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Let G and H be two locally compact groups acting on a
C*-algebra A by commuting actions A and . We construct
an action on A x, G out of 0 and a unitary cocycle u. For A
commutative, and free and proper actions A and o, we show
that if the roles of A and ¢ are reversed, and u is replaced by
u*, then the corresponding generalized fixed-point algebras,
in the sense of Rieffel, are strong-Morita equivalent. This
fact turns out to be a generalization of Green’s result on the
strong-Morita equivalence of the algebras Co(M/H) x) G and
Co(M/G) x, H. Finally, we use the Morita equivalence men-
tioned above to compute the K-theory of quantum Heisenberg
manifolds.

Introduction.

Given two commuting actions A and o of locally compact groups G and H,
respectively, on a C*-algebra A, we study the action v** of H on A X, G
defined by

(72"*®@) (z) = u(z, h)on(®(z)),

where ® € C.(G,A), h € H, z € G, u(z, h) is a unitary element of the center
of the multiplier algebra of A, and u satisfies the cocycle conditions

u(21Z3, h) = u(z1, h)Ag, (u(z2, b)) and u(z, hyhs) = ul(z, hy)oy, (u(z, hs)).

The study of this situation was originally motivated by the example of quan-
tum Heisenberg manifolds ([Rf5]), which can be described as the generalized
fixed-point algebras ([Rf4]) of actions of this form, when A = Cy(R x T),
and G=H = 7Z.

This work is organized as follows. In Section 1 we define the action y**
and show that for G and H second countable, and A separable, the crossed
product A X, G X, H is isomorphic to a certain twisted crossed product
of the algebra A by the group G x H.

In Section 2 we assume that the algebra A is commutative and show
that for free and proper actions X and o, the generalized fixed-point algebra
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of A x5 G under y** and that of A x, H under y»* are strong-Morita
equivalent.

In Section 3 we apply these results to show that the K-groups of the
quantum Heisenberg manifolds do not depend on the deformation constant.
This enables us to compute them, by calculating them in the commutative
case.

In what follows, for a C*-algebra A, M(A) denotes its multiplier algebra,
Z(A) its center, and U(A) the group of unitary elements in A. All actions
of locally compact groups on C*-algebras are assumed to be strongly con-
tinuous. All integrations on a group G are with respect to a fixed left Haar
measure pg with modular function Ag.

1. Actions on crossed products.

For locally compact groups G and H acting on a C*-algebra A by commuting
actions A and o, respectively, and a cocycle on G x H, we define an action
v>* of H on A x5 G. We show in Proposition 1.3 that, when A is separable,
and G and H are second-countable, the crossed product A x) G X0« H is
a twisted crossed product of A by G x H.

Proposition 1.1. Let G be a group acting on a C*-algebra A by an action
A, and let v : G = UZM(A) verify the cocycle condition

v(zy) = v(z) A (v(y))-

Let 0 € Aut(A) commute with X, and, for ® € C.(G, A), define

(v ®)(z) = v(z)o(2(z)).

Then v** extends to an automorphism on A x, G.

Proof. Let (I, V) be a covariant representation of the C*-dynamical system
C*(G, A, )\) on a Hilbert space H, and let IT x U denote its integrated form.
Let II° denote the representation of A on H defined by II° (a) = II(o(a)),
and let V be the unitary representation of G on H given by V, = I(v(z))Vx,
where II also denotes its extension to M. Then (II°, V) is a covariant rep-
resentation of C*(G, A, A\): for z € G, and a € A we have

VoI (@) V1 = TH(0(2)VaTT(o (@) T(o(z ™) Va-s
@) (@) Vell(v(z™)Ver
(v(z))I(o Az (a)) T A v(z™1)) = II7 (A, (a)).

II
II
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We now show that for @ in C.(G, A) we have that (IT x V)(y"*®)
= (I1° x V)(®), which ends the proof: for any £ in #, we have

(T x V)(°"®)] /H[ (v ®)(2)]V,édz
= [ De@)Ne@E)V.tde
= [ e@)V.cds = (@7 x V)(@)(©)
O
Proposition 1.2. Assume that G, X\, and A are as in Proposition 1.1

and that H is a locally compact group acting on A by an action o commuting
with X. Let
u:Gx H->UZM(A)

be continuous for the strict topology in M(A), and satisfy
u(zy, h) = u(z, h) A, u(y,h) and u(z,hg) = u(z,h)oru(z,g),
forz,y € G and h,g € H. For h € H and ® € C.(G, A), let
(72"“®@) (z) = u(z, h)ox(®(z)).
Then h > v, is a (strongly continuous) action of H on A x, G.
Proof. By Proposition 1.1 we have that ;" € Aut(A Xy G), for all h €

H. Besides, the cocycle condition 1mphes that Vi () = Vi vp @ ().
Finally, h — «;“® is continuous for any ® € C.(G, A):

[ve @ - U(I)“AXAG < [lyaee - 'YZOH(I)HLI(G A)

- /G u(z, h)on (®(3)) — u(®, ho)one (@(z)) 4 d <

< /suppm lon(®(z)) — one (@(2))]l 4

+ | (u(z, h) — u(z, ho))on, (B(2))l| 4 dz,

which converges to 0 when h goes to hg, because u is continuous, and o is
strongly continuous. |

Next Proposition shows that the double crossed product A x, G X0« H is
isomorphic to a twisted crossed product. Since twisted crossed products are
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defined for separable algebras and second-countable groups, we add these
conditions.

