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Recently, B.E.J. Dahlberg and C.E. Kenig considered the
Neumann problem, Au = 0in D, du/dv = f on D, for Laplace’s
equation in a Lipschitz domain D. One of their main results
considers this problem when the data lies in the atomic Hardy
space H!(0D) and they show that the solution has gradient in
L'(8D). The aim of this paper is to establish an extension of
their theorem for data in the Hardy space H?(dD), 1-e <p < 1,
where 0 < € < 1/n is a positive constant which depends only on
m, the maximum of the Lipschitz constants of the functions
which define the boundary of the domain. We also extend G.
Verchota’s and Dahlberg and Kenig’s theorem on the poten-
tial representation of solutions of the Neumann problem to
the range 1 — ¢ < p < 1. This has the interesting consequence
that the double-layer potential is invertible on Holder spaces
C*(0D) for a close to zero.

The techniques of this paper are a modification of those of Dahlberg and
Kenig [6]. In Lemma 2.10 of [6], Varopoulos’s extension lemma and H*'(8D)-
VMO(0D) duality are used to show that a harmonic function with nontan-
gential maximal function in L'(0D) has normal derivative in H*(6D). This
argument fails when p < 1, since we cannot realize H?(3D) as a dual space.
To substitute for the use of their Lemma 2.10, we observe that solutions of
the Dirichlet problem with HY(9D)-data have normal derivative in H?(0D).
This follows from Dahlberg and Kenig’s construction. Then, we need to
prove a uniqueness result in order to know that the functions produced by
the single-layer potential are identical to the functions constructed in their
existence theorem. We remark that we are also able to give a direct proof
that M(Vu) € L?(0D) implies 0u/0v € H?(0D) when (n —1)/n < p < 1.
This is done using atomic decomposition techniques of M. Wilson [16]. We
remark that, after seeing a preliminary version of this paper, Wei Cao and
E. Fabes [1] established similar results on the invertibility of the potential
operators using an extension of the techniques in [2].

1. Existence.

We let D C R"™ denote a connected Lipschitz domain. Thus for every @ €
0D, there is an r > 0, a coordinate system on R™ and a Lipschitz function

389
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¢: R™! - R with ¢(0) = 0 and such that
Z(Q,1007) N dD = {(X'X,,) : X, = qS(X’)} N Z(Q,100 )
and
Z(Q,1007) N D = {(X', X,,) : X, > $(X)} N Z(Q,100 1)
where

Z(Q,s) ={(X",X,) : | X' - Q| <s, | Xn—Qn| <(1+2m)s}.

We call Z(Q), s) a coordinate cylinder for 9D. We note that since 8D is com-
pact, we may assume that 0D is covered by a finite collection of coordinate
cylinders whose radii r are bounded below by ry.

Our results will only be proven for starshaped Lipschitz domains in R",
n > 3. This means that, after a translation, 0 € 2 and if X € (2, then
rX € Q for 0 < r < 1. These assumptions are inherited from the work of
Dahlberg and Kenig. It is easier to prove Theorems A and B quoted below
for these special domains. It is not difficult to extend these results to more
general domains, but we do not discuss this extension here.

We let A(Qo,7) = {P € 0D : |P — Qo| < r} and assume that r is less than
diam(dD). We let d = n — 1 denote the dimension of dD. We say that a is
an atom for H?(0D) if for some Qo and r we have

i) suppa C A(Qo,r)
i) [ a@d@=0
A(Qo,7)

i)  lallzzao,r)) < cr—d/p=1/2),

When1>p> FERT the space H?(9D) is defined as the collection

{£+ f=3Na; with 3" X < oo}

for some sequence of atoms a;. The quasi-norm for H?(0D) given by

1 1m0y = i {30 7= 3" Njay}-

We note that the infinite sums appearing here do not exist as functions.
Rather one must view elements of H?(9D) as linear functionals on spaces of
nice functions. In fact, the dual of H?(0D), d/(d+1) < p < 1, is the space of
Hoélder continuous function of exponent a(p) = d(1—p)/p. Thus, the pairing
between an element of H?(9D) and C*)(8D) is defined. We will abuse
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notation by writing this pairing as an integral f,,fudQ for f € H?(9D),
and u € C*?)(9D). We recall that H?(0D) is not a Banach space since the
triangle inequality fails. However, we may define a metric on H?(9D) by
- Q”?n(av)-

