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A substantive part of the recent activity in the field of mini-
mal surface theory has been the construction of new complete
minimal surfaces immersed in E3. One approach in construct-
ing new examples is to increase the genus of known minimal
surfaces. In this paper, we do precisely this for certain min-
imal surfaces of finite total curvature whose ends are asymp-
totic to catenoids. We prove existence of surfaces of pos-
itive genus based on those in genus zero, with the feature
that these higher genus examples maintain all the symme-
try of their genus-zero counterparts. In these proofs we use
the conjugate minimal surface construction and the maximum
principle for minimal surfaces.

1. Introduction

In the last century, 0. Bonnet, and later H. A. Schwarz, were the first to
study the associate family of a minimal surface ([Ni2], [Scz]). More recently,
A. Schoen, H. Karcher, and others have used properties of the associate fam-
ily to develop a method for constructing periodic minimal surfaces ([Kal],
[Ka2], [Ka3], [Ka4], [Kr]). This method uses the particular member of
the associate family known as the conjugate surface, and is referred to, by
Karcher, as the Conjugate Plateau Construction. W. H. Meeks III suggested
using this construction to study non-periodic examples ([Me]).

This construction is used to prove the results here. The technique be-
gins by considering the boundary contour of the conjugate of a fundamental
piece of the surface. The contour can be described as partially unbounded
boundary data over an unbounded convex domain. We extend results of J.
C. C. Nitsche [Nil] and Jenkins and Serrin [JeSe] to this setting and obtain
the existence of a unique minimal surface with this given boundary. The
existence of the original surface can then be argued.

Our main results concern the existence of immersed finite-total-curvature
minimal surfaces with embedded catenoid ends and genus greater than zero:

1) For each n > 3, there exists an n-oid of genus 1 that maintains
all the symmetry of the genus-0 n-oid (see Figures 1.1 and 1.2).
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Figure 1.1: The trinoid

2) There exist minimal surfaces based on each of the Platonic solids.
These surfaces are of genus / — I and have v catenoid ends, where
/ and v are the number of faces and vertices of the corresponding
Platonic solid (see Figure 4.13).

We also prove the nonexistence of a certain symmetric n-oid of genus n,
while indicating why another type might exist (see Figures 3.10 and 3.11).
Throughout the paper, we use Weierstrass data to draw the surfaces with
computer graphics [MESH], and we conclude this paper by deriving Weier-
strass data for the trinoid of genus 1. These data yield numerical evidence
for the existence of less symmetric examples (see Figure 4.17).

The authors wish to thank Rob Kusner for many helpful suggestions and
critical readings of preliminary drafts. We would also like to thank: Fusheng
Wei for assistance in deriving Weierstrass data; Martin Traizet for creat-
ing Figures 3.11 and 4.13; and David Hoffman, Ed Thayer, and others at
G.A.N.G. for helpful conversations and assistance with computer graphics.

2. Tools

The following tools will be used extensively in the subsequent proofs.

2.1. Conjugate Surface Construction for Minimal Surfaces. For an
immersed minimal surface M in R3 with finite total curvature, there exists
a meromorphic function g and a holomorphic 1-form η defined on a punc-
tured compact Riemann surface M \ {pi,P25 •• 5P^} such that M has the
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Figure 1.2: The symmetric trinoid of genus 1

parametrization

Φ(p) = R e / \i{l + g2)η , P G M \ {pi,p2,...,p*}

We refer to {#, η) as the Weierstrass data for Λf, and to Φ as the Weier-
strass representation of M. The conjugate surface Mconj of M is the minimal
surface with the same underlying Riemann surface M \ {pi,p2, —,P/}5 but
with Weierstrass data {g, iη}. Strictly speaking, the parametrization Φconj(p)
may only be well-defined on a covering of M \ {pi,P2-> • ••JP*}

Thus we have the maps z —> Φ(z) and z —> ΦConj(̂ ) from simply connected
domains of M \ {pi,P2, ~ >Pe} to M and Mconj, respectively. This induces a
covering map 0, the conjugate map, from Mconj to M. The conjugate map
φ has the following properties:

1) φ is an isometry;

φ preserves the Gauss map;

φ maps planar principal curves in Mc o n j to planar asymptotic
curves in M, and maps planar asymptotic curves in Mconj to
planar principal curves in M; that is to say, φ maps non-straight
planar geodesies to straight lines, and vice versa.

