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We shall study geometric properties of the harmonic Lipj-
capacity κ!n(E), E C Rn. It is related to functions which are
harmonic outside E and locally Lipschitzian everywhere. We
shall show that κ!n+1{E x /) is comparable to κ'n{E) for E c R n

and for intervals / C R. We shall also show that if E lies
on a Lipschitz graph, then κ'n(E) is comparable to the (n —
l)-dimensional Hausdorff measure Ήn~1(E). Finally we give
some general criteria to guarantee that κ!n{E) — 0 although
nn~ι{E) >o.

1. Introduction

We shall investigate some geometric properties of the harmonic Lipschitz
and C1 capacities κ'n and κn in Rn which were introduced in [P]. For the
definitions see Section 2. The compact null-sets of these capacities are ex-
actly the removable sets for the corresponding classes of harmonic functions,
see Section 2, and they appear very naturally in connection of harmonic ap-
proximation problems, cf. [P]. The analogs for them in theory of bounded
analytic functions of the complex plane are the analytic capacity 7 and the
continuous analytic capacity α, see e.g. [G2].

In Section 3 we shall study sets E x / in R n + 1 where E is a bounded set
in R n and / an interval in R. We shall show that n'n+ι{E x /) is comparable
to κ'n(E) and κn+1(E x /) to nn{E). This gives some information about
the geometric measure-theoretic properties of the null-sets of κ,'n. First we
note that, as for the analytic capacity, it is easy to see that if the (n — 1)-
dimensional Hausdorff measure Ή.n~ι{E) of E is zero, then κ'n{E) = 0 and
that if the Hausdorff dimension of E is greater than n — 1, then n'n{E) >
n(E) > 0. Thus problems occur only when E has dimension n — 1 and
Wn~ι(E) > 0. Since the null-sets for 7 are also null-sets for κ'2, we can start
from the many known examples where j(E) = 0 and Ή}(E) > 0, see e.g.
[V], [Gl], [G2], [M2] and [FX], and take products with intervals to obtain
various compact sets E in R n with κ'n(E) = 0 and Ήn~ι(E) > 0. Earlier
Uy in [U2] generalized the example and technique of Garnett from [Gl] to
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find such a set. We shall also see that the null-sets for κ'n and the (n — 1)-
dimensional integral-geometric (Favard) measure are different. For n = 2
this follows from [M3] and for general n by taking products with intervals.

In Section 4 we shall study κ'n on sufficiently regular hypersurfaces, for
example on Lipschitz graphs. Using the methods of singular integrals, as
in [C, §VΠ] and [Ul], we show that on such surfaces κ'n is comparable to

In the last section we shall give some general geometric measure-theoretic
conditions on compact subsets E of R n with 0 < %n~ι(E) < oo which
imply κ'n{E) = 0. Corresponding results for 7 were found in [M2]. These
conditions apply for example to (n—l)-dimensional self-similar sets satisfying
Hutchinson's open set condition, see [H], yielding that such a set has zero n'n
capacity unless it lies on a hyperplane. For sets lying on a hyperplane, κ!n is
comparable to Hn~ι as follows from Section 4, or already from [Ul, p. 298]
and [P, Lemma 2.2 (8)].

2. Preliminaries

The norms | |/| | and | |/ | |μ of a function / will stand for the L°° norms of / with
respect to the Lebesgue measure and a Borel measure μ in Rn, respectively.
For a measure μ, ||μ|| is its variation norm. We denote by B(x, r) or Bn(x, r)
the open ball with center x G Rn and radius r.

Let Lip^R 7 1 ) be the set of all real-valued locally Lipschitz functions
(with exponent 1) on R n and Cιoc(Hn) the set of all real-valued continuously
differentiable functions on R n (both without any assumption on the behavior
at 00). The fundamental solution Φn for the Laplace equation Δ n / = 0 in
R n is defined by

forn = 2,

for n > 3, where an > 0 is a constant.n~2

We now introduce the classes of admissible functions for the definitions of
harmonic capacities. For a bounded set E in Rn, set

Un(E) = {fe C U R " ) : Supp(Δn/) C E, ||Vn/|| < 1, Vn/(oo) = 0},

{fe Lipίoc(Rn) : Supp(Δn/) C E, ||Vn/|| < 1, Vn/(oo) = 0},

where Supp(Δn/) is the support of the distribution Δ n / . We shall consider
functions modulo constants in Un(E) and U^E), that is, we shall write f — g
for functions / and g in Un(E) and U^(E) if / — g is constant. Note that
the functions in Un(E) and U^E) are harmonic in R n \ E and the defining
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conditions mean that / = Φn * (Δn/) + constant. The Cι and Lipschitz
harmonic capacities of E are defined by

κn{E) = sup{ (Δn/, 1) : / G Un(E)},

κ'n{E) = sup {(Anf,l):feK(E)},

where, as usual, (#, φ) means the action of the distribution g on a smooth
function φ.

Letting a(n — 1) be the volume of the unit ball in R n - 1 , we define the
(n — l)-dimensional (spherical) Hausdorίf measure for a subset E of R n by

OO CO

Un-\E) = liminf { Σa(n - ljr?"1 : E C (J B{xun), r, < <*}.
i—\ i=l

Then /Hn~1 in R n - 1 is the Lebesgue measure and, more generally, its restric-
tion to sufficiently regular hypersurfaces gives the surface measure. We also
let σ(n) = H^1 (S71'1) be the area of the unit sphere in Rn.