In studying the exterior Neumann problem, it will be useful to introduce
the space H?(AD). This is defined in the same manner as H?(dD), but we
include the atom xsp. We let C*(8D), 0 < a < 1, denote the collection of
equivalence classes of Holder continuous functions which differ by a constant.
The norm is given by

I fllcaap) = sup W

where the f is any representative of f. Finally, we define C*(8D) as the
space of functions for which the norm (| f||g«(5py = | fllz=(op) + I fllc=(sp)
is finite. We let Cg(A) denote the set of functions in C*(A) which have a
compactly supported representative.

We study the following boundary value problems:

Au=0, inD Au=0, inD
(NP) du (DP)
—=f, ondD w=f, ondD.

ov
Since we will consider boundary values in (NP) which are not functions,
we need to define the sense in which du/0v exists at the boundary. Let
f € H?(0D). We say that du/0v = f on 0D if for each coordinate cylinder
Z and compactly supported function ¢ € C*(0D N Z), a = d(1/p — 1), we

have
im [ p(@F4(@de= [ @f(@4q
€ aDbNz v 8D

where 4. (X) = u(X + €e,) is defined in a neighborhood of Z N D. We will
also need to define tangential derivatives at the boundary. Let Z, ¢ be a
coordinate cylinder. If f is smooth in a neighborhood of Z N AD, then we
define tangential derivatives by

Of (y1 1ixryy 9O

f(X, (X)), i=1,...,n—1L

If w is smooth in D, we say that V,,,u exists in the H?(0D) sense if for
each coordinate cylinder Z, there exists fi,..., fn_1 € HP(0D) so that for
allyp € C¢(ODN Z)

i ou
im
e=0+ Jopnz OT;

(Q+Sen)¢(Q)dQ=/ani¢, i=1,....n—1
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An important part of the argument for inverting the layer potentials is the
study of the Dirichlet problem when the data has one derivative in H?(9D).
We call this space H?(0D) and give a precise definition by defining atoms.
We say that A is an atom for HY(9D) if for some Qy € dD and r > 0, we
have

i) suppA C A(Qo,7)NOD

i) [[VianAllr2op) < rmdt/p=1/2)
and then define HY (D) as the [P-span of these atoms. We note that our
definition of H{ (8D) is slightly different than the one given in [6]. However,
it is easy to see that the resulting spaces coincide.

We begin by stating Dahlberg and Kenig’s existence results for solutions
with atomic data. Their results for H'(9D) have a little wiggle room so they
also apply to H?(0D). To state these results, we will use the nontangential
maximum function. For a function v which is continuous on D, this is defined
by

M(v)(P) = sup [v(X)]

Xer(p)

where '(P) is the nontangential approach region
r(P)={yeD: |y - Pl <2/T+m?5(Y)}
and §(Y) denotes the distance from Y to the boundary of D.

Theorem A. Let a be an atom for H?(dD) and suppose that a is supported
in A(Qo,r). There exists n > 0 such that if p > 2/(n + 2), then there is a
unique solution of (NP) which satisfies

) / M(Vu)(P)2 dP < Gr—42/p=)
8D

ii) M(Vu)(P)?|P — Qo|* M dP < crdnt2=2/p)
oD

iii)  We have that u|sp € HP(OD) and if we normalize by setting u(0) = 0,
then ||ullgrap) < C.

Similarly, if a € ﬁp(BD), is an atom, then the solution of the exterior

Neumann problem in R™\ D satisfies i) and ii). If we normalize by requiring

u to vanish at infinity, then we obtain the estimate of iii) also.

