one. As a consequence of Proposition 1.6
we have:

Proposition 3.13. Assume a = —(joo + Y iy ki) = (jb — k1)er + (k1 —
ky)ea + -+ + (kn—1 — kn)én + kn€nyy is dominant so that ot jb. Let

Wt={mie + - +mMpp1€np1 | m; 20 andm; + - + m,yy = b}

denote the set of weights of V(be;), and let Wt = {w,,ws,...} be an enu-
meration of those weights. Then

(3.14) dim F; Zu( ) (w)

wla

where p1 denotes the classical Mébius function; w | a if & = kw for some



390 G. BENKART, S-J KANG & K.C. MISRA

positive integer K, in which case £ =k and % = %; and

(2 t:) = 1)!
(3.15) D(w) = N A
(t)EZT(w) [L(t:)

where T(w) = {(t) = (t1,t,...) | t: € Z2% and Y, tiw; = w}.

We close this section by applying the multiplicity formulas derived in this
section to calculate root multiplicities for the algebras I A,(2,2) with n > 3.
In particular, for IA3(2,2) we compute the multiplicities of the dominant
roots @ = —(jap + kiay + koas + kzaz) = 616, + Os65 + O3€3 + O4€4 where
7 =2,3,4,5 = 2a + 1. We explicitly exhibit the calculations for one choice
of a for each value j = 3,4,5 and then display the remainder in the tables
below. It follows from ([BKMz2], Prop. 4.12) that the multiplicity of such
roots « is the same for all algebras IA4,(2,2) with n > 3.

To avoid cumbersome notation we adopt the shorthand for the dominant
root which illustrates its parts as a partition. Thus, we write {4, 1%} for the
root a = —(3ap + 2a; + ay) = 4€; + €3 + €3. For the algebra I A;3(2,2) we
have V = V(2¢,) = V({2}) and ap = —2¢;, and the weights of V are

Wt = {2€,€ + €,2€,€; + €3,€2 + €3,2€3,€1 + €4, €2 + €4, €3 + €4,2€4 }.

Recall by (3.3) that J~ is generated by J_3 = V(v) = V(e + €) =
V({5,1}). Then by (3.8) and (3.9) and the Littlewood-Richardson rule (see
[BKM2] or [BBL], Chap. 7),

T2V e V) =V({2)eV({51})
=V({7,1}) ® V({6,2}) ® V({6,1*}) ® V({5,3}) ® V({5,2,1}),

Js (V RV ® V(V)) /V(<f>)

= (vizn s v o v(is1h) /vis 1)

~V({9,1}) ®2V({8,2}) ® V({8,1%})

®3V({7,3}) @4V({7,2,1}) ® V({7,1%})

® 2V ({6,4}) ® 4V ({6,3,1})

® 2V ({6,2}) ® 2V ({6,2,1%}) ® V({5,5})

®2V({5,4,1}) ® 2V ({5,3,2}) ® V({5,3,1%}) ® V ({5, 2%,1}).
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Example 1. Consider the root & = —(3ap+2a;+a;) = 46, +ea+e3 = {4,1%}
for I A3(2,2). Then

a=4€ + €+ €3
= (261) + (2€1) + (€2 + €3)
= (2€¢;) + (€1 + €3) + (€1 + €3)

so that by (3.14)

dimF, = 2! ot 2—' = 3.
1
Now dim J; = dim (J_3), = dim V{ {5, 1})o = K51}, = 2 by Table 9.12
of [BBL). Therefore dim £, =3 -2 =1.
Example 2. Let a = —(4ap + 3a; + a3) = 5¢; + 2¢; + €3 = {5,2,1} for
IA5(2,2). Then

a = 5¢; + 263 + €3
= (2e1) + (2€1) + (€1 + €2) + (€2 + €3)
= (2€;) + (2€1) + (2€2) + (€1 + €3)
= (261) + (€1 + €2) + (€1 + €3) + (€1 + €3)

and by (3.14)

] 1 1
dimF, = > +%+%=9.

Since dim J,; = dim (Jog)a = K{7,1},a + K{ﬁ,z},a + K{6,12},a + K{5,3},a +
Kio13a=2+2+14+141, we have dim £, = 9 — 7 = 2. (We have used
the fact (see for example [S], Chap. 2) that K, , represents the number of
semistandard tableaux of shape n and content «a to evaluate K, ,.)
Example 3. In this final example assume a = —(5ap + 4a; + a,) = b¢; +
3es + €3 = {6,3,1} for IA3(2,2). Then

a = b€, + 3e; + €3
= (261) + (261) + (2€1) + (2€2) + (€2 + €3)
= (261) + (261) + (&1 + €2) + (&1 + €2) + (e2 + €3)
= (261) + (261) + (&1 + €2) + (2€2) + (€1 + €3)
= (2€;) + (€1 + €2) + (€1 + €2) + (&1 + €2) + (€1 + €3)
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and from (3.14) we obtain,

. ___4! 4! 4! 4!__
dlm]:a —-3—!-+§E!-+§-!'+§—26.