We shall now show that the null-sets for the above harmonic capacities
are the same as the removable sets for the corresponding classes of harmonic
functions. This fact was already noted in [P, Remark 2.4].

Definition 2.1. A subset E of R n is called L'ψ1 -removable for harmonic
functions, abbreviated LiRH, if for each domain D in R n every locally
Lipschitz function f : D -> R which is harmonic in D \ E is harmonic in D.

The C1 removable sets for harmonic functions, CλRH, are defined in a
similar way.

Proposition 2.2. A bounded subset E o/Rn is
(1) LλRH if and only if κ'n(E) = 0,

(2) CιRH if and only if κn(E) = 0.

Proof We shall prove (1); the proof of (2) is similar.
Let E be LλRH. If / G U'n{E), then / is harmonic on Rn. Since |/(a;)| =

O(Φn(α;)), as \x\ —>> oo, Liouville's theorem yields that / is constant. Hence
(Δ/, 1) - 0, which gives < ( £ ) - 0.

Suppose E is not LXRH. Then there exist a compact subset F of E, a
domain D and a locally Lipschitz function f on D which is harmonic in
D \ F but not in D. Then / is not harmonic in the distributional sense
which means that there exists φ G C™(D) with (Δf,φ) = (/, Aφ) > 0. Set
fφ = Φn * {φAf). In the same way as in [P, Lemma 4.2] one can prove
that fφ e Lipj^R") and ||V/<J = A < oo. Since Supp(Afφ) C F, we have
fφ/A e U'n{F) and (A(fφ/A),l) = (φAf, 1) /A = (Af,φ)/A > 0. Thus

> 0 and so <(£) > 0. D
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Remark. As noted in [P, Lemma 2.2 (9)], κ'2(E) < 2πj(E) for E C R 2 .
However, it is not known whether κ'2(E) > Ay(E) for some constant A,
nor even whether κ>2(E) = 0 implies *y(E) = 0. Another fundamental open
problem is to decide if κ'2(K) > i4diam(ίί) for continua K C R 2 . For 7 this
holds, see [G2].

3. Harmonic capacities of product sets

We shall prove the following estimates:

Theorem 3.1. Let r and δ be positive numbers, E C £?n(0,r) ; n > 2, and

E = Ex [0,ί] CR n + 1 . Then

and

where A is a positive and finite constant depending only on n.

Proof. First we prove the left hand side inequality in (1). We can find / G
Un(E) with (Δ n /,1) = κn{E)/2. Define F G C ^ R " * 1 ) by F{x,xn+1) =
/(x). Obviously, | | V n + i F | | < 1. Choose a C°° function φλ such that
Supp<£i C jBn(0,max{2ί,2r}), 0 < ψι < 1, (pi = 1 in some neigborhood
of 2£ and | |Δn^χ || < A1/δ2. Here and below in this proof AliA2,... will be
positive constants depending only on n. Choose also a C°° function ψ2 such
that Suppφ 2 C (0,5), 0 < ψ2 < 1, φ2 = 1 on (5/3,25/3) and | | ^ | | < A 2/5 2.
Define ^ by <^(x,a;n+i) = ψι(x) φ2(xn+ι) for x G R n , xn+i € R. Then

Consider the localizing operator of Vitushkin:

Fφ = Φ n + 1 * {φAn+1F).

According to [P, Lemma 4.2] one has

| | V n + 1 F J < A 4max{5 2,r 2}/5 2 = M.

Since

n+1Fψ(x,xn+1) = ψi(x) φ2{xn+1)An^1F(x

= (pi(a ) ψ2(ocn+1)Anf(x),
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we have S u p p ί Δ ^ ! ^ ) C E and Fφ/M e Un+1{E). Finally

{An+1Fφ,l) = (φ1(x)φ2(xn+1)Anf(x),l)

= (Anf,l)Jφ2(t)dt>δκn{E)fi,

which gives

as required.
Next we prove the right hand side inequality of (1). Choose F G Un+1{E)

with ( Δ n + 1 F , 1) = nn+ι(E)/2. Let R = 2max{£,r} so that E C 5 n + 1 (0, i?) .
There exists k > 1, depending only on n, such that for (x,x n + 1 ) G R n + 1 \
Bn+1(0,kR) one has

(3) F(£,α;n+i) = ^ cad
aΦn+1{x:xn+ι)

|α|>0

Here α G Z^ + 1 , |α |, 9 α and α! are as usual, cf. [P, §2]. Note that c(0,.. ,0) =

/^ n + 1 ( i )/2and, by [P, (3.4)],

() K K Λ V
α!

Define F R by

FR(x,xn+1) = F(x,xn+1) - F((x,xn+1)

and / by
/•CXD

f(x)= FR(x,t)dt.
J — oo

(When n > 3 we can take FR — F and the computations below will be
easier.) Evidently / G C^R™) and / is harmonic outside ER = E U E'R
where JS^ = {x G R n : a; + (5iϊ, 0, . . . , 0) G £7}.

We need to estimate | |Vn/|| and the behavior of /(x 1 ), where x1 =
(^i,0,... ,0), as xι —>• cxo. We obtain from the estimate [P, (3.5)] for
\(x,xn+1)\ > kR,

and from the fact that | |V n+iFβ| | < 2 we derive

Aβκn+1(E)rKJK p

(5) \Vnf(x)\< 2dt +
J-kR Jk

dt

kR (\χ\z + tηn^
/•OO

Aeκn+ι{E)\x\ι-n / (1 + r 2 )-" / 2 dr
JkRI\x\kR/\x\

1~n < ASR,
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since κn+1(E) < A9R
n by [P, Lemma 2.2 (2) and (4)].