We also quote the corresponding result for HY (0D)-atoms.

Theorem B. Let A be an atom for HY (D) which is supported in A(Qo,T).
There exists 1 > 0 such that if p > 2/(n + 2), then the L3-solution of the
Dirichlet problem with data A satisfies

i) / M(Vu)(P)*dP < Cr—d4@/r=1)
oD
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) / M(Vu)(P)2|P - Qold(1+")dP < Crint+2-2/p)
8D
iii) Ou/0v € H?(0D) and ||0u/0v| g»apy < C

iv) wu has tangential derivatives in the H?-sense.

Theorem A and B are established in [6]. The estimates iii) are not ex-
plicitly stated in their paper. However, they follow easily from i) and ii) via
the idea of a molecule (see [4]). The statements for the exterior problems
may be obtained from the interior problems (in a different domain) using
the Kelvin transform.

As immediate corollaries of Theorems A and B, we obtain the solvability
of the boundary value problems with data in HY(0D) and H?(0D). In these
theorems and in much of the rest of this article, we will restrict p to the
range 1 — 6, < p <1 where 1/n > §,, > 0 is determined by the following
three conditions: 1) d,, < 1 —2/(n + 2) where 7 is as in Theorems A and
B. 2) If p > 1 - 4,, then we must be able to solve the Dirichlet problem
with data in the dual space, C*P (D), a(p) = d(1/p — 1), and obtain a
solution in C*® (D) (see Lemma 2.3). 3) The Neumann Green’s function
for domains lying above the graph of a function with Lipschitz constant m
must lie in C*®) away from the singularity. See [6] or Theorem 2.8 below
for the construction of this Green’s function.

Theorem C. Let 1 > p > 1 — 4, and suppose that f € HP(OD). Then the
interior Neumann problem with data f has a solution u which satisfies

llull g apy + [|M (V)| e opy < Cllf|laea0)

when u is normalized by u(0) = 0. For the exterior problem, we allow f in
H?(OD) and we normalize by setting u(co) = 0. This solution satisfies the
estimate

lullezopy + 1M (Vu)llLeop) < Clifll 2 (o)
Furthermore, the normal and tangential derivatives of u exist in the sense
described above.

Theorem D. Let 1 —6,, < p < 1 and suppose f € H{(OD). Then the
interior Dirichlet problem with data f has a solution in D which satisfies

ou

| M (Vu)llL»ap) + W

< C|lfllaeop)-

H?(8D)
For the exterior problem, we have

ou

| M (Vu)l|Lrap) + 9

< Cllfll e (apy-

Hr(8D)
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In each case, the normal and tangential derivatives exist in the sense de-
scribed above.

We close this section with a theorem whose proof is due to M. Wilson. We
observe that if u is harmonic in a Lipschitz domain D, M (Vu) lies in LP(9D),
p > (n—1)/n, then we may define Ju/0v as a linear functional on Lipschitz
functions on the boundary. In fact, if ¢ is supported in a coordinate cylinder
Z, then

(1.1)
lim w(Q)g—g(Q + €e,) dQ = €l_i)rglL A Vi (Y)Vu(Y + ee,)dY.

=0t Joapnz

Using Lemma 2.1 below, one can see that
[ 1Vu(Q + ren)|dQ < 1P M (T |10 o)
apnz

Hence, for p > (n—1)/n the integral on the right of (1.1) converges as e — 0
(see also the proof of Theorem 2.9).

Theorem 1.2. Let (n —1)/n < p <1 and suppose that u is harmonic with
M(Vu) € LP(OD), then we may find an atomic decomposition of du/dv
into H?(0OD) atoms. In particular, Ou/0v is in HP?(OD). For the exterior
domain, we obtain the normal derivative is in H?(OD).

This may be proven using the techniques of M. Wilson from [16]. His
argument works without alteration in domains lying above the graph of a
Lipschitz function. We leave the details of general domains to the reader.
We note that this theorem provides a different proof of the estimates for
the normal derivative in Theorem D. It would be interesting to see if the
estimates of the boundary values of u in Theorem C can be obtained this
way.