It follows from the second and third properties of φ that a planar geodesic
is mapped by φ to a line that must be perpendicular to the plane containing
the planar geodesic.

We note that the conjugate of the conjugate of M is given by the Weier-
strass data {#, —7/}, locally giving us the original surface reflected through

2)

3)
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T

Figure 2.3: The fundamental piece of a trinoid, and its conjugate surface.

the origin.
Example. A fundamental piece of a minimal surface is a smallest portion

of the surface that can generate the entire surface when acted upon by
the surface's symmetries. Consider a fundamental piece of an n-oid. An
copies of this fundamental piece are needed to create the entire surface.
Note that the boundary of this fundamental piece is composed entirely of
planar geodesies. The conjugate surface of this fundamental piece is thus
easily determined by considering the properties above. It is a graph over
the interior of an unbounded convex region in some plane and thus is simply
connected. This region is bounded by two parallel infinite rays and one line
segment connecting the endpoint of each ray (see Figure 2.3).

We shall say that a minimal surface has a helicoid end if the corresponding
end of the conjugate surface is a portion of a catenoid end. Thus, in the
example above, the conjugate surface of a fundamental piece of the n-oid
has a helicoid end.

2.2. The Maximum Principle for Minimal Surfaces The following
well-known lemma is the maximum principle for minimal surfaces. It is
a special case of a lemma by Schoen [Sen], and is proven there.

Lemma 2.1. 1) (Interior Maximum Principle). Let Mi and M2 be minimal
surfaces in M3. Suppose p is an interior point of both Mi, M2, and suppose
Tp(Mi) = TP(M2). If Mi lies on one side of M2 near p, then Mi = M2.

2) (Boundary Point Maximum Principle). Suppose Ml9 M2 haυe-C2-
boundaries C\, C2, respectively, and suppose p is a point of both C\, C2.
Furthermore, suppose the tangent planes of both Mi, M2 and C\, C2 agree
atp: that is to say, suppose Tp(Mι) — Tp(M2), Tp(Cι) — TP{C2). If, near p,
Mi lies to one side of M2, then Mi = M2.
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2.3. Results on the Existence of Minimal Surfaces. The following are
two existence theorems. The first theorem is due to Nitsche ([Nil], [JeSe]),
and the second is due to Jenkins and Serrin ([JeSe]).

Theorem 2.2. Let D be a bounded convex domain in a plane. Let dD =
dD\{pι, ...,pr}. Then there exists a solution of the minimal surface equation
in D taking on ^reassigned bounded continuous data on the arcs of dD.
As a surface, this solution contains vertical line segments over the jump
discontinuities of the boundary data.

Theorem 2.3. Monotone convergence theorem: Let {Mn}^=1 be a mono-
tone increasing sequence of solutions of the minimal surface equation in a
domain D. If the sequence is bounded at a single point p G D, then there ex-
ists a nonempty open set U C D such that {Mn}™=1 converges to a solution
in U, and diverges to infinity on the complement of U. The convergence is
uniform on compact subsets of U.

3. Adding Handles to the n-oid

The n-oids are well-known immersed genus-0 minimal surfaces of finite total
curvature in M3 (see Figure 1 and [JoMe]). Their defining feature is that
they have n catenoid ends, whose limiting normals span a plane V, which
is a plane of reflective symmetry of the surface. In addition, n-oids have a
degree n rotational symmetry about an axis perpendicular to V and a plane
of reflectional symmetry also perpendicular to V. Thus the symmetry group
of an n-oid is Dn x Z2, the natural Z2-extension of the dihedral group.

In this section, we consider the problem of adding k handles to the n-oid,
while preserving minimality. We refer to these as n-oids of genus k.

Theorem 3.1. For each n > 3, there exists an n-oid of genus 1 that
maintains all the symmetries of the genus-0 n-oid.