Let xι = (#1,0,..., 0) E R n with Xγ > 5kR. By the mean value theorem,

for each a E Z++ 1 there exists a number Xι(t) E [xι,X\ + 5R] such that

5Λ,0,... ,0,t)

1(xf(t),0,...,0,t)

where α ; = a + (1,0,..., 0) E Z++ 1. We recall the elementary estimate

\daΦn+1(x,xn+1)\ <a\k[a{/\(x,xn+1)Γ1+lai ,

where &! depends only on n, cf. [P, (2.1)], and the following facts:

d . Λ αn+i(n-l)yi
Φ ( y )

where a ̂ ί) = Xι'"'0\t) and a?! > 5fci?. From these observations using (3)

and (4), one obtains

™«n(n-l){χi{t)2+t2){n+1)/2dt

(n+|α|)/2
|α|>l_

dt

r̂" I (1 +

(l +

The last integral may be estimated from above by / ^ ( l 4- r 2) ^ T = π.
From the elementary properties of geometric series one sees that for Xι >
(5k + 10kχ)R the last series converges and the following estimate holds:

\f(xι)\ > A12Rκn+ι(E)x\-n - A13R
2κn+1(E)xϊn.

Hence for xι big enough

(6) \f{x1)\>AuRκn+1{E)\x1\1-n.
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In the same way we have for |x| > (5k + lOk^R the estimate

(7) \f{x)\<AlbRκn+1(E)\x\1'n,

whence / = Φn * (Δ n /) .
Write as in (3)

(8) f{x) =

Since for large |a;|, Φn(x) ~ M2~n? when n > 3, and Φ2(#) ~ log|#|, and

since \diΦn(x)\ « |α;i||a;|~"n, we see from (6), (7) and (8) that 6(o,...,o) — 0 a n d

(9) |&i| > A16Rκn+ι(E) where bλ = &(i,o,...,o)

On the other hand, since by (5), f/(A$R) £ Un(ER), one finds from

[P, Lemma 3.3] that

(10) \b1\/(AsR)<A17Rκn(ER).

Using a partition of unity and [P, Lemma 4.2] one can easily prove that

KΠ(ER) < Al8κn(E). From (9) and (10) we then have

A16Rκn+1{E) < A19R
2κn(E),

which completes the proof of (1).
By the definition of κ'n it is enough to prove (2) for compact sets E. But

for them one has by [P, Lemma 2.2 (1) and (7)],

κ'n(E) = i n f « ( G ) :EcG,Gis open}.

The rest is clear, since κ'n(G) = κn(G) for open sets G. D

As remarked before the following result was already obtained by Uy in

[U2]:

Corollary 3.2. For each n > 2 there exists a compact set En in R n such

that κ'n(En) = 0 and H"-1^) > 0.

Proof. For E C R2, κ'2(E) < 2π-γ{E), cf. [P, Lemma 2.2(9)]. Examples of
compact sets E2 C R 2 with j(E2) = 0 and Ή}(E2) > 0 have been given
in [V], [Gl], [G2], [M2] and [FX]. Since Un(E x [0,1]) - nn~ι(E) for
E C R71"1, the result follows starting from such a set E2 and taking products
with intervals. D
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Remark. The set En in 3.2 can also have non-σ-finite T-Ln~ι measure since
such an E2 was shown to exist in [G2], However, its Hausdorff dimension
can be at most n — 1.

The integral-geometric (Favard) measure Xn~ι can be defined for Borel
sets E in R n by

= jj card {E Π Pγι{y})

where card(jP) gives the number of points in F, 7n>n_i is the natural invariant
measure on the space of (n — l)-dimensional linear subspaces of Rn, and
Pv : R n -> V denotes the orthogonal projection, see [FH, 2.10.5 and 15].
Thus Xn~ι(E) - 0 if and only if Un-λ{PvE) = 0 for 7Ujn_1 almost all
V. By elementary linear algebra one sees that Xn~~1(E) — 0 if and only if
In(E x [0,1]) = 0. It was shown in [M3] that the class of compact null-sets
for X1 in R2 is not conformally invariant. Hence the compact null-sets for
X1 and κ2 are not the same. Using Theorem 3.1 we obtain this in any Rn,
n > 2:

Corollary 3.3. The classes of compact null-sets for Xn~ι and κ'n are
different.

Remark. Jones and Murai showed in [JM] that there exists a compact set
E C R 2 with Xι{E) = 0 and η{E) > 0. It is not clear to us whether their
proof also works for κ'2.

4. Harmonic Lipx-capacity on AD-regular sets

We shall say that a subset E of R n is AD-regular (Ahlfors and David) if
there exist positive and finite constants Aι and A2 such that

(4.1) A^-1 < nn~x {E Π B(x, r))

< A2r
n~l for all x e E, 0 < r < diam(J5).

We shall show that if the singular integral operators related to the Riesz
kernels l^l"71^, i — 1,... ,n, are bounded on L2(E), then κ'n and Hn~ι are
comparable on E. This assumption is valid on sufficiently regular hypersur-
faces like Lipschitz graphs or bilipschitz images of R n - 1 . For the theory of
singular integrals on AD-regular sets, see [D2] and [DS]. The results of this
chapter are known in R2 for the analytic capacity, see e.g. [C].