2. Uniqueness.

In this section, we show that the solutions described in section one are
unique. This also depends on the ideas developed in [6]. However, there
are some technical difficulties in dealing with the case p < 1. Our main
new tool is Lemma 2.2 which allows us to estimate the L'-norm of M (u) in
terms of the LP-norm of M(Vu), p = (n — 1)/n. This is a version of the
Hardy-Littlewood theorem on fractional integration. In Lemma 2.2 below,
we prove a sharp version of this result. We will show that for harmonic u,
we can always control || M (u)||pa/(a-p) by [|M(Vu)|,, when p < n —1 = d.
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In our first lemma, we let f;;, f denote the average |E|~! [, f. Similar results
are known for classical Hardy spaces. In [9], Krantz proves a fractional in-
tegration result for atomic Hardy spaces. Earlier, Stein and Weiss observe
that the theorem on fractional integration holds for the Hardy spaces which
they define in [13]. In one dimension, the result dates back to Hardy and
Littlewood.

Lemma 2.1. Let w be harmonic in D and let Z be a coordinate cylinder
and let a be a multi-index with nonnegative entries, then

0*w
0X«

()] < G300 M @) o)

Proof. Using interior estimates for harmonic functions, we have

8°w C e
X) < P ][ Vu(Y)PdY
6X°'( )< §(X)lel ( B(X,&(X)/Z)I w(¥)| )

1/p
< Co(x)el f , M(Vw)(Q)? dQ
A(X,C8(X))

< Cpm,ad(X) ™7l M (V)|

where X denotes a point on 8D satisfying 6(X) = | X — X|. ]

Lemma 2.2. Let D be a connected Lipschitz domain and suppose that u is
harmonic in D. Let X* be a fized point in D and suppose that u(X*) = 0.
For p < d and p* = dp/(d — p) we have

| M (u)ll Lo+ ap) < CIIM (V)| Lr(oD)

where the constant C' depends on the distance of X* to the boundary, p and
the Lipschitz character of 0D.

Proof. We prove the corresponding result for a domain
D={(X",X,): X,> X"}

which lies above the graph of a Lipschitz function ¢. From Lemma 2.1, we
have [Vu(X)| < C§(X)~%P. Tt follows that limy,_ _,., u(X', X,) exists and
is independent of X'. Thus we may add a constant to u and obtain that u
vanishes at infinity. Also, after replacing u by u.(X) = u(X + €ee,,), we may
assume that M(u) € L (D).
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We will need the area integral which is defined by

AWQF = [ [Vu(¥)PIY - QF "y

Q)

where I''(Q) D I'(Q) is a strictly larger cone defined by
{XeD:6(x) <avi+mix -Ql}.

To estimate M (u), we use the fundamental theorem of calculus and Hélder’s
inequality to obtain that for each n > 0,

X < [ |

a ds

(X', s)

327

< ([ = oeenvutx )P s)

(/ (s = (X)) |Vu(X', )| = ds
= B,(X)*"B (X)l 2n,

Since B;(X) is essentially the g-function, we have B;(X) < CA(u)(Q) for
X eT(Q).

To study the function B,(X), we let Bx: , denote the ball B((X', s), ¢i[s—
#(X")]) where ¢, is chosen so that Bx:, lies in D and we let Ax,, =
A(Q, Cls — $(X")]). If we choose C sufficiently large, then we have

)%:—2'7,7(1—277)

By(X)FF <G, [ (5= (X)) 0L  (Gu(y) ' dYds
X, By

8

<Cym / oo(s — P(X"))" /- M(Vu)(P) =5 dPds.
Xn

AX',.!

Changing the order of integration in this last integral, we obtain
By(X)F% < C/ M(Vu)(P) 5P — Q| F2-4dP
8D

=F(Q)T", XeT(Q).