Proof. We approach the proof in the following manner: If the genus 1 surface
exists, then it has a simply connected fundamental piece and the conjugate
of this fundamental piece must also exist. The boundary contour of this
conjutgate piece is among a 1-parameter family C\ of contours, each of
which, we show, bounds an embedded simply connected minimal surface.
The original fundamental piece is, up to congruence, the conjugate to one of
these, for a particular choice of λ which "kills the period". That is to say,
λ is chosen so that the original fundamental piece extends by reflection and
rotation to the conjectured surface. We show that n > 3 is precisely the
necessary and sufficient condition for solving this period problem.
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X 2

(λ, 0, 0)

Figure 3.4: The contour C\ and the convex planar domain D.

For any λ > 0 define a contour C\ in E 3 consisting of two straight rays

and two line segments. Let aλ be the ray {(0,5,0) : s > 0}; let a2 be

the line segment with endpoints at (0,0,0) and (λ,0,0); let a3 be the line

segment with endpoints at (λ,0,0) and (λ,cos(~),sin(^)); and let α 4 be the

ray {(λ + s,cos(^),sin(~)) : s > 0}; then Cχ is a1Ua2Ua3U α 4 . We note

that the projection of C\ to the plane {xx = 0} lies in the boundary of an

unbounded convex domain, which we will call D (see Figure 3.4).

The contour <% is the boundary of the conjugate surface of the fundamen-

tal piece of the n-oid. Translating Co in the Xi-direction by (λ, 0,0) we have

a contour that we shall call Ctrans,λ (Note that Co = Ctrans.o-) It follows

from the known existence of the n-oid of genus 0 that, for all λ, the contour

Ctrans.λ bounds a minimal surface Mtrans,λ The interior of M t r a n S ) λ is a graph

over the interior of the domain D.

We shall use the surface Mo = Mrans.o t o construct compact contours

which converge to Cλ. Note that Co coincides with Cλ along aλ and α 4 .

Choose a strictly increasing sequence \ E K such that λ0 > λ and lim^oo λ̂  =

oc. For each λ̂ , choose a curve ηι lying in M o with the following properties:

1) 7, has endpoints (λ t,cos(^),sin(^)) and (0, λ,,0).

2) 7i projects onto a curve proj(7j) in D which is convex with respect

to the bounded component of D \ p r o j ^ ) .

3) Ίι ^ 7j — Φ f° r aH * Φ j
Let Cχτ be the compact contour constructed by truncating the two rays c*i,

a4 oΐCχ at (λj, cos(^), sin(^)) and (0, λ i5 0), and then joining these endpoints
by the curve 7^ The contour Cλt projects to a convex plane curve. Let Di
be the bounded convex region with boundary consisting of this projection.
Di C D, and lim^oo D{ = D (see Figure 3.5).

Essentially {7i}^0 ^s a sequence of curves in Mo so that, for j > i, 7̂  lies
"farther out" on the end of Mo than yt. Since M o is a graph over D, we
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Figure 3.5: The curve 7$, the contour C\ t, and the bounded planar region

conclude that Di C D^ for jί > i. Furthermore, since λ̂  —> 00 and 7̂  projects
to a convex curve in D, we may conclude that ji lies outside any given
compact region in R3, for i chosen large enough. Thus, lim^oo CXi — C\.

Since Cχi can be viewed as piece-wise continuous boundary data on the
domain D^ discontinuous at only two points, we can apply Theorem 2.1.
Therefore, for each i, there exists a minimal surface bounded by Cχt. Ap-
plying the maximum principle, we see that these solutions are unique, and
we call these unique solutions M λ t . For any fixed i, the surface M λ j , for
j > i, restricts to a solution of the minimal surface equation over D{. Note
that the restriction of M Λ j to Di may have different boundary data than
M\. over D^.

Claim 3.2. Fixing a positive integer i, the restrictions of MXj to Di? for
j > if form a monotonically increasing sequence of solutions of the minimal
surface equation over Di.