Proposition 1.3. LetG, H, A, u, A\, 0 and y** be as in Proposition 1.2.
If A is separable and H and G are second-countable, then A X\ G X o« H is
isomorphic to the twisted crossed product A X, v (G x H), where

(’\70)(z,h)(a) = Aon(a) and U((zo,ho), (71, 1)) = Ag, (u(1, ho))-

Proof. First notice that ((A\,0),U) is a twisted action of G x H on A:
conditions a), b) and c) in [PR, Def. 2.1] are easily checked, and, for (2, ho),
(1,h1), and (z2, h2) in G x H, we have

(A 0)(z0,h0) [U (21, 1), (%2, B2))]U (%0, ho), (Z1Z2, h1h2))
= AgoOho Az, (U(Z2, h1)) Mgy (u(2122, ho))
= Aaoz, (u(T2; hoh1)) Ac, (u(z1, ho)
= U((zoZ1, hohy), (22, h2))U (2o, ho), (1, h1))-
We now construct maps

ZA-AHM(A XI\GX—Y:r.u H)

and
'tiH . G X H"")L{M(A X)\G X,le.u H)

satisfying
iA((/\a U)(z,h) (a‘)) = tiH(xv h)"'A (a)tiH(ma h')* and

iaxH (Zo, ho)igxr (T1,h1) = i4(U((20, ho), (1, h1)))iexu (ZoZ1, hoh1),

for all z; € G, h; € H, and a € A.

If « is an action of a group K on a C*-algebra B, b € M(B), and p is a
bounded complex Radon measure with compact support on G, , let M (b, 1)
denote the multiplier of B x, K defined by

(M (b, ) f)(t) = b / o (F(571))du(s),

for f € C.(K, B).
Now define

iA(a) =M(M(a,6lc),61,,) and ’tiH(IE,h) =M(M(1A,6z),5h),
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where é; denotes the point mass at .
For f € C.(G x H, A), explicit formulas are given by:

(ia(a)f)(z,h) = af(z, h),and
(i (2o, ho) f)(, h) = " (20, ho)u(®, ho) Ao, (f (25 @, by ' ).
It follows that
(%1 (To0, ho) £) (@, h) = u(a, h5")o-1 M1 (f (20, hoh).
The pair (i, igxs) is covariant:
(tax# (Zo, ho)1a(0)iGx i (o, ho) f) (2, h)
= u* (o, ho)u(®, ho) Aagh, [0t (522, h5) i Ay (f (2, 1) |
= (14(Azo0no(a)) ) (2, h),

and
(ixu(Zo, ho)igxu (1, h1))(z, )

= u*(xo, ho)u(z, ho)
“AzoOho [U (1, ha)u (2572, i) Agyon, (f (2725 2, by hg b))
= Awou(xl) hO)U* (.'130.’131, hOhl)u($7 hOhl))‘ﬁomlahohl (f ("Lli_lzo_lm’ hl—lho_lh))
= U((%yho), (371, hl))’tiH((xol‘l,hohl)f)(l‘,y)-

We next show that for any covariant representation (II, V') of
(A,G x H,(\,0),U)

on a Hilbert space H there is an integrated form II x V on A X, G X0« H.
Let Vi and Vy be the restrictions of V' to G and H, respectively. Then
(I1, V) is a covariant representation of (4, G, A) and, if IT x V; denotes its
integrated form, then (II x Vi, V) is a covariant representation of (A X,
G,H,v"*). So Il x Vg x Vg is a non-degenerate representation of A x,
G Xyon H and

H:HXVGXVHOiAandV=HXVGXVHOtiH.

Finally, the set {is X igxu(f) : f € L' (G x H, A)}, where

ia % igen (/o) = |

COxH iA[f(.’E, h)]tiH(-’E’ h)d(x,y)
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is a dense subspace of A x, G X...« H, which ends the proof. O

Remark 1.4.  Iain Raeburn pointed out to me how a simple proof of a
weaker version of Theorem 2.12 can be obtained by using Proposition 1.3.
If in Proposition 1.3 the roles of A and o are reversed and u is replaced by
u”, then we have that A x, H x.»..» G is isomorphic to the twisted crossed
product A X(».),w (G x H), where W ((zo, ho), (1, h1)) = on,(u* (20, h1)).