By the Hardy-Littlewood theorem on fractional integration [12, p. 119], we
have
|1l Lo op) < CIIM(Vu)l|r(op)

whenp <d, 3 >n>0and,ifp <1,7>(1-p)/(2—p). Combining our
estimates for 31 and B,, we have

1M (w)llzo* o0y < CHA@IT3- o) 1M (Vi) 7 (5
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Now, we may use Dahlberg’s estimate [5] for the area integral, || A(u)||r»(ap)
< C||\M(u)||z»(op), and our a priori assumption that M(u) is in LP" (D)
to obtain the estimate of the theorem. O

Our final preliminary result studies the action of the generalized Riesz
transforms on C*(0D) when D is a Lipschitz domain. We restrict our atten-
tion to domains lying above the graph of a Lipschitz function and introduce
the notation Dy = {(X', X,,) : X,, > ¢(X")} with ||[V|l. = m.

Lemma 2.3. Let ¢ : R"' — R be Lipschitz. There exists oy depending
only on m such that for f € C*(0D,), 0 < a < ag, we may find a harmonic
gradient (w*,...,w™) satisfying w™(Q) = f(Q),

ow'  ow .
9%, = ax, hi=1,...,n
ow _o

i:laXi

Aw' =0, i=1,...,n.
Furthermore, each of these functions is Holder continuous in Dy and satisfies

Hwi”m(m) < Cllfllcaany), i=1,...,n.

This is fairly standard, thus our proof will be brief.

Proof. We let w™ be the solution of the Dirichlet problem in D, with data
f. We have |[w"||ca(p,) < Cllfllce(sp,)- Next, we apply interior estimates
to the harmonic function w™(-) — w™(X) on the ball B(X,d(X)/2) to obtain
that

AP uwm

(2.4) o

(X)| <

< C(S(X)a—‘m”wnnca(f)d,), 18] > 1.

The converse also holds for any function which is in C.(Dy):

(2.5) lullce(5,) < Cam sup 6(X)'~|Vu(X)|.
XeD

I3

We can define the conjugate functions by the formula
X)=- V— (X', s)ds.
Vw*(X) /X,. 8Xi(X’5)s

The estimate (2.4) guarantees that this integral is converges and (2.5) implies
the functions w* are Holder continuous. O
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Lemma 2.6. If (w',...,w") is a harmonic gradient satisfying w™ > 0, w"
vanishes continuously on 0D \ A(Qo,T), and Xlim w'(X', X,,) = 0 for each
n—*00

1 then

sup {Jw'(X)| : dist (X, A(Qo,7)) > 7} < CrgIM(w™)]l,-

Proof. We first observe that Chebyshev’s inequality implies that
|w™(Qo + re,)| < Crl|M(w™)]|Laap)-

Using the boundary Harnack principle (see [8, Lemma 5.4], for example), we
obtain that for some a > 0

(2.7) w™(X)<C,, (i(;:(—)-)aw"(Qo +re,), X € D\ B(Qo,2r).

Applying the maximum principle in Dy \ B(Qy, 2r) yields that w™ is bounded
there.
To obtain the boundedness of w* we observe that (2.7) implies that

[Vw™(X)] < Crad(X)* T [M(w")lg, X € Dy \ B(Qo,2r).
While Lemma 2.1 gives
[Vw™(X)] < Comd(X) ™| M (w™) || Lo (op)-

Using these estimates and writing w™ as an integral of its derivative,

‘(X) = - '
w'(X) e (X', s)ds,
gives the boundedness of the functions w*. |

We are now ready to give our uniqueness result for the Neumann problem.

Theorem 2.8 (Uniqueness in NP). If 1 —4,, < p < 1, u satisfies

Au=0
M (Vu) € L?(0D)
and Ou/Ov vanishes in the HP-sense, then u is a constant.