By our calculations above

dim J; =dim (J_5)a = K{9,1}.0 + 2K(8,2},0 + K(3,12},0 + 3K{(7.3},0
+4K(72.1},0 + Ki7,18},0 + 2K(6,4},0 + 4K (6,3,1},a
+ 2K{6,22},a + 2K{6,2,12},a + K{5’5},a + 2K{5’4’1},a
+2K(532),0 + Ki5312),0 + K(5,22,1},a
=24+44+14+6+4+0+2+4
+0+0+0+0+0+0+0
= 23,

so that dim £, =26 — 23 = 3.

Root Multiplicities in IA,(2,2) for n > 3.

Dominant
Roots: a |deg(e)|dim F; |dim J; |dim £
(3,1} | -2 1 0 1
{22} | -2 1 0 1
(2,12} | -2 2 0 2
14 | -2 3 0 3
{42} | -3 2 1 1
(32} | -3 2 1 1
{4,12} | -3 3 2 1
(3,2,1} | -3 5 2 3
{22y | -3 7 2 5
(3,13} | -3 8 3 5
{22,12} | -3 11 3 8
(5,3} | -4 4 3 1
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Root Multiplicities in IA,(2,2) for n > 3.

Dominant
Roots: o |deg(a) |dim F, |dim J; |dim £
{42} | -4 4 3 1
(5,2,1} | —4 9 7 2
{4,3,1} —4 13 8 5
(4,22} | —4 17 10 7
(32,2 | -4 22 11 11
(5,13} | —4 15 12 3
{4,212} | -4 30 17 13
(32,12} | —4 31 18 13
{3,221} | —4 48 22 26
24y | -4 69 27 42
(6,4 | -5 9 8 1
(52} | -5 10 9 1
6,31} | -5 26 23 3
(6,22} | -5 36 31 5
{(5,4,1} | -5 35 28 7
(5,3,2} | -5 60 45 15
42,2y | -5 71 49 22
{4,3°} | -5 88 58 30
{6,2,12} | -5 62 42 20
{5,3,1%} -5 104 77 27
{5,221} | -5 | 138 103 35
{4% 1%} ) 111 84 27
{4,3,2,1} | -5 | 158 131 27
{4,2%} ) 282 169 113
{3%1} ) 240 150 90
{3%,2%} i) 366 195 171
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Remarks. Any partition in the table having only 2 nonzero parts corre-
sponds to a root —(koap + k104), which is a root for all algebras IA,(2,2)
with n > 1. By ([BKM2], Prop. 4.12) its multiplicity in [A4,(2,2) for all
n > 1 is the same as its multiplicity in 1A,(2,2). The algebra I4,(2,2) is
just the affine algebra A{" and all roots for A have multiplicity one ([Kac],
Cor. 7.4), so all partitions with 2 nonzero parts have multiplicity one. Any
partition 8 = {6, > 6, > 6; > 0} with 3 nonzero parts corresponds to a root
—(koao + k10 + kaaz), where 0, = 2ko — ki, 02 = ky — k3 and 65 = k,. The
multiplicity of 6 in TA,(2,2) for n > 2 is the same as in TA,(2,2), which is
the hyperbolic Kac-Moody algebra H Agl) studied by Feingold and Frenkel
[FF] and by Kang [Kan1] [Kan2]. Assume

ki —ky ks 1/2(6, + 65 — 6;) 0, '

Then whenever « is conjugate under the Weyl group to a root having a,-
coefficient equal to —1 or 1, its multiplicity is given by p(det(I'(e)) + 1)
where p(-) is the classical partition function (see [FF), p. 117). All the
partitions with 3 nonzero parts in the table have such expressions for their
multiplicities.

4. Root Multiplicity Formulas.

In this final section we apply the Euler-Poincaré Principle (see [CE]) and the
extension of Kostant’s formula given in [GL] to derive two root multiplicity
formulas, one of which is recursive and the other closed form, for the algebra
IA,(a,b) = L= L(G,V,V*¢). Since dimL, = dim £L_, for any root ¢, it
suffices to determine dim £, = dim £ for & = —(jao + Y i, kic;). Needed
in the argument is the construction of the homology H,(L~) = H,(£L~,C)
with coefficients in the trivial £L~-module C.