Now, a straightforward computation shows that the twisted actions
((A,0),U) and ((A,0), W) of G x H on A are exterior equivalent ([PR, 3.1]),
the equivalence being implemented by the cocycle u.

Thus, under the assumptions of Proposition 1.3 the algebras

A X/\ G Xfya,u H

and
AX, H X pur G

are isomorphic ([PR, 3.3]). This proves Theorem 2.12 when A is separable
and G and H are amenable second countable groups.

2. The generalized fixed-point algebras.

With the example of quantum Heisenberg manifolds in mind, we now discuss
the situation described in Section 1 in the case of some particular actions
A and o on a commutative C*-algebra Cy(M). We prove that if the action
o is proper, then so is v”* (in the sense of [Rf4]), and that if o is also
free then y7* is saturated ([Rf4]). Besides, for A and o free and proper,
the generalized fixed-point algebras under ¥%* and y»*  respectively are
strong-Morita equivalent.

More specifically, we show that the space C.(M) can be made into a
dense submodule of an equivalence bimodule for the generalized fixed-point
algebras. Part of this is done by adapting to our situation the techniques of
[Rf3, Situation 10].

Assumptions and notation. Throughout this section M denotes a locally
compact Hausdorff space, and SM its Stone-Cech compactification. The
groups G and H act on M by commuting actions A and o, respectively. In
this context, if 7' denotes the unit circle, the cocycle u of Section 1 consists
of continuous functions u(z,h) : M — T, for (z,h) € G x H, such that, for
any f € Co(M) the map (z,h) — u(z,h)f is continuous for the supremum
norm. As in Section 1 we require the cocycle conditions:

u(z1za, h) = u(zy, h) A, u(ze, h) and u(z,hihs) = u(z, hy)oy, u(z, ha),
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for z,z; € G and h,h; € H. Notice that if these conditions are satisfied for
u they also hold for u*. We denote by v* and y»*" the actions of H and G
on Cy(M) x, G and Cy(M) x, H respectively, as defined in Proposition 1.2.

Proposition 2.1. In the notation above, if o is proper, so is the ac-
tion v of H on Co(M) x, G. The generalized fized-point algebra D°* of
Co(M) x» G under y>* consists of the closure in M(Co(M) x) G) of the
linear span of the set {P, ,(E**F): E,F € C,(M xG)}, where P, denotes
the linear map P, , : Co(M x G) = M(Co(M) x, G) defined by

(Pyu(F)) (m, ) = /H (Y (F))(m, z)dh,

for F € C.(M x G), and (m,z) € M xG.

Furthermore, P, , satisfies

1) Pcr,u(F*) = Pa,u(F)*'

ii) P, ,(F) >0, for F > 0, where F' and P, ,(F) are viewed as elements
of M(Co(M) x G).

i) P, (F*x®) =P, ,(F)*x® and P, ,(?* F) = &+ P, ,(F),
for any ® € M(Cy(M) x5 G) carrying C.(M x G) into itself and such that
Y (®) =D for any h € H.

Proof. We check conditions 1) and 2) of [Rf4, Def. 1.2]. Let B = C.(M x Q).
Then B is a dense *-subalgebra of Co(M) x, G, and it is invariant under

,Ya,u.
We now show that, for E,F € B, the map h — E * v, “(F*) is in
L'(H,Cy(M) x, G). For (m,z) € M x G we have

[E v (F7)] (m, )
= / E(m,y) [u(y™'z,h)] Ay-1m)F (Ag-10p-1m,z7'y) Ag(z ' y)dy.
G
Since o is proper and supp(E) and supp(F') are compact, then the set
{h € H: op-12,-1m € suppy,(F)

for (m,z) € supp,,(E) x suppg(E)suppg(F) "}

is compact. Therefore h — E =, “(F*) and h — AF*(R)E « v (F*) are
in C.(H,B) C L*(H, M(Co(M) x» G)). .

For F € B and my € M, let N be a neighborhood of mg with compact
closure. Then there exists a compact set K in H such that

Pou(F)m,z) = [ (7F) (m,2)d,
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for all (m,z) € N x G, which shows that P, ,(F) is continuous. Since
suppq (P . (F)) is compact, then P, (F) is bounded on supp,,(F) x G.
Besides, for all (m,z) € M x G and h € H, we have |P, F(m,z)| =
(P, F(0m, @), and supp g (Py.o(F)) C 0(5uppy (F)).

Therefore P, ,(F) € C.(BM xG) C M(Co(M) x,G), and, as a multiplier,
P, . (F) carries B into itself.