We begin with a simple modification of the result [C, Theorem 23, p. 107]
(a generalization of Uy's result [Ul], cf. also [VJ, pp. 165-167]) on extremal
problems for singular integrals. Let X be a locally compact Hausdorff space.
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Denote by C0(X) the space of continuous functions on X vanishing at infin-
ity, that is, the set of functions / : X -> R such that for every ε > 0 there
is a compact set K C X for which \f{x)\ < ε for x G X \ K. We equip
Co(X) with the supremum norm. Its dual is ΛΊ(X), the space of all finite
signed Radon measures on X equipped with the total variation norm. Let
T : Λ4(X) —> C0(X) be a linear operator. We assume that its transpose T*
sends M(X) into C0(X), that is, T* : M{X) -> C(X) is defined by

[(TvJ dv2 = ί(TV2) for i/1? i/2

L e m m a 4.2. Lei μ be a positive Radon measure on a locally compact
Hausdorff space X and let Ti : Λ4(X) -> C(X), i = l , . . . , n 7 δe bounded
linear operators. Suppose that each T* sends M{X) into C0(X) and it is of
weak type (1,1) with respect to μ, that is there exists a constant A such that

(1) μ{x : \T?v(x)\ > a] < AαΓ1 ||i/||

for i = 1,... ,n, a > 0, and v G λΛ{X). Then for r > 0 and any Borel set
E C X with 0 < μ(ϋ7) < oo there exists h : X -> [0,1] in L°°(μ) satisfying
h(x) =0forxeX\E,

(2) / hdμ>μ{E)/2
JE

and

(3) ||Ti(/ιdμ)|| < (n + r)A /or i = l , . . . , n .

Proo/. Define an operator T : M{X)-> C{X)n = y by Ti/ = (T^, . . . ,Tni/).
For Φ = (Φ 1 ? . . . ,Φ n ) G y put | |Φ|| = max{||Φi|| : i = 1,... ,n}. Suppose
we can find a Borel set £7 C X and r > 0 contradicting the assertion of the
lemma. Set

Bo = {/ °°(μ) : 0 < / < 1, /(a;) - 0 for x G X \ JS

and / fdμ>μ(E)/2},

= {T(fdμ):feB0},
= {geY:\\g\\<(n +

Then Bλ and 5 2 are disjoint convex subsets of the Banach space Y and B2

has non-empty interior. The dual Y* of y consists of λ of the form
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with the norm ||λ|| = ]£!Li ||λi||. By a well-known separation lemma [R, p. 58]
we can find such a λ G Γ for which

n p n

Σ / h i d χ i > Σ I9id\ for (&!,...,Λ a)eBi, (gu-• • ,9n) e B2.
2 = 1

This means that

n

(4) 2 [τi(fdμ)dλi>Σ 19id\i
2 = 1 ^ 2 = 1 ^

for f e Bo and g = (gu... ,ρn) G J52.
Taking supremum over # G i?2 in (4) one gets

n «

(5) (n + τ)A||λ|| < ]Γ Ti(fdμ)d\i for / G Bo.
2 = 1

Applying (1) with a replaced by a{ = 2nA\\λi\\/μ(E) we can write for each
i = l , . . . ,n

Hence for

E' = {x € E : \T*λi(x)\ <a>i for i = 1,... ,n}

we have μ(E*) > μ(^)/2. Define / by / = μ(E)/(2μ(E')) on # ' and / = 0
o n l \ £ ' . Then / G Bo, but

2 = 1 ^ 2 = 1

n

2 = 1

which contradicts (5). This completes the proof. D

Let now Γ be a closed AD-regular subset of R n as defined in (4.1). Denote
by μΓ the restriction of W1'1 to Γ;

μΓ(E) = Un-ι(T Π E) for E C Rn.

For i — 1,..., n and ε > 0 we define the truncated singular integral operators

Έln\B{x,ε)
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where bn = (n—2)αn for n > 3, b2 — l/(2π), with an as in the definition of Φn

in Section 2. We shall consider AD-regular sets Γ for which these operators
are bounded in L2(μΓ) uniformly with respect to ε > 0. This means that
there exists A\ < oo such that

(4.3) \\TlJ\\2 < Ax\\fh for / € L2(μΓ), ε > 0, i = 1,... ,n.

Here and below || | |p means the Lp-norm with respect to μr For various con-
sequences of (4.3), see [CW, Ch. 3] and [C, § 6]. For example, one can show
that the maximal operators T£, T[^f(x) = sup e > 0 \T[ef(x)\, are bounded in
Lp for 1 < p < oo and of weak type (1,1).

As mentioned before the condition (4.3) is known to hold for many hy-
persurfaces parametrized by Lipschitz maps. For such results see [D2] and
[DS]. However, it is not known, even when n — 2, whether (4.3) implies
some kind of rectifiability of Γ.

We shall now prove that T-Ln~1 and κ'n are comparable on AD-regular sets
satisfying (4.3).

Theorem 4.4. Let T be a closed AD-regular subset ofHn satisfying (4.3).
Then there exists a positive and finite constant A depending only on Γ such
that for all closed sets E C Γ ;

(1) A'1μΓ(E)<κl

n(E)<AμΓ(E).

Proof. The scheme is similar to that in [C], pp. 105, 107-111, the proofs of
Theorems 17 and 18.