Proof. Let e be a fixed positive number. By "sliding Mχk underneath M λ j " ,
for i < k < j , we mean this: We start with copies of Mχk translated by
the vectors s (—1,0, H-e) for 5 > 0, and we call these copies MXkyS. Since
Mχk and Mχj are both graphs over D, it is clear that for s > ^ sin(^), Mχki

and MXj are disjoint. Choose s > j s in(^). We then lower the value of s
until we reach the first value of s so that MXkiS Π MXj φ φ (see Figure 3.6).
Let s 0 = sup{s > 01 Mλ f c ) S Π Mχ3 φ φ}. Proving the claim is equivalent to
showing that s0 = 0. Thus, we are sliding one surface underneath the other
with respect to the positive xλ direction.

In all subsequent references to height, we mean height with respect to
the positive xλ direction. (In Figure 3.6, we see Mχj and a translated copy
of MXx. From the point of view of the positive x3-axis, the copy of M λ i

lies above Mχr But with respect to the positive α i-axis, the copy of M λ .

S
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(1,0,-6)

Figure 3.6: The surface MXk sliding "underneath" MXj.

actually lies below MXj. We take the latter perspective here.)

By the interior maximum principle, this first contact between MΛfc)S and

MXj occurs along the boundary of MXkiS. The first point of contact cannot

occur at a point of the translated copy of ηk. We can see this by showing

that the original copy of j k must lie strictly to one side of MXj, except at its

endpoints. The curve 7^ is, by construction, a curve on M o Again using the

interior maximum principle, the surface M o can be "slid underneath" MXj

with no first point of contact in the interior. In particular, there is no first

point of contact on the interior of 7^, and we conclude j k lies underneath

MXj. Thus the contact between Mλ f c ) S 0 and MXj occurs in 9M λ f c ι β 0, but can-

not occur within the interior of the translated copy of ηk in dMXkySQ. Hence,

the contact between MXj and Mλfc,5o must occur along the common straight

line boundaries of the two surfaces, and so s 0 must be zero. Therefore MXk

lies entirely underneath MXj. This proves the claim.

In the proof of the claim above, if we replace "MXk" by "Mx.", and we

replace " M λ j " by "Mtrans,λ"> we have a proof that MXj, for any j , lies un-

derneath Mtrans,λ Thus, over any point p £ Ό^ the height of the solutions

Mx. are uniformly bounded above by the height of Mx over p. This allows

us to apply the monotone convergence theorem.

By Theorem 2.2, since the solutions MXj, j > i, are monotonically increas-

ing and are uniformly bounded-above over each p G Du we conclude that

the sequence of solutions {Mx,.}^, restricted to the domain Di, converges

uniformly to some solution over D^. Since the choice of i is arbitrary and

lim ί _ > o o D λ i = J5, we see that the sequence of solutions {M λ j .}^ 1 converges

to a solution over Z>, and we call this solution Mx. Considered as a surface,

Mx has boundary C\, and is a graph over D.

Let Mx be the conjugate surface of Mx. Denote the boundary of Mx by

CΆ, and denote each planar geodesic in Cx by ά*, in correspondence with its

preimage line segment or ray c^ C Cx (see Figure 3.7).
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Note that the surfaces M t r a n S ) λ and Mo both have helicoid ends, which
are asymptotic to each other. Since Mx lies between these two surfaces, the
asymptotic behavior of the end of Mx is determined. We now argue that Mx

has a helicoid end. We do this by showing that Mx has finite total curvature
(thus Mχ has finite total curvature), and then applying Schoen's result on
complete finite-total-curvature ends [Sen].

Choose an orientation on MXι, and consider the Gauss map G : MXi —> S2.
Since MXi is a graph, the image Im(MXι) C S2 of MXι under G must be
contained in a hemisphere. The image Im(Cλ ) °f CXτ = dMXι under G
is a set of curves in S2. MXτ is a compact surface, hence has finite total
curvature. Therefore G is a branched covering map from MXt to Im(MλJ
with finite degree.

Let P be the plane containing the points (0,0,0), (λ, 0,0), and (λ, cos(^),
sin(^)). MXi lies to one side of P at (λ,cos(^),sin(^)), thus G cannot be
branched at this point. Furthermore, from the geometry of CXi, we see that
the preimage set of G( (λ, cos(^), sin(^ ))) in Mx. consists only of the point
(λ,cos(^),sin(^)). Thus the degree of the covering map G must be 1. It
follows that the total area of Im(Mλ.) must be less than 2π for all i, even
when the area is counted with multiplicity. (In fact, the area is close to π for
large values of λ;.) Therefore the total curvature of MXi is less than 2π for
all i, and the limit surface Mx has total curvature at most 2π. In particular,
Mx has finite total curvature.