Notice now that the fact that A — E x;"“(F) is in L*(H, Co(M) x5 G)
implies that the integral [, v, “(F)dh makes sense as an integral in the
completion of M(Cy(M) x, G), viewed as a locally convex linear space, for
the topology induced by the set of seminorms {|| || : F € B}, where

@l = |F * ‘I)HCU(M)XAG +[|® * F“CD(M)XAG

for @ € M(Co(M) x5 G).
A straightforward application of Fubini’s theorem shows that

| (B A7 (P) m,2)dh = (B Py (F))(m, )
for any E, F € B, (m,z) € M x G, and it follows that
[ A (F)ah = Pr(F),

in the sense mentioned above.

Also, since the positive cone is closed, and involution and the extension
of v7* are continuous for the topology of M(Cy(M) X, G) defined above,
P, , satisfies 1), ii), and iii) stated above.

Set now (E,F), = P, ,(E** F), for E, F € B. We have shown that
%% is proper. The generalized fixed-point algebra D7* ([Rf4, Def.1.4]) of
Co(M) x5 G under y* consists of the closure in M(Cy(M) %, G) of the
linear span of the set {(E, F), : E, F € B}. O

Lemma 2.2. Assume that o is proper and let {®n .k} be a net in
C.(M x G x H), indexed by decreasing neighborhoods N of 1gxn, decreasing
€ > 0, and increasing compact subsets K of M, satisfying

1) suppgyu(®nex) CN
i) | for g ®nex(m,z,h)dzdh — 1| <, for allm € K

iii) There ezists a real number R such that

/ @ . x(m,z, h)|dedh < R,
GxH
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for allm € K, and for all K, € and N.
Then {®n .k} is an approzimate identity for C.(M x G x H) C
Co(M) x5 G Xon H in the inductive limit topology.

Proof. Let ¢ € C.(M x G x H) and § > 0 be given. Then
’((I)N,E,K * U — \II)(m,x,h)l

< '/ [u*(y, k)(m)u(z, k)(m) — 1]

HxG

QN,G,K(ma Y, k)\I, (o'k:-l )\y-l m, y_lzv, k'_lh) dkdy
+ '/ QN,e,K(m, Y, k)dydk -1 I\Il(m, z, h)l

HxG

+ l/ Dy x(m,y, k) [¥ (o1 Ay-1im,y 'z, k™ h) — ¥(m, z, h)] dydk
HxG
<4,
for appropriate choices of € and N. Ol

Proposition 2.3.  If the action o is free and proper, then v”* is saturated.

Proof. Let J denote the ideal of C*(H,Cyo(M X, G)) consisting of maps
b AR*(R)E x 40 (F*), for E,F € C,(M x G). In order to show that
J is dense in C*(H,Co(M) x, G) we prove that J contains an approximate
identity for C.(M x G x H).

Let N,e, and K as in Lemma 2.2 be given. We assume without loss of
generality that the closure of NV is compact. Fix an open set U with compact
closure such that K C U. Choose neighborhoods Ng and Ny of 15 and 1y,
respectively, such that Ng x Ny C N, |Ag(z) — 1| < ¢ for all z € Ng and
|u*(y, h)(m)u(z,h)(m) — 1| < €, for allh € Ngy,m € U, z,y € V, V being a
fixed open set with compact closure containing Ng, and for some ¢; and €,
to be chosen later.

The action of G x H on M x G defined by (z, h)(m,y) = (Azonm, zy) is free
and proper, so for each (m,y) € K x Ng we can choose
([Rf3, Situation 10]) a neighborhood Uy, ) C U x V of (m,y) such that

{((L‘,h) : (m,h)(U(m,y)) N U(m,y) :/'é @} C Ng X Ny.

Take a finite subcover {Uy, Uz, ...,Un} of {Uim,y) }(m y)exxwg and, for each
i=1,..,n,let F; € C(M x G) be such that supp(F;) C U;, and

/ ZFi(m,z)da; =1
G
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foral m € K.
Now we can find ([Rf3, Situation 10]) functions G; € CH(M x G) such

that supp(G;) C supp(F;), and

I?i(m’ y) - Gi(m, y) Gi()‘x“lah'lma .’L'—ly)d.’l}dh < €3,
GxH

for all (m,y) € M x G, and some €3 to be chosen later.
Now set

@N,,k(m,z,h) ZAHI/Z )G * 7,4 (G} )(m, z).