Fix a radial function φ e C°°(Rn) such that φ = 0 on 5(0,1/2) and φ = l
on R n \ 5(0,1). For ε > 0 define

f[j(x) = bnjφ(^)^pf(y)dμΓy for / G L\μτ).

From the regularity of Γ one easily checks that for x G Γ and ε > 0

\f[j(x)-TU(x)\<A1Mf(x),

where Mf is the Hardy-Littlewood maximal function corresponding to μΓ]

1 r
Mf{x) = sup — T — r^ / / dμΓ.

r>0 μr{B(x,r)) JB(x,r)

Here and below AUA2,... are finite constants depending only on Γ and φ.
It is well-known that M is bounded in Lp for 1 < p < oo and of weak type
(1,1). For example the method of [S, § 1] generalizes readily from Lebesgue
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measure to our case, or see [CW, Theorem 2.1, Ch. 3] for the weak type

(1,1). Thus the operators f[ε are uniformly bounded in L2(μΓ). The kernels

satisfy the conditions of [CW, Theorem 2.4, Ch. 3], which implies that there

exists a constant A2 such that

μΓ{x G Γ : \f[j(x)\ > a} < A2a-1\\f\\1 for / 6 L\μτ).

Since the kernel k^ε is smooth, we can extend the operator T[ε from Lι(μΓ)

to M(T) with

(2) μΓ{xeΓ:\flεv(x)\>a}<A2a-ι\\ιs\\ for v e M(Γ).

Now we can apply Lemma 4.2 to T* — τ£ ε . Observe that then T* = —T{.
Fix any compact set E in Γ with 0 < μ(E) < oo. We can find for each ε > 0
a function hε G L°°(μΓ) such that 0 < /iε < 1, /ιε = 0 outside E,

Jhεdμτ>μΓ(E)/2

and

One can easily prove, as in [C, p. 110], that (3) yields

where Uε is the ε-neighborhood of Γ. Since the functions Tfεhε are continu-
ous, harmonic outside Uε (as ki^ε(x,y) — (dΦn/dXi)(x — y) for \x — y\ > ε)
and vanish at oo, we have by the maximum principle

Put fε = Φn * (hε dμΓ). Since

for x 6 R" \ Ue, we have

(4) |V/e(x)| < VnA3 for i 6 R n \ Uε
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There exists a sequence εk | 0 such that hεkdμΓ converges weakly to some
measure u0. Trivially v0 = hodμΓ where 0 < h0 < 1, h0 — 0 outside E, and
fhodμΓ>μΓ(E)/2.

Put /o = Φn * (h0 dμΓ). Since fo(x) = l i m * ^ fεh (x) for x eRn\E, f0 is
harmonic in Rn \ E and we obtain from (4) that

(5) |V/o(a;)| <V^Λ3 foτxeΈin\E.

Furthermore, uo(B(a^δ)) < A4δ
n~1 implies that /0 is continuous. Since

7ίn~1(E) < oo, almost all lines in any fixed direction meet £ in a finite
set, see [FH, 2.10.25]. These facts together with (5) easily yield that / E
Lipίoc(Rn). Hence fo/(y/ϊίA3) eU^E), but

(Δ/0,l>= JhodμΓ>μΓ(E)/2,

which gives the left hand side of (1). The right hand side is elementary, see
[P, Lemma 2.2(1)]. D

From the proof of Theorem 4.4 we get more.

Definition 4.5. For a bounded set E in R n define

κ+{E) =sup {v{E) : v is a positive Radon

measure with Suppz^ C E and ||VΦn * i/|| < 1}.

Corollary 4.6. In the inequalities (1) of Theorem 4.4 κ'n can be replaced
by κ'+.

Remarks. We say that a subset E of Rn is (n - l)-rectifiable if Un~ι (E) <
oo and there are (n — l)-dimensional C1 submanifolds of R n M1,M2,...
such that Un~λ(E \ U^Mi) = 0. A set E C R n is called purely (n - 1)-
unrectifiable if /Hn~1(EΠM) = 0 for all (n — l)-dimensional C1 submanifolds
M. In both of these definitions C1 submanifolds can be replaced by Lips-
chitz images of R n - 1 , see [FH, § 3.2]. If E is an Hn~ι measurable (n - 1)-
rectifiable subset of R n with /Hn~ι{E) > 0, E contains a closed subset F with
Ήn~ι(F) > 0 which lies on a Lipschitz graph. Thus by Theorem 4.4 and the
aforementioned validity of (4.3) on Lipschitz graphs, 0 < κr

n(F) < κ'n(E). It
seems plausible that the converse might also hold, which would mean that
the answer to the following question is affirmative:

Is it true that if E is a closed subset of R n with Un~ι{E) < oo, then
κ'n{E) = 0 if and only if E is purely (n — l)-unrectifiable?

The answer is not known even for n = 2. The examples of sets E with
κ'n(E) — 0 in Chapter 3 as well as those presented in the next chapter are
purely (n — l)-unrectifiable.
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5. A class of sets with zero κ'n capacity

In this chapter we shall develop the method of [M2] to find a rather large
class of compact subsets of R n having positive %n~ι measure and zero κr

n

capacity. We first present some preliminary results.