Proof. We fix a coordinate cylinder (Z, ¢) and let X* = (X',2¢(X') — X,,)
be reflection in the graph of ¢. We let G(X,Y) be the Green’s function
G(X,Y)+G(X,Y*) = N(X,Y) be the Neumann kernel for D4 constructed
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in [6, p. 447]. We have that N(X,Q) € C*(dD) for 0 < a < a(m). This
follows since G(X,Y’) is the fundamental solution in R" of an operator whose
coefficients are bounded and measurable [10, 11].

We let 1 be a cutoff function satisfying x;,2z < 9 < xz. We have

(X )= [ NOGY)u(Y)Aply)dY
+2 / N(X,Y)Vu (Y)Vi(Y)dY

(2.9) [ NxQu@P

aD ov

[ v @2y aq

oD ov

= A(X) + B(X) + C(X) + D(X).

(Q)dQ

To establish uniqueness, we first show that u is bounded in 41Z. We
observe that N(X,Y) < C[|X —= Y|P " +|X* = Y[|*™"] for X € D, [10].
Thus, we have

1\ 1
IC(X)| < / lu.(Q)] dQ dist (X, (-z) ) . Xelz
ZnaD 2 4
Next, we observe that Lemma 2.1 implies that

/Z R [Vu | dX < C|M(Vul)l™? / ZTO /a M(Vu,)(P)dPr=*-»/? gy
< C|\M(Vu)llp, when p > (d — 1)/d.

This gives
|B| < CIIM(Vu)ll, - dist (X,1/22°)*7".

The term D vanishes as ¢ — 07 because the normal derivative vanishes in
the HP-sense. This follows because N(X,-) is in C*(8D). The term A is
easy to estimate and we omit the details. The estimates on A through C
and the vanishing of D imply that u is bounded.

To see that u is constant, we choose f in the Hardy space H!(0D). By
Theorem C, there exists a solution ¢ to (NP), with data f and M (V%) in
L'(8D). We let u(X) = u((1 — €)X) and consider

/ “f(@%%(@ (@) T Q) dQ = 0.
oD 14 v

We note that
/ ou./Ovip, =0
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as € = 07 since 1, is smooth. Also,

/ w B, Oy — / udep, /O

since our claim that u is bounded implies that  has nontangential limits
a.e, (see [8], for example). Finally,

0y .9
0= . d
_/31) ov - 8D 81/ Q
as 7 — 0% because u is bounded and ||0,%, — 0,%||11(op). Thus we have

shown that
/ uf =0
aD

for every f € H*(0D). Finally, we know that bounded harmonic functions in
Lipschitz domains are the Poisson integral of their boundary values. Hence,
u is constant. O

Theorem 2.10. Suppose that Au = 0, M(Vu) € LP(8D) and p lies between
1 -6, and 1. If the tangential derivatives of u vanish in the HP-sense and
the nontangential limits of u vanish on 8D, then u =0 in D.

Proof. We will begin by showing that for each nonnegative f € C§(ZNoD),
we have

ou,
(211) el—il(l)}F aD 81/

(Q)f(Q)dQ

exists and the limit satisfies
(2.12) ‘ / = dQ

where w is the solution of Aw = 0, w = f on 8D. Since ||M(w)|]2 < C||fll2,
the second inequality implies that du/dv is in L?(9D).

Towards establishing (2.11) and (2.12), we fix a coordinate cylinder Z and
let f € C§(8D N Z) be nonnegative. We choose a smooth cutoff function
which satisfies x.z < 1 < x4z. For n, € > 0 we have

[y aq
oD ov

< |IM(w)|lz2ap) - 1M (V)| Lrap)

:/ un?;’b'we-{-’u,n

- / uyw A + 2u, VP - Vo, dX
D

= [ AQ) +B(Q)dQ- /D Ci(X) + Co(X) dX.

oD
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We observe that %% is supported in (4Z \ 2Z) N 9D hence

A(Q) < M(u)(Q)IM (w)]l2

by Lemma 2.6. To bound the integrand, C,(X), we note that Vi) is sup-
ported in 47 \ 2Z, hence we may use the observation of Lemma 2.6 that
[Vw(X)| < CHX)*Y|M(w)l]2 in 4Z \ 2Z to estimate

Co(Q +req) < M(u)(Q)r* | M (w") || L2 (op)-
The estimate for C(X) is also easy.

