
Pacific
Journal of
Mathematics

ON MODULI OF INSTANTON BUNDLES ON P2n+1

VINCENZO ANCONA AND GIORGIO MARIA OTTAVIANI

Volume 171 No. 2 December 1995



PACIFIC JOURNAL OF MATHEMATICS

Vol. 171, No. 2, 1995

ON MODULI OF INSTANTON BUNDLES ON P 2 n + 1

VlNCENZO ANCONA AND G. OTTAVIANI

Let MIp2n+i(fc) be the moduli space of stable instanton bun-
dles on F 2 n + 1 with c<ι — k. We prove that MIP2n+i(2) is smooth,
irreducible, unirational and has zero Euler-Poincare charac-
teristic, as it happens for F3. We find instead that Mips (3) and
Mips (4) are singular.

1. Definition and preliminaries.

Instanton bundles on a projective space P2 n + 1(C) were introduced in [OS]
and [ST]. In [AO] we studied their stability, proving in particular that spe-
cial symplectic instanton bundles on P 2 n + 1 are stable, and that on P5 every
instanton bundle is stable.

In this paper we study some moduli spaces MIP2n+i(£;) of stable instanton
bundles on P 2 n + 1 with c2 = k. For A; = 2 we prove that MIP2n+i(2) is smooth,
irreducible, unirational and has zero Euler-Poincare characteristic (Theor.
3.2), just as in the case of P3 [Har].

We find instead that MIPδ(/c) is singular for k — 3,4 (theor. 3.3), which
is not analogous with the case of P3 [ES], [P]. To be more precise, all points
corresponding to symplectic instanton bundles are singular. Theor. 3.3 gives,
to the best of our knowledge, the first example of a singular moduli space
of stable bundles on a projective space. The proof of Theorem 3.3 needs
help from a personal computer in order to calculate the dimensions of some
cohomology group [BaS].

We recall from [OS], [ST] and [AO] the definition of instanton bundle on
P 2 n + 1(C).

Definition 1.1. A vector bundle E of rank In on P 2 n + 1 is called an
instanton bundle of quantum number k if

(i) The Chern polynomial is ct(E) = (1 - t2)~k = 1 4- kt2 + ί**1)*2 + ...

(ii) E(q) has natural cohomology in the range —2n — 1 < q < 0 (that is
hi(E(q)) φ 0 for at most one i = i(q))

(iii) E\r ~ O2n for a general line r.
Every instanton bundle is simple [AO]. There is the following characteri-

zation:
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Theorem 1.2 ([ST], [AO]). A vector bundle E of rank 2n on P 2 n + 1 satisfies
the properties (i) and (ii) if and only if E is the cohomology of a monad

(1.1) o(-i)k A o2n+2k A o(i)k.

With respect to a fixed system of homogeneous coordinates the morphism
A (resp. B) of the monad can be identified with a k x (2n + 2k) (resp.
(2n + 2k) x k) matrix whose entries are homogeneous polynomials of degree
1. Then the conditions that (1.1) is a monad are equivalent to:

A, B have rank k at every point x G P 2 n + 1 , A B = 0.

Definition 1.3. A bundle S appearing in an exact sequence:

(1.2) o -+ s* 4 e>(i)c -> o

is called a Schwarzenberger type bundle (STB).
The kernel bundle Ker B in the monad (1.1) is the dual of a STB.

Definition 1.4. An instanton bundle is called special if it arises from a
monad (1.1) where the morphism B is defined in some system of homoge-
neous coordinates (x0,... , xn, y0,... , yn) on P 2 n + 1 by the matrix

XQ

B = Xn

Vn

Vn]
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Example 1.5. Take

A =

n yo ~Xn

JJn' '

Xo

x°.

yo

yn

Xo

Xn

yo

E = Ker B/ Im A is a special instanton bundle.
Property (iii) of the definition 1.1 can be checked by the following:

Theorem 1.6 [OS]. Let E = KeiB/ImA as in (1.1). Let r be the line
joining two distinct points P,Q G P 2 n + 1 . Then

E\Γ ~ O2

r

n •»• A(P) • B(Q) is an inυertible matrix.

Example 1.7. Consider the special instanton bundle E of the example
1.5. L e t P = ( l ,0 , . . . ; 0 , . . . ,0), Q = (0, . . . , ; 0 , . . . ,1). Then

A(P) =

- ί

and A{P) • B{Q) =

- 1

- 1

B(Q) =

- 1

is invertible. Hence E is trivial on the line

{x! - ... = xn = y0 = ... = yn_! = 0}.

Proposition 1.8. Let E be an instanton bundle as in (1.1). Then

H2(E®E*) = H2[(KerB) Θ (Ker^)]
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Proof. See [AO] Theorem 3.13 and Remark 2.22. D

Remark 1.9. If E ~ E\ then

H2(E®E*) = H2[(Keτ A') <g> ( K e r ^ ) ] = H2[(KeτB) ® {KeτB)].