Lemma 5.1. Let j B c R n be Hn~ι measurable with Un~ι{E) < oo. Then

(1) 2 1 - n < l i m s u p α ( n - l ) - V 1 - n Ή n - 1 ( £ ; n β ( x , r ) ) < 1

for T-Ln~ι almost all x E E, and

(2) limr1~nΉn~1(E Π B(x,r)) =0

for Un~γ almost all x E R n \ E.

For a proof see [FH, 2.10.19].

L e m m a 5.2. Let E C R n be Un~l measurable with Un~x[E) < oo. Then
for Wι~ι almost all x E A there exists v E Sn~1 such that

(1) l i m i n f r 1 " 7 1 ? ^ 1 " 1 ^ E EnB(x,r) : (y - x) v < -η\y - x\} =0

for all η > 0.

By a simple limiting argument one sees that it is sufficient to prove that
whenever a fixed η > 0 is given, then for Ή.n~ι almost all x E E there is
υ E Sn~ι such that (1) holds. This can be proven with a modification of the
argument given by Marstrand in [MJ, pp. 295-297].

L e m m a 5.3. Let X be a compact subset ofHn with /Hn~ι(X) < oo and let μ

be the restriction ofU71'1 to X normalized so that μ{A) = ^^Hn~1{XnA)

for A C R n . Suppose that f E U'n{X). Then there exists h E L°°{μ)

with \\h\\μ < 1; such that Δ / — hdμ in the distributional sense, that is7

f = Φ n * (hdμ).

(Recall our convention to identify two functions which differ by a con-

stant.)

Proof. For each m — 1, 2,.. . we can find a finite number j m of balls Bm;j,
j — 1,. . . , j m , with radii rmj such that

(1) Xc(jBmtj, rmJ<l/m, £ σ{n)rn^ < μ(X) + 1/m.
J = l 3=1
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Let Gm — uij^Bmj and δm = dist(X, dGm) > 0. Choose a radial function
φ G Cg°(B(0,l)) with 0 < φ < 1, |Δ<p| < Ai and Jφ{x)dx = 1. Here and
later in this proof Ai,A2,-.. will be constants depending only on n. For
δ > 0 write ^(ar) = δ-nφ(x/δ). Then J φδ(x) dx = 1. Let / m = ̂ m / 2 * /.
One can easily check that fm = / in a neighborhood of R n \ Gm and that
/ m G C°°(Rn) with |V/m| < 1. Then we have fm = Φn * Δ/ m . Moreover,
since Δ/ m = Δ/ = 0 in R n \ G m , Gauss formula gives for all x E R n \ G m ,

(2) f(x) - /m(a;) = / Φn(x - y)Δ/m(y) dy

{divy{Φn{x-y)Vyfm(y))-VyΦn(x-y) Vyfm(y))dy

(* - y) V/(y) rfy,

= ί
JG

where ι/y is the outer unit normal to dGm and σm is the surface measure on

dGm, that is, σm = H n - 1 | 9 G m .
Write /im - ^ σ m - | ^ σ m . Then by (1),

(3) | | μ m | | < | | V / | | | | σ m | | < μ ( X ) + l/m.

Let μ0 be the weak limit of some subsequence (μmfc) of (μm). Then Suppμ0 C
X and ||μo | | < μ(X) by (3). Fix any x G R n \ X. By (2) we can write for k
big enough,

(4) f(χ) = Φn * μmfc (x) + / VΦn(x - y) V/(y) dy.

By (1), nn{Gmk) -> 0, whence

VΦn(rr - y) V/(y) dyl < ̂ 2 / k - y Γ " n φ -> 0.

Thus (4) yields
f(x) = Φ n *μ 0 (x)

for x G R n \ X. In particular / = Φn * μ0 ?ΐn almost everywhere. Since
/ G Lip^R 7 1 ) and Φn*μo € A1

Oc(Rn)' t h i s implies that / and Φn *μ 0 agree
as distributions, and so

Δ/ = Δ Φ n * μ 0 = /i0-

It remains to prove that /i = dμo/dμ G L°°(μ) and ||/ι||μ < 1. To this end
it is enough to prove that for each open ball B and its closure B,

(5) \μo\(B)<μ(B).
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In fact, given a closed ball B we can apply (5) to open balls Bi I B to see

that

\μo\(B) < lim \μo\(Bi) < lim μ(Bi) = μ(B),

which gives \\h\\μ < 1.
Suppose that we could find an open ball B and ε > 0 such that \μo\(B) >

(μ(B) + ε). There exists a compact set K C X \ B such that

(6) μ(K)>μ(X\B)-εβ.

Let δε = dist(K,~B) > 0. For all k big enough,

(7) maxrm f c > i < l/mk < δε/2, and

(8) Σtσ{n)(rmkJ)
n"1<μ(X)+ε/2.

i=i

Let

J'k = {j : Bm f c J f i5?έ ί } , ^ = {j : BmkjΠKΪ 0}.

For all fe big enough we have also

(9)

Prom (7) we have B r o f c ) i l n 5 T O f c i J 2 = 0 for j x 6 J£ and j 2 6 4 ' so that by (8),
(9) and (6),

jtJ'k jer,:

< μ(X) + ε/2 - μ(K) + ε/4

< μ(X) -μ(X\B) + ε = μ(B) + ε.

By the definition of μmk, since ||V/|| < 1, we then have

\μmk\(XnB)<

= σ(n) Σ r- i < μ(B) + ε.