Then,

‘ @N,EYK(m,z,h)dxdh — ].l
HxG

= Z/GXGXHAc(m“ly)[u*(y,h)u(:ﬂ,h)](m)Gi(m,y)
- G(Ag-10p-1m, z”'y)dzdydh

_Z/GFi(mvy)dy
(@ mmutenm)se (™) - 1]

Gi(m,y)/ G; (Mz-10p-1m, 27 1Y) d:z:dh) dy'
GxH

)/ Gi (Ae-10n-1m, z~'y) dzdh — Fy(m, y)dy| < e,
GxH

for appropriate choices of ¢;, €3, and €3.
Besides, supp(®y, k) C Ngx Ny C N. Finally, a similar argument shows
that from some N, and ¢, on we have

/ |¢N,6,K(ma$1h)ldxdh S R,
HxG

for some real number R, and all m € K. O

Assumptions. We next compare the generalized fixed-point algebras ob-
tained when the roles of 0 and A are reversed. That is why we require
symmetric conditions on these two actions. So, we assume from now on that
both A and o are free and proper actions.
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Notation. Let C”* denote the subalgebra of M(Cy(M) X G) consisting of
functions ® € C.(BM x G) such that the projection of supp,,(®) on M/H
is precompact and v;"“® = ® for all h € H.

Remark 2.4. When the cocycle u is the identity, then C”* can be iden-
tified with C,(M/H x G), as a subalgebra of Co(M/H) X, G.

Remark 2.5. Notice that, for F' € C.(M x G), we have that

suppy (Po,uF") C on(supp(F)),
and therefore C”* contains the image of P, ,,.

Lemma 2.6. Let {®y .} be a net in C°*, indezed by decreasing neighbor-
hoods N of 1g, increasing compact subsets K of M, and decreasing € > 0,
and such that

1) suppg(®n.x) C N.

2) ‘fG AY*(2)®y (m, z)dz — 1’ <e€forallmeK.

3) There is a real number R such that [, |®n.(m,z)|de < R, for all
m € K, and for all N and € from some Ny and €, on.

Then {®n .k} is an approzimate identity for C*".

Proof. Let ¥ € C”* and § > 0 be given. Fix a neighborhood N’ of 15 with
compact closure, and let K’ C M be a compact set such that II5 (supp,,¥) C
Iy (K'), where I1y denotes the canonical projection on M/H.

As in Lemma 2.2, we can find Ny C N', ¢, and Kj such that, from N,
€9, and K, on, we have

(®N,e,x ¥ ¥ — U)(m, )| <4,

for all m € Ay (K').
Therefore, if m € supp(®y . x * ¥ —¥), then we have that op,m € Ay (K'),
for some h € H. On the other hand we have that

[(®vexc * ¥ = U)(owm, )| = [(Bwc.x ¥ U — T)(m, z)],

for all h € H, m € M, and z € G, because &y x and ¥ € C”*. This
shows that |(®y  x * ¥ — U)(m,z)| < 6 for all m € M. Therefore ®y g+ V.
converge to ¥ in the multiplier algebra norm. O

Remark 2.7. Notice that Lemma 2.6 above also holds, with a similar

proof, if condition 2) is replaced by
2) | [o ®n,ex(m,z)dz — 1| < e for all m € K.
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Proposition 2.8.  The generalized fized point algebra D" is the closure
in M(Co(M) X G) Of cov,

Proof. In view of property iii) in Proposition 2.1, it suffices to show that the
span of the set

(P, (E*+F):E,F € C.(M x G)}
contains an approximate identity for C”*.

For a given compact set K C M, let us fix an open set U of compact clo-
sure containing K. Then the set L = {h € H : o,m € U for some m € K}
is compact.

Let N be a given neighborhood of 1z and ¢ > 0. As in
[Rf3, Sit. 10, first lemma], we can take an open cover {U;, U, ...,U,} of K,
such that U; C U and U; N A\, U; # 0 only if z € N. For each i = 1,...,n, let
H; € CHM x G) be such that supp(H;) C U; x N, and Y, H; is strictly pos-
itive on K x 1. Then Y, [, o Hi(onh-1m,y)dhdy > 0 for all m € K. There-
fore, we can find functions F; € C}(M x G) such that supp(F;) C supp(H;)
and [y, o Fi(op-1m,y)dhdy= 1 for all m € K. Now, the action of G on
M x G given by a,(m,y) = (A\;m,zy) is free and proper, so the second
lemma in [Rf3, Situation 10] applies and for each ¢ = 1,...,n we can find
G; € CHM x G) such that supp(G;) C supp(F;) and

Fim,y) = Gilm,y) [ Gi (e, ™) da| < b/n,
G

for all m € M,y € G, and some positive number 4 to be chosen later. Set
now ®n . x =Y i=] Pru(Gix J;), where Ji(m,z) = Gi(A,-1m,z~"). We have

=

@N,e,K(max) = ZLU(I7 h)LGi(ah“lm,y)Gi(ah‘l)‘z‘lmax—ly)dya

so, since supp(G;) C supp(F;), it follows that supps(®n,. k) C N.
Besides, if m € K,

/G@N,G,K(m,x)da: - 1‘

ZLL[U(xah)Gl(Uh*lm;y)LGi (Oh-12g-1m,z7'y) dz

~ Fiow-rm,)| dydh| <

for a suitable choice of 4, if N is chosen to have |u(z,h) — 1| small enough
forallz € N and h € L.