Consider the complex (A*(L7),d.):
oo AR (L) B k(L) by ARST(pmy Sop
5 AYLT) 25 A(L7) 2 € — (0),

where d;, is defined by
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di(zy Az A -+ A xy)

= Y (D)@ ml AT A AB A AT A A ).
1<s<t<k

Then for all k > 0, Hy (L) = (Ker di)/(Im diy1)-

By the Euler-Poincaré Principle we have,

(4.1) i kch (A% (L7) f: —1)*ch (H(L7)),

where for any completely reducible G-module M = & ) M, the formal
AeH
character is, by definition, the sum

ch(M) = ) (dim M,)e(}).
AEH®
Ifa=—(jag + X, ki;) is a root with j > 2, (the case j = 1 corresponds
to the weights of V' which have multiplicity one), then since Ho(L™) = C
and H,(L7) 2 L7 /[L~,L7] = L_; =V, it follows from (4.1) that

(4.2) dim £; =dim(L_;)a

= io:(—l)’c dim A¥(L7), ~ i(—l)’“ dim Hp(L ),-

If K > j, any weight of AF(L~) has degree < —k < —j. Hence
dim A*(L7), = 0, as dega = —j. Therefore for k > j, dim Hy(L )o =
dim (Ker d;), — dim (Im di;;)s = 0. Consequently, the sum on the right
hand side of (4.2) reduces to

(4.3) dim£;=i( 1) dim AF(L ZJ: ~1)* dim Hy (L7 ),.

k=2 k=2
Kostant’s formula (3.5) gives
dimHy(L™)o = Y. dimV(wp — p)a,

wew’
W(w)=k
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where V(wp — p)o = 0 unless deg(wp — p) = —j = deg(a). If deg(wp — p) =
—j, then dimV(wp — p)o = dimV(wp — p)g = Ky,—pz, Where @ is the
unique dominant weight conjugate to o, and K,,,_, 7 is the Kostka number.
For convenience, let K, ,, = dimV(wp — p)a = Kyp—pz. Thus,

(4.4) dmHy(L7)a= Y.  Kuppa

weW"
I(w)=k

deg(wp—p)=—j

We also make use of the following total order defined on the root lattice
of L. Ifa =616, + -+ 016041 and B = (165 + - -+ + Cpy1€n41, then we
say a < G iff 04 6; < Z"Jrll sor M0, = Pt ¢ and 6; < (; for some
i and 6, = (, for i < s < n+ 1. Then equations (4.3) and (4.4) combine to
give the following recursive formula for the root multiplicities.

Theorem 4.5. Let IA,(a,b) = L = L(G,V,V*,4), and for any root B of
L™, let mg=dimLy;. If a=—(jao + Xi-; ki) for some j > 2, then

J
dimL, = dimf; =3 (-1)F 3 (mﬂl) (m,,)
k=2 B1< - <Br b Dr

p1+-+pr=k
P11+ +prfr=a

2.0 Y Kuppe

k=2 wew'’
I(w)=k

deg(wp—p)=—j

Next we present an example to illustrate how this recursive formula can
be applied in an actual root multiplicity computation.
Example 4.6. Once again we assume the algebra is of type 1A43(2,2), and
we let o = — (6 + 60y + 205 + a3) = 6€; +4es + €3 + €4 = {6,4,1%}. (This
is a root whose multiplicity cannot be computed using the results of Section
3 because its degree —j = —6 satisfies j > 2a + 1 = 5.) Then by (4.3),

dim £, = dim £
= dimA%*(L7), — dimA3(L7)q + dim A*(L7), — dim A (L7),
+dimA%(L7)q — dim Hy (L7 ) o + dim H3(L7),
—dim Hy(L ) + dim Hs (L), — dim Hg(L7 )4
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Now dimA¥(L7), = dim{z; Ao A~ Az | 2 € Ly 11+ -+ 13 =
6; wt(z1) + -+ + wi(zx) = a}, and we can use the tables in the previous
section to compute these dimensions. As a result we obtain

dimA2(L7), = 225
dim A*(L7), = 251
dim A*(L7), = 102
dim A3 (L), =15
dimA%(L7), = 0.