This leaves the main term [, B to be understood. We let w™, w™™!, ... w
be the harmonic gradient determined by f (see Lemma 2.3) and write

| w@u

1

( ) dQ

- /Rn_JP(X’,¢<X’)>un(X',¢<X'>> (*23? (X', ¢(X))
+Zw 'amﬁﬂ'
= J P X (X 6 ( (X' ))l> dx’

au,,

-——LDﬁaww«m§%«»+w«mm<> (@)dQ

= - | Bi(@+B(Q)dQ.
8D
By Lemma 2.6, we have

Bi(Q) < M(u)(Q)IM (w™)l|L2(op)-

Our hypothesis that du/dT; vanishes implies that [ B, vanishes as ¢ — 07.
Thus, we may let € — 07 in each of these expressions and then let 7 go to
zero to obtain (2.11) and (2.12). This uses Lemma 2.2 to bound the L!-norm
of M (u).

Our next step is to show that the nontangential maximal function of u is
in L?(0D). This and our assumption that v has nontangential limits of 0
a.e. on 0D are sufficient to imply that u vanishes identically on 0D.

As in Theorem 2.8, we fix a coordinate cylinder Z, a cutoff function v
and let N(X,Y) be the Neumann Green’s function for a graph domain D,
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for which DN2Z = DyN2Z. We let u.(X) = u(X + €e,) and apply Green’s
formula to obtain

vu(X) = [ NXQ (45 +ul@ @) dQ

+ /D N(X,Y) (u (V) AG(Y) + Vu(Y) - V(Y)) dY.

We have just shown that we may let € — 0% in the term involving Ou./0v.
Since Lemma 2.2 implies M (u,) € L*(dD) and as in the proof of Theorem
2.8 we have Vu, and u, in L'(D), we may let ¢ — 0% in the representation
formula for 1u,. and obtain

wulx) = [ N Q@5 0
+ /D N(X, V) (@Y)AG(Y) + Vu(Y) - Vip(Y)) dY
— A(X) + B(X).

As in Theorem 2.8, the term B(X) is clearly bounded in 1/4Z, say. To
estimate B(X), we use our observation above that du/dv is in L? of the
boundary. In fact, since N(X,Y) < C|X —Y|>* ™ in D, it is easy to see that
the nontangential maximal function of A(X) is in L?(D). This establishes
our claim about M (u) and hence the Theorem follows. g

Remark. The calculation used to estimate the term B in the study of
Ou/dv was used by G. Verchota in [15].

3. Layer potentials.

In this section, we show that the solutions of the Neumann problem con-
structed in Section 2 may also be represented as single-layer potentials. This
representation follows from the estimates of Theorem C and D via an ar-
gument of G. Verchota [14, 15]. Using the potential representation of the
solutions of the Neumann problem, we immediately obtain a potential rep-
resentation for solutions of the Dirichlet problem with data in C*(8D) (or
C*(8D) for the exterior Dirichlet problem).

We begin by defining these potentials and recalling their mapping prop-

erties. We let ]

(n — 2)wn| X |2

denote the fundamental solution of Laplace’s equation in R™, n > 3. Here,
wy, denotes the volume of the unit ball in R*. We define the single-layer

T(X) =
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potential of f € H?(9D), by
S(NX) = [ T(X - Q)f(QdQ, X € R"\oD.

Note that we may also define S(f) on 8D as an element of LP¥/(4=P)(9D).
This is the familiar Hardy-Littlewood theorem on fractional integration
which extends easily to the setting of atomic Hardy spaces. Next, we define
the double-layer potential by

D) = [ b—f%(X Q) (Q)dQ.