ACTIONS ON CROSSED PRODUCTS 13

Finally, from some ¢, and Ny on, [ |®n. x(m,z)|dz < R, for some real
number R and all m € K.
Then, by Remark 2.7, {®x . x } is an approximate identity for C*. O

We will later make use of the following variation of the construction in
the proof of Theorem 2.8.

Remark 2.9. The span of the set
{PrulF) : F(m,z) = AG* (2)es(m)ei(Aa-1m), e € C(M) }

contains an approximate identity for C7:*.

Proof. In the notation of Proposition 2.8, let {f;} C CH(M) be such that
supp(fi) C U;, and [; 3, fi(op-1m) > 0, for all m € K. Since the action
A is proper we can get g; € CH(M) such that supp(g;) C supp(f;) and
|fi(m) — gi(m) [ 9i(Az-rm)dz| < 6 for all m € M and a given positive
number 4. Then, if we let L;(m,z) = Aglﬂ (z)g;(m)g;(Az-1m) we have that,
for an appropriate choice of d in terms of €, the function ®n . x = °; Py u(L;)
can be shown (by an argument quite similar to that in Proposition 2.8) to
satisfy the hypotheses of Lemma 2.6. O

Notation. We denote by »( , ) and ( , ), the C.(M x G)-valued maps
defined on C.(M) x C.(M) by

[, 9)(m, z) = AG* () f(m)G(Ap-1m)

and (f,g)r(m,z) = AG*(z)F(m)g(Ao-1m),
where f,g € C.(M).

Remark 2.10. It is a well known result ([Rf3, Situation 2]) that C.(M)
is a left (resp. right) C.(M x G)-rigged module for »{ , ) (resp. (, )») and
the actions given by:

@ 1)) = | A @)®m,»F (- m)dy

and (f - ®)(m) = /G DG () B(y-1m,y ) F(Ay-1m)dy,

for ® € C.(M x G) It is easily checked that, by taking ® € C.(BM x G)
in the formulas above, one makes C.(M) into a C.(6M x G)-module with
inner product. Of course it is no longer a rigged space because the condition
of density fails.
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Proposition 2.11.  Let C°* C C.(BM x G) act on C.(M) on the left
and on the right as in Remark 2.10. For f,g € C.(M) define

(£,9)pon = Fol{f,9)1) and pou(f,g9) = Pru(x{f,9))-
Then C.(M) is a left (resp. right) C7*-rigged space with respect to ps.{ , )

(resp. {, Ypow).

Proof. The density condition follows from Remark 2.9. All other properties
follow immediately from the fact that ,(, ) and (, ), are inner products and
from Remark 2.5 and properties i), ii), and iii) of P, ,, shown in Proposition

2.1. U
We are now ready to show the main result of this section.

Theorem 2.12. Let A and o be free and proper commuting actions of
locally compact groups G and H respectively on a locally compact space M.
Let u be a cocycle as in Proposition 1.2. Then the generalized fized-point
algebras D" and D™*" of the actions % and Y on Co(M) X G and
Co(M) x, H, respectively, are strong-Morita equivalent.

Proof. By Proposition 2.11, C.(M) is a left C"*-rigged space and a right
CM* -rigged space under

m) = [ AP W@m ) Oym)dy . penlF,0) = PrulalF,0),

:/ AT (R (0p-1mm, b1 f (oh-1m)dh,
H

and <f7 g)D"’“* = PA,u*((va)n)a
where f,g € C.(M), ® € C”¥ and ¥ € C*¥'.
Then C,(M) is an C*%-C** bimodule: for ®, ¥ and f as above we have
[(®-f)- ¥](m)

//A V2 ( Al/z() U (op-1m, h™1) @(oh-1m, y) f(on-1Xy-1m)dydh

=/ / AP (RAY ()T (041 Ay-1m, B7Y) @(m,y) f (o1 Ay-1m)dydh
HJG
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=[®-(f - ©)](m).

Besides, for e, f,g € C.(M), we have
(pes e, 1) 9)m) = [ [y, We(on-vm)Fh, -1 n-sm)g(Ay-rm)dhy =

= (e(f,9)pr~-)(m).

We now prove the continuity of the module structures with respect to the
inner products.

Fix a measure y of full support on M. Then, by [Ph, 6.1] and [Pd, 7.7.5],
we have faithful representations IT of C** on L*(M x G) and © of C**" on
L?*(M x H) given by

(L) (m, ) = /G (A, y)E(m, y~z)dz,

and (Ogn)(m, h) = /H (oym, k)n(m, k= h)dk,

where ® € C7%, ¥ € CM' | ¢ € L*(M x G) and n € L*(M x H).
Now, for f € C.(M) and n € L*(M x H)

(O (£.1) e T M) L2 (M x H)

-/ on-s (0 (1, KA (BT (-2 0wm)
MxGxHxH
F(Ay-105-1)1(m, k= R)Ti(m, h)dkdhdydm
= lECF, MLz arways
where £(f,n) € L*(M x G) is given by

€ ma) = [ (@ h ) A5 (1) (\arosm)n(m, h)dh.