Since conjugation is an isometry, we know that Mx also has finite total
curvature. First we extend Mx by reflection through the plane containing
άi, and then we extend further by reflection through the plane containing
ά4. The resulting surface is an annulus with one complete end. This end
has finite total curvature. Thus we can apply the result of Schoen [Sen]
to conclude that this end must be either a planar end or a catenoid end.
Clearly Mx does not have a planar end, since the rays αi and α4 do not lie
in a common plane. We conclude that Mx has a helicoid end.

We now show that Mx is the unique minimal surface with a helicoid end
and boundary (7λ, that is a graph over D. Assume there is another such
surface S. Consider sliding S underneath MΛ; that is, consider the proof
of the last claim, but with "Mλfc" replaced by "5" and "M λ j " replaced by
"M λ ". If S is slid underneath Mx in this way, contact αat infinity" (meaning
contact at the ends) between Mx and a copy of S cannot occur before the
boundaries coincide. This follows, since by assumption S has a helicoid
end, and thus the ends of S and Mx are asymptotic to each other. Also, by
the interior maximum principle, contact at a finite point cannot occur before
the boundaries coincide. So first contact occurs exactly when the boundaries
coincide, and therefore S lies underneath Mx. Similarly, we can show that
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α
3

period problem

Figure 3.7: The surface Mλ and its conjugate surface Mλ

λ = 0 λ » 0 period killed

Figure 3.8: The planar geodesic ά3 lying in a plane: for λ close to zero; for
λ large; and for λ adjusted to kill the period

Mλ lies underneath £, and we conclude S — Mχ.
Since Mx is the conjugate surface of a graph over a convex domain, it

is also a graph [Kr], and is therefore embedded. Also, since Mλ is the
conjugate of a surface with a single end that is a 90 degree arc of a helicoid
end, M\ itself has a single end that is a 90 degree arc of a catenoid end.
If ά2 and ά4 were to lie in the same plane, then Mλ could be extended by
Schwarz reflection to a complete embedded minimal surface with catenoid
ends. (The Schwarz reflection principle states that a minimal surface, which
meets a plane orthogonally, may be extended to a larger minimal surface
by reflection in that plane [Scz], [HoMe].) This extended surface would be
an n-oid with a handle symmetrically placed in the middle, i.e. an n-oid of
genus 1. However, ά2 and ά4 do not necessarily lie in the same plane. This
period problem can be viewed clearly by considering ά3 lying in a plane (see
Figure 3.8).

As λ —» 0, the length of ά2 approaches zero and ά3 approaches a curve
on the fundamental piece of the n-oid, as in the first part of Figure 3.8. We
wish to show that for some large value of λ, ά3 appears as in the second part
of Figure 3.8. Then, by the Intermediate Value theorem, there will exist a
value of λ for which ά3 appears as in the third part of Figure 3.8. Therefore



MINIMAL SURFACES WITH CATENOID ENDS 363

Figure 3.9: The planar geodesic α3 and a half-circle lying in the catenoid

the period problem will be solved.
We accomplish this with a helicoidal comparison argument. Consider a

half-turn of a helicoid slid on "top" (again with respect to xγ as height) of
Mλ 5 so that they share the boundary α2, α3, and α4, and so that Mλ

 a n d
this half-turn of a helicoid lie on the same side of the plane P through the
points (0,0,0), (λ,0,0), and (λ,cos(J),sin(^)). If λ is sufficiently large, this
"sliding" can be done so that the first moment of contact occurs along the
boundary curves of the two surfaces. We note that the normal vectors of
the helicoid and Mλ coincide at (λ,0,0) and (λ,cos(^),sin(^)), but not, by
the boundary point maximum principle, at any point of the interior of α3.
Since Mλ lies below the helicoid, the normal of Mλ must turn faster than the
normal of the helicoid, when moving from (λ, cos(^), sin(^ )) to (λ, 0, 0) along
α3. The same is then true along the corresponding curves in Mλ and the
conjugate surface to the helicoid. Recall that the catenoid is the conjugate
surface to the helicoid, thus, the conjugate of α3, as a curve on the helicoid,
is a half-circle. Since the conjugate map is an isometry, the conjugate of α3

as a curve on Mλ, and as a curve on the helicoid, must be of equal length.
The curve ά3 is thus forced to lie below the half-circle in the catenoid (see
Figure 3.9). D

Remark. In order to fully justify the picture we have given of the genus-1
symmetric n-oid, we will show that the only branch points of this surface are
simple branch points on curves identified, under reflection, with the curve
άi.