Notice that if X ¢ D, then

or
ap Ov(Q)
Thus the double-layer potential of an equivalence class {f(Q) +r: r € R}

in C*(0D) is well-defined. To discuss the boundary values of the potentials,
we introduce the boundary potential operators:

(X - Q)dQ = /D AyT(X —Y)dY =0,

KNP =pv. [ 5P - QF(QdQ
and ar
KUNP) = pv. [ 5P~ Q)@

The boundedness of K : H?(AD) — H?(8D) (and on H?(8D)) is a con-
sequence of the results of Coifman, Meyer and McIntosh [3] on the Cauchy
integral on Lipschitz curves (see also [7, 14]).

Hence, we let v = v+ denote the outer normal to D and v~ = —v* denote
the outer normal to D* = R™\ dD. We let S*(f) and S~(f) denote the
restrictions of S(f) to D and D* respectively. Similarly, we let D*(f) and
D~(f) denote the restrictions of D(f) to D and D*. We summarize the
boundary behavior of these operators in our next two results.

Theorem 3.1. Let p > L == 1. Then we have
d+1 n
9s*(f) _ 1 . p
—‘&/T—if‘f'lc(f), f € H?(6D)
as—(f) _ 1

=S —K'(f),  feH" (D)
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1
(51 + ]C*) (f) + ||M(VS+(f))||Lr(aD)+|l3(f)||H;’(6D)
H?(8D)
< C||fllar o)
1
(5 I— /c*) O . +IMES(H))erop)+HIS ()l op)
A? (D)
< Cllfllarom)-

The normal derivatives and the tangential derivatives ezist at the boundary
in the sense described in Section 1.

Theorem 3.2. Let 0 < a < 1 and suppose that f € C*(D), then we have
that

D¥()lo = 3f +K(f) ace
D~ (flop = —5f +K(f) o

and we may redefine K(f) so that these equalities hold everywhere. Further-
more, we have

”D+(f)”c‘*a(ap) < C”f”éa(an)

and

“D_(f)“C“(BD) < C”f“ca(aD)-

Finally, we have that 31 + K : C*(8D) — C*(8D) is the adjoint of 31+
K*: H?(OD) — H?(OD) and that —iI + K : C*(8D) — C*(0D) is the
adjoint of —1I + K* : HP(OD) — H?(0D) when o and p are related by

a=d(i-1).

The next result uses the ideas of G. Verchota [14, 15] to establish our
main estimate.

Proposition 3.3. Let D be a starshaped Lipschitz domain, then we have
1 .
17y < €1 (3 + K ) (o

and

e
7 omy < 1l (3= ) (Do
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Proof. We consider the first estimate. From Theorem 3.1, and the uniqueness
results of Theorems 2.8 and 2.10, we see that the estimates of Theorem C
and D apply to S(f) in D and D*. Thus

lmom < | (3145 ) 0]+ (51-5) 0

+ CIS(F)arop)
H?(8D)

H?(8D)

|

H?(8D)

<C

(L)

The first inequality is the triangle inequality, the second is Theorem C and
the third is Theorem D. The proof of the second estimate of our theorem is
similar. Ol

We are now ready to give our representation theorem for solutions of the
Dirichlet problem with C'* data.

Theorem 3.4. Let D be a starshaped Lipschitz domain and let 1 —e < p < 1.
Then the maps

%1 + K. HP(OD) — H?(8D)

1 ~ -
5]— K*: H*(0D) —» HP(dD)
are invertible.

Proof. The estimate of Proposition 3.3 implies that %I + K* is injective
and has closed image. Thus, to establish the invertibility, we only need
show that the image of I 4 K* is dense in H?(0D). But this is easy since
it is known [14, 15] that 1I + K* is invertible on L}(0D) = L*(dD) N
{(f:ff=0} O

Corollary 3.5. The maps

+%I + K :C(0D) - C*(aD)
and

—%1 +K: G*(dD) - G*(aD)

are invertible for 0 < a < de/(1 — €) where € is as in Theorem 3.4.

Proof. This follows immediately from Theorem 3.4 and the duality relations
stated in Theorem 3.2. U
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