Then, if ® € Co
[£(® - f,m(m,z) =

= [ [ v @h Az " AY )2 (mromm,y)
-f(Ay=1z-10,m)n(m, h)dhdy =
= (UH‘PUf(f?n))(m’ :E)»



16 BEATRIZ ABADIE

where U denotes the unitary operator on L?(M x G) defined by
(UE)(m,z) = A (@)€(m, z 7).

Thus we have
<9<q>-f,q><f)DA,“ 77;77>L2(M><H) = [|§(@ - fﬂl)”z = HUH<1>U§(f>7))H2
< N@IPHES MI® = 1N (Os,1) paue 1 M L2151
and it follows that
(@ f,2 flpre S NRIP(f, flprar,

as elements of D»*'. Analogously, one shows that, for f € C.(M) and
¢ € L*(M x G)

(e r.0)6: E) L2y lIn( £, P,
for some 7(f,¢) € L*(M x H), and that, for ¥ € C** one has

where V denotes the unitary operator in L*(M x H) defined by
(V) (m, k) = AZ*(R)n(m, h=1). Tt follows that

D"“‘(f : \Ilaf : \Il) S ”\IJHZD""<f7f),

as elements of D7,
Thus, we have proven that C.(M) is a C%* — C»* equivalence bimodule.
Now, if we define on C.(M) the norms

105w = llpre (F, O and [[Flr e = I(F5 Floras I,

it follows from [Rf1, 3.1] that || ||p-« = || ||p»«* and that the completion
of C.(M) with respect to this norm gives, by continuity, an equivalence
bimodule between D% and D**". O

Remark 2.13. In view of Remark 2.4, when the cocycle u is the identity,
Theorem 2.12 becomes Green’s result: the algebras Co(M/H) x, G and
Co(M/G) x, H are strong-Morita equivalent.

Corollary 2.14.  Under the assumptions of Theorem 2.12, the algebras .
Cr(H,Co(M) x5 G) and C(G,Co(M) x, H) are strong-Morita equivalent.

Proof. The proof follows from Proposition 2.3, Theorem 2.12, and [Rf4, 1.7].
U
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3. Applications to quantum Heisenberg manifolds.

In this section we apply the previous results to the computation of the K-
groups of the quantum Heisenberg manifolds. We recall the basic results
and definitions concerning those algebras. We refer the reader to [Rf5] for
further details.

For each positive integer ¢, the Heisenberg manifold M, consists of the
quotient G/D,, where G is the Heisenberg group

ly =z
G = 01z |; for real numbers z,y, z
001

and D, is the discrete subgroup obtained when z, y and cz above are integers.

The set of non-zero Poisson brackets on M, that are invariant under the
action of G by left translation can be parametrized by two real numbers p
and v, with p? 412 # 0. A deformation quantization {D%}}reg of M, in the
direction of a given invariant Poisson bracket A, was constructed in [Rf5].

The algebra Df“fi can be described as a generalized fixed-point algebra as
follows. Let M = R x T and A" and o be the commuting actions of Z on M
induced by the homeomorphisms

M(z, y) = (z + 2hu,y + 2hv) and o(z,y) = (z — 1,y).
Consider the action p of Z on Cy(R x T') X » Z given by
(px®)(z,y,p) = e(ckp(y — fipv))®(z + k, y, p),

where e(z) = exp(2miz) for any real number z. The action p defined above
corresponds to the action p defined in [Rf5, p. 539], after taking Fourier
transform in the third variable to get the algebra denoted in that paper by
Ay , and viewing Ay, as a dense *-subalgebra of Co(R x T') x\» Z via the
embedding J defined in [Rf5, p. 547].

Notice that, for M = Rx T, G = H = Z, and h # 0, the actions A"
and o satisfy the hypotheses of Section 2 and that the action p defined
above corresponds, in that context, to the action we denoted by y”*, where
u:Z xZ — ZUM(Cyo(R x T)) is the cocycle defined by

u(p, k) = e(ckp(y — hpv)),

for p,k € Z. Besides, [Rf5, Theorem 5.4] shows that the algebra DS} is the
generalized fixed-point algebra of Cy(R x T') x\» Z under the action p, and
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it follows from the proof of that theorem that Df“fl is the algebra that we
denote, in the context of Section 2, by D7*.

Remark 3.1. We will also use the fact that the algebra f)f“f consisting
of functions ® € C.(B(R x T) x Z) satisfying p(®) = P forallk € Z is a
dense *-subalgebra of Df“f This follows from Remark 2.5, Proposition 2.8,
and from the fact that (R x T')/o is compact.