For the homology portion, Kostant’s formula (3.5) and Lemma 3.4 give:

Hy(L7)= > V(wp—p)=V(sos1p—p)

wew!’
I(w)=2

=V(-3a — ;) = V({5,1})
H3(L7) = Z V{(wp ~ p) = V(s08180p — p) ® V(5081820 — p)

wew!’
{w)=3

=V (—6ay — 3a1) ® V(-5 — 2a; — a3)
=V({9,3}) ® V({8,1°})
Hy(L7) = Z V(wp = p) = V((s081)°p — p) & V(505152530 ~ p)

weW/’
H{w)=4

=V (-10ap — 601) & V(—Tap — 3a; — 202 — 3)
=V ({14,6}) ® V({11,1%})
Hy(L7)= Y V(wp—p) = V((s051)’50p — p) ® V(50515051520 — p)

wew’
H(w)=5

=V (-15ap — 10a;) ® V(-8 — 41 — xa)
=V ({20,10}) ® V({12,3,1})
He(L™)= Y V(wp-p)

wewW’
I{w)=6

= V((s051)°’0 — p) ® V((5051)*5253p — p) ® V((5051)*52810 — p)

=V (-21lay — 150;) ® V(—18a — 120y — 205 — a3)
®V(—18ap — 11a; — 2a3)

= V({27,15}) @ V({24,10,1%}) ® V({25,9,2}).
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From this we see that dim H (L), = 0 except when k = 3 where
dim H3(£)a = dim V({9,3})a = Kp3).0 = 4.

Thus,
dim £, =dim £ = 225 — 251 + 102 — 15 + 4 = 65.

With the Euler-Poincaré Principle as a guide, we define M to be the
following formal alternating direct sum of finite dimensional modules for

=gl(n+1,C):

(=1 H(L7)

M

(4.7 M

k=1

I
[\,ﬂs

—1)F N V(wp - p)
1 wew’
H(w)=k

= 2 () V(wp - p).
weWw!

x~
|

Then for @ = —(jao + Y1, ki), we set

(4.8) dmM,= Y (-)'™FK,_ .,

wew'’
(w)<i

deg(wp—p)=—j

and define the formal character of M to be

(4.9) ch(M) = (dim M,)e(a).

It may be that dim M, is nonpositive for certain values of a. Let 7p, 72, ...
be an enumeration of the weights in {a | dim M,, # 0} compatible with the
total ordering on the root lattice of L~ given above, and for 7 define

(4.10) T(r) = {; = (t,ts,...) | €22°, ) tim; = 'r}

and

(4.11) =y & t(l ; D! (dim M,
teT(7) i
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Then we have

Theorem 4.12. For any root @ = —(jop + Y1, kic;) of A, (a,b) = L =
L(G,V,V*,9),

dimL, = dim£; =Y p (9‘-) ZB(r)
Tla T] O

- ,,(g)g_ v (Et) 1!

teT(7) Hz(t‘lr!)

Tla
t;
o H ( Z (—1)l(w)+lep——p,-r‘-) ,
i wew’

I(w)<—deg(r;)
deg(wp—p)=degr;

where p denotes the classical Mébius function.

Proof. Since

So-1feh (A (£) = T (1= e(@)¥nss,

it follows from (4.1) that

II 1-e(a)®™* =1—ch(M).

aGA;o

Thus,

dim £ 1 . -
H (1—e(a) 9mF = T = (1 - ;(dlmMr‘.)e(Ti)) .

aeA;o

Now taking the formal logarithm of both sides and using the series expansion
log(1 — 2) = — Y12, 2, we obtain

~ Y @imLD)log(l - efe)) = 3 %(i(dimMT,.)e(n-)) .

QEA;O m=1 i=1

Hence,
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N w1 (T, t:) — 1)!
a;f (dim L) k§=:1 Ee(ka) = mX::l -~ t%) ————————Hi(ti!)
. m—:Zi ti

Comparison of the coefficient of e(7) on both sides gives

B(r) = Z dim L.

a|‘r

Therefore, by Mdbius inversion we obtain

dim £ ZM( )53(7)

Tla

as desired. The rest comes from substituting the expression in (4.8). t

To illustrate the result in Theorem 4.12 we calculate the multiplicity of
o = —(bag +4a; +az) = 6€; +3€; + €3 using it. This multiplicity has already
been computed in Example 3 of Section 3 by the methods of that section.

The Weyl group of G = g4(n + 1,C) is the symmetric group W = 5,41,
which acts on the weights by sending 8 = 374! ¢, to 377 6,€,,; for w € W.
Thus, each weight 6 is conjugate to a unique dominant weight § whose
coefficients relative to the basis €;, €3, .. ., €,41 are in descending order, hence
form a partition. If V/(A) is the finite dimensional irreducible G-module with
highest weight A, then for any weight 6 of V(}), dimV()); = K, 3, the
Kostka number.