Since μπik —> μo>
 w e obtain

^ lim inf |μmfc |(B) < μ(B) + ε,
fc-»oo
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which contradicts our first assumption. The lemma is proven. D

Let K(x) = |x|~nj; = constant VΦn(x). For a signed Borel measure μ in
R n and ε > 0 define

Kμ(x) — / K(x — y) dμy, when the integral exists,

K(x-y)dμy,

Kn\B(x,ε)

and

ε>0

The proof of the following lemma was suggested by S. Semmes.

Lemma 5.4. Let μ be a signed Borel measure in R n such that \μ\B(x,r) <
rn~x for x E R n

; r > 0. Then

where A is a constant depending only on n.

Proof. Suppose L = \\Kμ\\ < oo. For ε > 0 and x G R n we estimate the
average

x,ε) Oi{Π)εn JB(y,2ί Γ^ I
B(x,ε) Oi{Π)εn JB(y,2ε)

Here and below the constants AUA2,... depend only on n. Hence there is
z e B(x,ε/2) with \Kμ(z)\ < L and

/.B(x,ε)
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Thus

\K?(x)-K"(z)\ =

< / k " ΐ - d ΐ - i 7 y Π ^ + / lz-yll~n

Kn\B(x,ε)

<A2ε l J
ψ.n\B(x,ε)

\z-y\-"d\μ\y+

B(x,ε)

\x - y\nd\μ\y

Both of the last two integrals can be estimated in the same way. For example,
as z e J3(z,ε/2),

/

<
\z-y\-nd\μ\y = ] \z-y\^d\μ\y

Un\B(x,ε)

oo

j=o
oo

n - 1 = 2 2 n " 1 ε - 2 2 n ε " 1 .

j = 0 j = 0

Thus
\K^{x)\ < \κ>{x)

which proves the lemma.

\K»{z)\

D

Theorem 5.5. Let X be a compact subset ofΈln with Ί-ίn λ(X) < oo such
that for some constant A,

(1)
1-1 {X Π β(α, r)) < Arn-χ for a E Rn, r > 0.

Suppose that the following holds at %n ι almost all points a G X: For every
v E S12"1 there is δ > 0 such that

(2) (a,r) : \(y - a) • v\ > δ\y - a\\ > 0.

/. Suppose that κ'n{X) > 0. Using the definition of κ'n and Lemma 5.3 we
find h E L^iH^lX) such that 0 < ||Λ|| < 1 and, with K = constant VΦn

as before,

(3)
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By Lusin's theorem there is a compact set F C {x G X : h(x) φ 0} such
that Ήn~ι(F) > 0 and h\F is continuous. Applying part (2) of Lemma 5.1
to E = X\F and Lemma 5.2 to E = X, we find a point a G F and υ G 5 n - 1

such that

(4) Iimr 1 - n « n - 1 ((X \ F) Π B(α, r)) - 0,

(5) liminf rι~nnn-ι{y eXΠ B(a,r) : (y - a) • v < -η\y - α|} = 0

for any 77 > 0, and that the assumption of the theorem holds at a. We shall

prove that for μ = hΉn~ι\X,

(6) | ^ ( α ) | = o o ,

which will contradict Lemma 5.4.

To establish (6) we may assume a = 0, Λ(0) = /? > 0 and υ = (1,0,..., 0).
Let δ > 0 be as in (2) corresponding to 0 and υ and let a be the lower limit
in (2) corresponding to 0, v and δ. We introduce some notation: Let m be
a positive integer and set

t=(a/(SA))ι/ίn-1\

B(r) = B(0,r),

C(r) = {x e B(r) : δ\x\ < \Xl\},

C+ = {x: δ\x\ < Xi},

C- = {x:Xι< -η\x\},

D+ = {x : 0 < Xi < δ\x\},

D~ = {x : -η\x\ < xx < 0},

E = {xeX : h(x) > β/2}.

Using the continuity of h\F, (4), (5) and (2), we find S > 0 such that for all

0 < r < S,

(7) Un~ι ({X \E)Π B{a, r)) < εrn~\

(8) nn~x(menB(S)) <
(9) r-'^nCWJ^X"

Put s = tmS and for j = 1,..., m,



488 P. MATTILA & P.V. PARAMONOV

Then

> nn~x (x n C(tj-χs)) - %n~x {x n B(tjs))
- nn~x ((x \E)n B(S)) - nn~x (xnc~n B(S))

> ίa{t>~1S)n-1 - A{tjS)n-χ - 2εSn~1

= {a/2 - Atn~ι - 2εt{n-1)(1-j))(tj-1S)n~1

Let φ, ψ(x) = \x\~nXι, be the first coordinate function of K. Prom the
last estimate we get

ί φ(x)h{x)dUn-χx>\βδ f \x\χ-ndUn-χx

> \βδ{tj-χs)χ-nnn-χ{E n c+ n Rό)

> jraβδ.

By (7) and (8),

H^iRj \E)< ε(tj-χS)n-χ <

Hn-χ(EnRjnc-) <εSn~x,

so that

</ φ(x)h(x)dnn-1x

= 2εtύ{ι-n) < ±aβδ.

For x E Rj\ C", φ(x) > -η^1'71, whence by (1)

/
φ(x)h(x) dίHn~ιx > — η(tjS)1~nT-Ln~1(Rj)

EnR,\(c+υc-)

Putting these estimates together we have

/ φ{x)h(x)dnn~1x > jQaβδ.
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Summing over j ,

/ φ(x)h{x)
XΠB(S)\B(s)

Since we can choose m as large as we please, independently of α, β and 5,
(6) follows, and the theorem is proven. D

Remarks. The assumption (1) in Theorem 5.5 is actually superfluous. It
was introduced in order that we could apply Lemma 5.4. Without that a
more complicated argument using Lemma 5.1 would work as in [M2].