Theorem 3.2.  For A # 0 the K-groups of Df“fi do not depend on h.

Proof. 1t follows from Theorem 2.12 that, for i # 0, Df“f is strong-Morita
equivalent to the generalized fixed-point algebra Ef“f‘ of Co(RxT) x, Z

under the action 'y’\ﬁ of Z defined by
(v @)(z,y,k) = e(—ckp(y — hpv))@(z ~ 2phu,y — 2phv, k).

Now, by Proposition 2.3, fy*h is saturated, so we have
([Rf4, Corollary 1.7]) that DS} is strong-Morita equivalent to Co(R x T') %,
A X,\/Ah Z.

Besides, A ~— A* is a homotopy between the A*s, which shows
([B1, 10.5.2]) that the K-groups of Co(RxT) X, Z X _s» Z do not depend on A.
On the other hand, since strong-Morita equivalent separable C*-algebras are
stably isomorphic ([BGR]) and therefore have the same K-groups, we have
proven that the K-groups of D¢, for ki # 0, do not depend on F. t

pv )

Notation. Since the algebras D¢ and wal 5, are isomorphic, we drop from
now on the constant 7 from our notation and absorb it into the parameters

wand v.

Remark 3.3. Notice that, since for any pair of integers k and [ the
algebras D¢, and Dy, ., are isomorphic ([Ab]), the assumption % # 0 in
Theorem 3.2 can be dropped.

Theorem 3.4. K,(D¢,) = Z° + Z. and K,(D;,,) = Z°.

Proof. In view of Theorem 3.2 and Remark 3.3, it suffices to prove the
theorem for the commutative case where D5, = C'(M.).
After reparametrizing the Heisenberg group we get that M, = G /H, where

lyz/c
G = 01 z |:z,y,2€R
00 1
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and
1mp/c
H, = 01 q |:m,pq€eZ
00 1

We first use [Ro, Corollary 3] to reduce the proof to the computation of the
K-theory of C*(H,).

The group C*-algebra C*(H.) is strong-Morita equivalent to C(G/H,) X G,
where G acts by left translation [Rf2, Example 1]. Now, G is nilpotent and
simply connected so we have

G=R{RxR

as a semi-direct product.
Therefore

C(G/H.) x G ~C(G/H.) x R4 R x R,
and Connes’-Thom isomorphism ([Bl, 10.2.2]) gives
Ki(C*(Hc)) = Ki(C(G/Hc) X G) = Kl—i(C(G/Hc)) = Kl—i(C(Mc))'

So it suffices to compute K;(C*(H.)). The computation was made in
[AP, Prop. 1.4] for the case c=1, and the general case can be obtained with
slight modifications to their proof. We first write H, as a semi-direct product,
so its group C*-algebra can be expressed as a crossed product algebra. Then,
by using the Pimsner-Voiculescu exact sequence ([Bl, 10.2.1]), we get its K-
groups.

Let
1mp/c 100
N = 01 0 |:m,p,eZ) and K = 0lq|:qeZ
00 1 001

Then H. = N x,_K, where a. is conjugation. If we identify in the obvious
way N and K with Z? and Z respectively, we have that H, ~ Z?x,_Z, where
a.(q)(m,p) = (m,p — cmgq). Then the Pimsner-Voiculescu exact sequence
yields:

id—ac, e
Ko(C(T?)) — Ko(C(T?)) —  Ko(H.)
o1 16

Ki(H) <= K (C(T?) " K (C(T?)
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It was shown on [AP, Prop.1.4] that id = oy, on Ko(C(T?)) and, since
a., = of_ it follows that id = o, on Ko(C(T?)) for any c. Thus we get the
following short exact sequences:

0 — Z2 — Ko(H.) = Ker(id — o) — 0

0 — K,(C(T?))/ Ker(id — a.,) — Ki(H.) = Z2 — 0,

where id — a,, is the map on K, (C(T?)).

Let us now compute id — ., on K;(C(T?)). We have identified C (1)
with C*(Z?) via Fourier transform, so the automorphism a, on C(T?) be-
comes (a.f)(z,y) = f(z—cy,y). Now, K;(C(T?)) = Z? if we identify [u]x,
and [uy]g, with (1,0) and (0,1) in Z?, respectively, where u;(z,y) = e(z),
ua(z,y) = e(y) for all (z,y) € T? Then, for (a,b) € Z* we have

(id — a.,)(a,b) = (a,b) — (a,b — ac) = (0, ac).
This shows that
Ker(id — a.,) = Z ® {0} C 2%, Im(id — a.,) = {0} d cZ C Z°.
So the exact sequences above become:
0— 22— Ko(H,)— Z—0
0—Z+2Z,— K,(H,)— 2> —0.
Therefore
Ki(D:,) = Ko(H.) = Z® and Ko(D5,)) = Ky (H,) = Z° + Z..
0
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