Remark 1.10. The single complex associated with the double complex
obtained by tensoring the two sequences

0 -> Ker A1 -± O2n+2k ^ (9(1)* -> 0

0 -> Ker£* -> O2n+2k ^ O(l)k -> 0

gives the resolution

0 -> (Ker A*) <g> (Ker B) -> (9 2 n + 2 f c ® O 2 n + 2 f c

-> (9 2 n + 2 f c ® (9(l)fc θ C?(l)fc ® (9 2 n + 2 f c Λ O(l) f c ® O{l)k -> 0

where α = (A* ® id, id ®J5).
Hence

and its dimension can be computed using [BaS]. For the convenience of the

reader we sketch the steps needed in the computations.

A, Bι are given by k x (2n + 2k) matrices whose entries are linear homo-

geneous polynomials.

A ® Id* = (αi,...

and

are both A;2 x (2n + 2fc)fc matrices. Let

C = ( α i , . . • , αfc(2n+2fc) , &15

We will denote by syzm C the dimension of the space of the syzygies of C of
degree m. Then

h2(E ® J5*) - /ι°(O(2)fc2) - (4n + 4Λ)Λ°(O(l)fc) 4- syZl C

= Jfc(n + l)[Λ(2n - 5) - 8n] + syzx C

h\E ® £?•) = /ι 2(£ ® E*) + 1 - k2 + 8n2k - An2

= 1 - 6k2 - 8kn - 4n2 + syzx C.
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Note also that h°(E(l)) = syzx B
t - k and h°(E*(l)) = sγzx A

R e m a r k 1.11. In the same way we obtain

h1(E®E*(-l))=syz0C

h2{E ® JS*(-1)) = 2k{nk - 2n - Jfc) + syz0 C.

2. Example on P 5 .

Let (α, 6, c, d, e, /) be homogeneous coordinates in P 5 .

Example 2.1. (k = 3) Let

α 6 c
ab c
ab c

e /
d e f
d e f

fed —c—b—a

fed —c—b —a

fed —c—b —a

The corresponding monad gives a special symplectic instanton bundle on P 5

with k = 3. With the notation of remark 1.10, using [BaS] we can compute

syz 0 C = 14,syz1C = 174. Hence h2(E <g> E*) = 3 from the formulas of

Remark 1.10. Moreover h°(E(l)) = 4.

Example 2.2. (k = 3) Let Bt as in the Example 2.1 and

fed —c—b —a
ed 2/ -b -a -2c
d f e —a —c —b

We have syz0 C = 10, sy^ C = 171. Hence h2(E®E*) = 0. We can compute

also the syzygies of Bt and A and we get h°(E(l)) = 4, Λ°(J5*(1)) = 3,

hence E is not self-dual.

Example 2.3. (k = 4) Let

ab c d e f

ab c d e f

ab c d e f
ab c def

fed —c—b

fed —c—b —a

fed —c—b —a

fed —c—b —a



348 VINCENZO ANCONA & G. OTTAVIANI

E is a special symplectic instanton bundle with k = 4. We compute

h2{E®E*) = 12.

Example 2.4. (A; = 4) Let Bι as in the Example 2.3. Let

fed —c—b —a
e d 2/ -b -a -2c

3d f e -3a -c -b
fed —c—b —a

In this case h2{E 0 E*) = 6, h°(E{l)) = 4, h°(E*(l)) = 3.

Example 2.5. (A; = 4) Let Bι as in the Example 2.3. Let

f e d —c—b—a
e d 2/ -b -a -2c

3d f e -3a -c -b
5d f e d + f e — 5a —c—b—a — c —b

Now H2(E 0 E*) = 0, h°(E(l)) = 4, h°(E*(l)) = 2.

3. On the singularities of moduli spaces.

The stable Schwarzenberger type bundles on P m (see (1.2)) form a Zariski
open subset of the moduli space of stable bundles. Let Nψm(k,q) be the
moduli space of stable STB whose first Chern class is k and whose rank is
q. The following proposition is easy and well known:

Proposition 3.1. The space Nψm(k^q) is smooth, irreducible of dimension
l-k2-{q + k)2 + k{q + k)(m + 1).

We denote by MIp2n+i(A;) the moduli space of stable instanton bundles
with quantum number k. It is an open subset of the moduli space of stable
2n-bundles on P 2 n + 1 with Chern polynomial (1 - t2)~k.

On P 5 (as on P3) all instanton bundles are stable by [AO], Theorem
3.6. MIp2n+i(2) is smooth ([AO] Theorem 3.14), unirational of dimension
4n2 + 12ra - 3 and has zero Euler-Poincare characteristic ([BE], [K]).

Theorem 3.2. The space MIP2n+i(2) is irreducible.