First note that the Gauss map must be n-to-1 on the genus-1 n-oid. This
follows from a result of Jorge-Meeks [JoMe]: if the n ends of a minimal
surface are each separately embedded, then the degree of the Gauss map is
g -h n — 1, where g is the genus of the underlying Riemann surface.

It is shown in the proof above that λ can be chosen so that Mλ has no
period problem. Choose this value for λ. Note that Mλ has the same normal
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vector at the two extremes of aχi one of these extremes is the endpoint
(0,0,0); and the other extreme is the limit as one travels out to oo along the
positive #2-axis. It follows that the Gauss map must turn back on itself at
some point on aλ, hence the Gauss map has a branch point at some point on
ai. This fact enables us to locate 2n branch points of the Gauss map on the
resulting symmetric n-oid of genus 1. From the Riemann-Hurwitz formula,
we see that these are the only branch points and they must all be simple.

Remark. Theorem 3.1 will not hold in the case n = 2. In this case α3 is
parallel to the α^-axis and therefore the half turn of the helicoid can be slid
underneath Mλ for all positive values of λ. Then by helicoidal comparison
we will always have a situation comparable to the one pictured in figure
3.9, except that α3 will sit above the half circle of the catenoid, thus the
period cannot be killed. Of course, Schoen [Sen] has shown that the only
immersed minimal surfaces with two catenoid ends (and no other ends) are
the catenoids themselves.

A natural question to ask is whether one can add more handles to the
n-oid, especially while preserving symmetry. Our next result shows that a
certain example is impossible.

Theorem 3.3. There does not exist a symmetric n-iod of genus-n such
that one handle is situated on each of the rays originating at the center of
the n-iod and directed through the center of each of the catenoid ends.

Proof. Assume the surface exists, and let M be the conjugate of a fundamen-
tal piece of the surface. Let M be the conjugate surface of M (see Figure
3.10). Regardless of the length of a3 in M, we can slide a piece of a heli-
coid underneath M (again w.r.t. the xλ direction), so that: the boundary
of M and the boundary of the helicoid-piece coincide along αx U a2 U a3;
M and the helicoid-piece lie on the same side of the plane which contains
αi U a2 U α3; and the interior of M lies strictly to one side of the interior of
the helicoid-piece. Then moving from the origin along α2, the normal of M
must rotate ahead of the normal of the helicoid, forcing the corresponding
curves in the conjugate surfaces to always appear as in Figure 3.9. Therefore
the period cannot be killed. D

Remark. Using Karcher's view of the n-oid as the limit of a deformation
of the 2n-winged Scherk's towers ([Kal], [Ka3]), Martin Traizet was able to
numerically argue the existence of a symmetric n-oid of genus n with handles
situated on rays originating from the center and bisecting the axes of the
catenoid ends [Tr] (see Figure 3.11).
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*'...--'

Figure 3.10: The surface M and its conjugate surface M

Figure 3.11: The trinoid of genus 3
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Figure 4.12: The tetroid and the octoid

4. Minimal Surfaces Based on the Platonic Solids

The method of the proof of Theorem 3.1 can be used to prove the existence
of other immersed finite total curvature surfaces with catenoid ends and
genus greater than zero. Recently Y. Xu [Xu] constructed genus-0 immersed
minimal surfaces based on the Platonic solids. Topologically, they can be
thought of as the surface of each Platonic solid with a catenoid end replacing
each vertex of the solid (see Figure 4.12). As before, we rely on the existence
of the genus zero surfaces to construct their higher genus counterparts.