Example 4.13. Let @ = —(5ap + 4a; + az) = 6e; + 3ea + €3 for TA;(2,2).
First observe that since the coefficient of o, is —1, the expression in Theorem
4.12 reduces to

. N ((it:) — 1)
(4.14) dimL, =dimL, = B(a) = = (dim M, )
LGTZ(OL) Hz(tl) Izl
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where T'(a) = {t = (t;) | t; € Z=°, Y ,t;7; = @} and {7}, 72,...} is an
enumeration of the weights of M = 377 (=1)¥*' H,(L~). Now by the same
arguments as in Example 4.6 we see that the terms H (L) for ¥ > 3 do not
contribute to the multiplicity of « since their weights have degree less than
deg(a) = —5. Recall from Example 4.6 that

H\(L7) =V(-a0) =V (2e) =V ({2})

Hy(L7) =V (-3ap — 1) = V({5,1})

H3;(L7) =V (—6ap — 301) ® V(—bap — 2a; — )
=V({9,3}) @ V({8,1*}).

<<1

Again from degree considerations, the only modules which can contribute to
(4.14) are V({2}), V({5,1}), and V({8,1%}). The dominant weights of these
9¢(4)-modules and their multiplicities are displayed below:

iz 2 1
{5 1} {4 2 {61} {7} 321 {3, 0} 22 2)

V({51 : 1 2 2 3 3
vis.12)) (8 112} 21) {7313} (6,31} 6,2 {6 2;)12}
{5,4,1} {5,3,2} {5,3,12} {5,22,1} {42,2} {42,12}
1 1 3 3 1 3
{4,3°} {4,3,2,1} {4,2°} {3°,1} {3%,2}
1 3 3 3 3

These multiplicities can be computed by determining the corresponding
Kostka numbers. For {2} and {5,1} these Kostka numbers can be found
in [M] or ([BBL], Table (9.12)). Alternately, the multiplicities can be got-
ten by converting the weight to a linear combination of fundamental weights
and then by consulting the appropriate table for A3 in [BMP]. The other
nondominant weights can be obtained from these by applying permutations.
Note that since

M =H,(L7) - Hy(LT) + Hs(LT) — -+,

for a weight 7 of H,(L~) we have dim M, = —dimV ({5,1}), = —K{s51}7
where 7 is the unique dominant conjugate of 7. Keeping this in mind, we
proceed with evaluating (4.14). Now the partitions of ¢ in terms of all the
weights of M are:
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a = (66, + 3e; + €3)
= (5€, + €) + (€1 + €2) + (€2 + €3)
= (561 + €2) + (2€2) + (e1 + €3)
= (5€1 + €3) + (e1 + €2) + (2¢€2)
= (4€; + 2€3) + (2€;) + (€2 + €3)
= (4€; + 2€3) + (€1 + €2) + (€1 + €3)
= (4e; + €2 + €3) + 2(€; + €2)
= (3e1 + 3€2) + (2€1) + (€1 + €3)
= (3€e1 + 22 + €3) + (2¢1) + (€1 + €2)
= (261 + 3€; + €3) + 2(2€1)
3(261) + (2€2) + (€2 + €3)
= 2(2¢1) + 2(e1 + €3) + (2€2) + (&1 + €3)
= (2¢;) + 3(€1 + €2) + (&1 + €3).

Hence,
dim £ = B(a)
_1+1,—1,1—,( 1)(1)@ )+1,1,1,( 1)1)(1) + 1'3,1,( 1(1)(1)
o (DM + (-1 )(1)1,1.1,( (1))
2 (D) + o (1) )(1)1,1,1,< W)
+%( >(>+3.f:1.<1><1>( 2,2.1,(1)(1)()
4

—1-2-92-2-2-2-4-2-2-4-2+4+6+12+4
=3.

Concluding Remarks. The results of this paper pertain to the algebras
IA,(a,b), but the methods for obtaining the recursive and closed form for-
mulas work in general. The only place where the particular nature of the
algebra I A,(a,b) is used is in evaluating the multiplicities in terms of Kostka
numbers.

Although the examples presented are for the indefinite algebra I A3(2,2),
the multiplicities of the roots computed are the same for all algebras I A,(2,2)
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with n > 3 and for the analogous algebras IB,,(2,2), IC,1(2,2), and
ID.,41(2,2) with n > 3 (See [BKMZ2], Sections 4 and 5.). These algebras
are constructed by replacing the Cartan matrix C(A4,) with the Cartan ma-
trix corresponding to the simple Lie algebra of type B, 1, Crnq1 OF Dpy;.
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