In [U2] Uy showed that κ'n(X) = 0 where X is the n-fold product of
the ordinary Cantor set in R with dissection ratio 2~n//(n~1) (so that 0 <
/Hn~1(X) < oo). The assumptions of Theorem 5.5 hold in that case. They
hold also for many other self-similar constructions.

Following Hutchinson [H] we say that a compact subset X of R n is self-
similar satisfying the open set condition if there exist contracting similarity
maps Si : R n -> Rn, i — 1,..., JV, N > 2, and a bounded non-empty open
set O such that

N

= \JSi(X),
2 = 1

(J Si(O) C O and

2 = 1

N

Corollary 5.6 Let X be as above. IfΉn~~1(X) < oo and X does not lie
in any (n — l)-plane, then κ'n(X) — 0.

Proof. The assumption (1) of Theorem 5.5 follows from the proof of
[H, Theorem 5.1]. The assumption (2) follows from [Ml, Theorem 4.2].

D

References

[C] M. Christ, Lectures on Singular Integral Operators, Regional Conference Series in
Mathematics, Amer. Math. Soc, 77, 1990.

[CW] R.R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains
Espaces Homogenes, Lecture Notes in Math., 242, Springer-Verlag, Berlin 1971.

[Dl] G. David, Operateurs d'integrale singuliere sur Ics surfaces regulieres, Ann. Sci.
Ecole Norm. Sup. (4), 21(1988), 225-258.



490 P. MATTILA & P.V. PARAMONOV

[D2] G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes
in Math., 1465, Springer-Verlag, New York 1991.

[DS] G. David and S. Semmes, Singular integrals and rectifiability of subsets of R n ,
Asterisque 193, Societe Mathematique de France 1991.

[FX] X. Fang, The Cauchy integral of C alder on and analytic capacity, Ph. D. dissertation,
Yale University 1990.

[FH] H. Federer, Geometric Measure Theory, Springer-Verlag, New York 1969.

[Gl] J. Garnett, Positive length but zero analytic capacity, Proc. Amer. Math. Soc, 24
(1970), 696-699.

[G2] J. Garnett, Analytic Capacity and Measure, Lecture Notes in Math., 297, Springer-
Verlag, New York 1972.

[H] J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981),
713-747.

[JM] P.W. Jones and T. Murai, Positive analytic capacity but zero Buffon needle proba-
bility, Pacific. J. Math., 133 (1988), 99-114.

[MJ] J.M. Marstrand, Some fundamental geometrical properties of plane sets of fractional
dimensions, Proc. London Math. Soc. (3), 4 (1954), 257-302.

[Ml] P. Mattila, On the structure of self-similar fractals, Ann. Acad. Sci. Fenn. Ser. A
I Math., 7 (1982), 189-195.

[M2] P. Mattila, A class of sets with positive length and zero analytic capacity, Ann.
Acad. Sci. Fenn. Ser. A I Math., 10 (1985), 387-395.

[M3] P. Mattila, Smooth maps, null-sets for integralgeometric measure and analytic ca-
pacity, Ann. of Math., 123 (1986), 303-309.

[P] P.V. Paramonov, On harmonic approximation in the Cι-norm, Math. USSR-Sb.,
71 (1992), 183-207.

[R] W. Rudin, Functional Analysis, McGraw Hill, Inc., New York 1973.

[S] E.M. Stein, Singular integrals and Differentiability Properties of Functions, Prince-
ton University Press, Princeton, N.J. 1970.

[Ul] N.X. Uy, An extremal problem on singular integrals, Amer. J. Math., 102 (1980),
279-290.

[U2] N.X. Uy, A removable set for Lipschitz harmonic functions, Mich. Math. J., 37
(1990), 45-51.

[VJ] J. Verdera, Cm approximations by solutions of elliptic equations, and Calderόn-
Zygmund operators, Duke Math. J., 55 (1987), 157-187.

[V] A.G. Vitushkin, Example of a set of positive length but zero analytic capacity, Dokl.

Akad. Nauk. SSSR, 127 (1959), 246-249 (Russian).

Received March 9, 1993. The second author was supported in part by grant 93-011-255

(Russian Foundation of Fundamental Research).

UNIVERSITY OF JYVASKYLA

P.O. Box 35

FIN-40351 JYVASKYLA

FINLAND



HARMONIC Lipx-CAPACITY 491

AND

STEKLOV INSTITUE OF MATHEMATICS

117 333 Moscow, UL. VAVILOVA 42
RUSSIA

Notes added in proof: (1) V. Eiderman has observed that there is an error in [G2] so
that we cannot use this reference in the remark following Corollary 3.2. However Ivanov
has given an example of such a set Ei in "On sets of analytic capacity zero, in Linear
and Complex Analysis Problem Book 3, Part II, Lecture Notes in Math., 1574, Springer-
Verlag, 1994."
(2) Recently it has been proved in "P. Mattila, M.S. Melnikov and J. Verdera, The Cauchy
integral, analytic capacity and uniform rectifiability, to appear in Ann. of Math." that for
1-dimensional AD-regular set E the condition (4.3) holds if and only if E is contained in
an AD-regular curve.
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