Proof. The moduli space N = JVp2Λ+i(2, n + 2) of stable STB of rank 2n + 2

and Cι — 2 is irreducible of dimension An2 + 8n — 3 by Prop. 3.1
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For a given instanton bundle E there is a STB S associated with E, which
is stable ([AO], Theorem 2.8) and unique (ibid., Prop. 2.17). It is easy to
prove that the map π : M —> N defined by τr([i£]) = [S] is algebraic, moreover
π is dominant by [ST]. If m = [E] G M, the fiber Έ~1{π(m)) is a Zariski open
subset of the grassmannian of planes in the vector space if°(P2 n + 1, 5*(1)),
where π(ra) = [S] by the Theorem 3.14 of [AO], Λ°(P2n+1, S*(l)) = 2n + 2,
hence dimπ~1(π(?τι)) = 4n.

In order to prove that M is irreducible, we suppose by contradiction that
there are at least two irreducible components Mo and Mx of M. Then
Mo Π Mi = 0 (M is smooth), π(M0) and π(Mi) are constructible subset of
N by Chevalley's theorem. Looking at the dimensions of Mo, MX,N and the
fibers of π we conclude that both π(M0) and π(Mχ) must contain an open
subset of JV, which implies π(M0) Π π(Mχ) 7̂  0 by the irreducibility of N.
This is a contradiction because the fibers of π are connected. D

For n > 2 and k > 3, it is no longer true that MIp2n+i(A;) is smooth. In
fact on P5 we have:

Theorem 3.3. The space MIps(A ) is singular for k — 3,4. To be more
precise, the irreducible component M0(k) of Mips (k) containing the special
instanton bundles is generically reduced of dimension 54(fc = 3) or 65(k — 4),
and Mlψ>δ(k) is singular at the points corresponding to special symplectic
instanton bundles.

Proof. Let Eo be the special instanton bundle on P5 of the Example 2.2(k =
3) or of the Example 2.5(k = 4). Then h2{E0®E*) = 0 and M0(k) is smooth
at the point corresponding to Eo, of dimension h}(Eςs ® E$) — 54(/J = 3)
or 65(A: = 4). In particular, M0(k) is generically reduced. If Eλ is a special
symplectic instanton bundle on P5, the computations in 2.1 and 2.3 show
that h2(E1 ® El) = 3(k = 3) or 12(k = 4), and h1(Eι ® E{) = 57 or 77
respectively. Hence MΙps(fc) is singular at Eλ for k — 3 and 4. D

Remark 3.4. It is natural to conjecture that MIP2n+i(A;) is singular for all
n > 2 and k > 3.

Theorem 3.5. Let E be an instanton bundle on P 2 n + 1 with c2{E) = k. Then

h}(E(t)) = 0 fort<-2 andk-l<t.

Proof. The result is obvious for t < —2. It is sufficient to prove /ι1(S'*(ί)) = 0
for t > k — 1. We have

2n+k-l

εr(t)= Λ s(t-k).
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Taking wedge products of (1.2) we have the exact sequence

0 -> O(t + 1 - In - 2k)ao -> . . . -> O(t - k - l)β»»+*-»

2n+fc-l

-> O(ί - Jfe)"2--"-1 -> /\ 5(t - A?) -> 0

for suitable α^GN and from this sequence we can conclude.
Ellia proves Theorem 3.5 in the case of P 3 ([E], Prop. IV.l). He also

remarks that the given bound is sharp. This holds on p 2 n + 1 as it is shown by
the following theorem, which points out that the special symplectic instanton
bundles are the "furthest" from having natural cohomology. D

Theorem 3.6. Let E be a special symplectic instanton bundle on P 2 n + 1 with
c2 = k. Then

h}(E{t)) φbfor - 1 < t < k - 2.

Proof. For n = 1 the thesis is immediate from the exact sequence

0 -> O(t - 1) -> E(t) -> Jc(t + 1) -> 0

where C is the union of k + 1 disjoint lines in a smooth quadric surface.
Then the result follows by induction on n by considering the sequence

0 -> E(t - 2) -> E(t - I ) 2 -> E(t) -> £7(t)|Pan-i -> 0

and the fact that, for a particular choice of the subspace p 2 7 2 - 1 , the restriction

E\ψ2n-i splits as the direct sum of a rank-2 trivial bundle and a special

symplectic instanton bundle on P 2 n " 1 ([ST] 5.9). D

Remark 3.7. In [OT] it is proved that if Ek is a special symplectic

instanton bundle on P 5 with c2 = k then /^(End Ek) = 20A; - 3.
In the following table we summarize what we know about the component

M o (A;) C Mips (A;) containing Ek.

Table 3.10
h1

fc = l
k = 2

fe = 3
fc = 4

k>2

(Ek®E*k)
14

37
57
77

20k-3

h2(Ek ®
0
0
3
12

3(k-:

E*k)dimMo(k)
14
37
54

65

2Ϋ ?

MIP5(Jk)
open subset of P 1 4

smooth, irreduc, unirat

singular

singular

?
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