Let T, C, O, V and I be the symmetry groups of the Platonic solids: the
tetrahedron, cube, octahedron, dodecahedron, and icosahedron, respectively.
Note that C and O are isomorphic, as are V and X.

Theorem 4.1. The following minimal surfaces with catenoid ends and
finite total curvature exist:

1) A genus-3 surface with 4 ends and symmetry group isomorphic
to T.

2) A genus-5 surface with 8 ends and symmetry group isomorphic
toC.

3) A genus-7 surface with 6 ends and symmetry group isomorphic
to O (see Figure 4.13).

4) A genus-11 surface with 20 ends and symmetry group isomorphic
to V.

5) A genus~l9 surface with 12 ends and symmetry group isomorphic
to 1.
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Figure 4.13: The octoid of genus 7

Proof. Quotienting by all symmetries, we have the fundamental piece, and its
conjugate, of the genus-0 examples. They appear in Figure 4.14, where 0 l 5

θ2 depend on which Platonic solid we consider. Consider the contour C and
its conjugate (see Figure 4.15). When projected onto a plane perpendicular
to a2 and α4, the contour projects to part of the boundary of an unbounded
convex domain. Viewing the direction of α4 as the height, the existence and
uniqueness of a minimal graph with boundary C and a helicoid end follow
as in the proof of Theorem 3.1. Looking at the conjugate of this surface, we
see that we have a single period problem. Again, since θλ < -, the helicoidal
comparison argument shows that this period problem can be solved.

We list below the values of the angles θλ and θ2 for each of the five surfaces:
1) tetroid Θ1 = z,θ2 = %.

2) cuboid θλ = | , 02 = f.

3) octoid 0! = f , 0 2 = f.

4) dodecoid θγ = f, θ2 = f.

5) icosoid θ1 - f, θ2 = f.

D

Remark. Xu also constructs minimal surfaces which can be thought of
as Platonic solids with catenoid ends added to the edges. While in these
cases we can show that the contour C bounds a minimal surface, we find we
can not apply the helicoidal comparison test to kill the period as the angle
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Figure 4.14: A fundamental piece of the genus-0 surface, and its conjugate
surface

Figure 4.15: The fundamental piece with contour C = aλ U a2 U a3 U α4, and
its conjugate, which is a fundamental piece of the higher genus surface
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z=λ3

Figure 4.16: The image of the Weierstrass Data in equation (5.1)

between a2 and α3, as well as the angle between α3 and α4, is not | .

5. Weierstrass Data for the Genus-1 Trinoid

To construct Weierstrass data for the genus-1 trinoid, it is convenient to
consider one fourth of the surface obtained by quotienting by the reflection
in V and the reflection in one other reflectional plane of symmetry.

Let M be {z G C : lm(z) > 0}. Consider the Weierstrass data satisfying

(5.1) 2 _ (
g — c-

z(z - λ3)
2 77 =

(z - \s)dz

9(z ~ λ2)2

with 0 > λi > λ2 > λ3. With this Weierstrass data, integrating over M,
we have the surface that is one fourth of the genus-1 trinoid (not necessarily
fully symmetric), up to some period problems. The constant c can be chosen
so that the angle between the normals at the ends of the surface is ~ (see
Figure 4.16). The constant c is a positive real, and its exact value is

c =
— A3)

(λ2 - i)(λ2 -

To solve the period problems, we need to have the boundary planar
geodesies αx and α3 in the same plane; we also need to have α2, α4, and
α5 all within a single plane. This can be accomplished by the proper choice
of λi, λ2, and λ3. Using the MESH program [MESH] and a Simplex al-
gorithm, we have found values for λ̂  so that the Weierstrass data produces
one fourth of the symmetric genus-1 trinoid. Surprisingly, we also found one
other set of values for λ̂  which solves the period problem. This surface is not
as symmetric, and suggests the existence of a larger family of less symmetric
n-oids of genus 1 (see Figure 4.17).
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Figure 4.17: Less symmetric trinoids of genus 1: (left) with angles of ψ-
between the normals of the ends, and (right) where those angles are y1, y1,
and ^

By adjusting the value of c one can still solve the period problem with
the Simplex method and produce genus-1 trinoids where the normals at the
ends to not form angles of ^ξ (see Figure 4.17).
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