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The purpose of this paper is two fold. The first one is
to construct a continuous new family of irreducible (some of
them are unitarizable) modules for Toroidal algebras. The
second one is to describe the sub-quotients of the (integrable)
modules constructed through the use of Vertex operators.

Introduction.

Toroidal algebras 7(4 are defined for every d > 1 and when d = 1 they are
precisely the untwisted affine Lie-algebras. Such an affine algebra G can be

realized as the universal central extension of the loop algebra G ®C[t, t7]
where G is simple finite dimensional Lie-algebra over C. It is well known

that G is a one dimensional central extension of G ®C[t,~']. The Toroidal
algebras 74 are the universal central extensions of the iterated loop algebra

G ®C[t', - - - t31] which, for d > 2, turnout to be infinite central extension.
These algebras are interesting because they are related to the Lie-algebra of
Map (X, G), the infinite dimensional group of polynomial maps of X to the
complex algebraic group G where X is a d-dimensional torus.

For additional material on recent developments in the theory of Toroidal
algebras one may consult [BC|, [FM] and [MS].

In [MEY] and [EM] a countable family of modules (also integrable see
[EMY]) are constructed for Toroidal algebras on Fock space through the use
of Vertex Operators (Theorem 3.4, [EM]). However they are reducible and
not completely reducible. In §5 we observe that the Fock space is a direct
sum of certain b(A)'s. In (5.10) to (5.12) we prove that each b(\) admits
a filteration by an increasing sequence of modules such that the successive
quotients are all isomorphic to V' defined in §5. In (5.9) we prove that
each V admits a filteration of decreasing sequence of modules such that the
successive quotients are all irreducible. In our main Theorem 5.6 we will
describe the irreducible modules as certain iterated loop modules twisted by
an automorphism of 7.
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We now describe the contents of the paper.

In §1 we construct an iterated loop algebra of Kac-Moody Lie-algebra
G and construct a family of completely reducible modules (Theorem (1.8))
using methods similar to [E]. In §2 we prove that some of the above modules
are unitarizable (Proposition 2.3). In §3 we specialize these results for G
finite dimensional (Theorem 3.3) and for G an affine Lie-algebra (Theorem
3.6) to get irreducible modules (some of them are unitarizable modules)
for 7. The modules considered in Theorem 3.6 are the first examples of
irreducible modules for (5 where part of the centre acts non-trivially. It
should be mentioned that it is the unitarizable modules (and also integrable
modules) which lift to the group.

In §4 we recall the construction of Vertex Operators and the Fock space.
We also construct certain automorphisms of (5 which are necessary in §5.

1.

Let d and k& be positive integers. Let G be a Lie-algebra and let G, = &G
be k copies of G. Let A = A; = C[tf',---t'] be Laurent polynomial
ring in d variables. Then G4 = G ® A is a Lie-algebra with Lie structure
X®a,Y®b=[X,Y]|®abX,Y €Ga,be A

Let n = (ng,ma2, - - nq) be a d—tupple of integers and let

t2 = gPgpe . g,

For 1 <i <k let g; = (a;(1),---a;(d)) be a d—tupple of non-zero complex
numbers. Let af = al*(1)---a}*(d) be the product. Consider the Lie-
algebra homomorphism

$:G4 =G
X @ttt (Xat, -, Xa3).

It is elementary to check that ¢ is not surjective if and only if a;(¢) = a;(¢)
for some ¢ # j and for all £. First prove it for d = 1 and then using
Vandermonde determinant for general d.

Define derivations di,d; - --dgq on G4 by [d;, X ® t%] = n; X ® t2 and note
[d;,d;] = 0. Let D be the linear span of d;, ds, - - - dq and let Gi=GRA®D.

For any Lie-algebra G, let U(G) denote the universal enveloping algebra.
Note that A,G, and U(G,4) are obviously Z¢ graded algebras.

1.1. From here onwards we will assume that G is a Kac-Moody Lie-algebra.
Fix a Cartan subalgebra h of G.

Let ¢ : U(h,) — A be a Z¢ graded homomorphism. Let A, be the image
of 1 which is a Z? graded subalgebra of A.
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A, can be treated as an ﬁA— module by the v action,
h ® t%t™ = ip(h ® t*).t™

di.tﬂ = mitm.

1.2. Lemma. Ay s an irreducible ﬁA— module if and only if homogeneous
elements of Ay are invertible in A,.

Proof. Assume the homogeneous elements of A, are invertible in A,. To
prove irreducibility it is sufficient to prove that given elements ™ and t™ there
exists X in U(h,) such that X.t2 = ¢t™. By assumption ™2 belongs to A,.
Since A, is the image of 9 there exists X in U(h,) such that y(X) = t= 2
and clearly X.t2 = (X))t = t™.

Now for the converse let t* belong to A,. First note that 1 belongs to
Ay. There exists X in U(h,) such that 1(X).t% = 1 by irreducibility of A,.
Then clearly (X ) = ¢t™2 and we are done. Ll

1.3. The purpose of this section is to construct irreducible modules for Ga.

Let V(A1),---V(Ax) be irreducible highest weight modules for G with
highest weights A;, \a, -+ A\x respectively. Then clearly V = ®V();) is an
irreducible module for G,.

1.4. Also V can be treated as an irreducible G 4-module via the Lie-algebra
homomorphism ¢. But it is not a Z?— graded module. That is, it cannot
be extended to G4.

Consider V4 := V ® A which will be given G 4 module structure.

(1.5) X @t2(v@12) = p(X @ ™)y @ 22
di(vett)=nvtt (X € G,veV).

We denote the G4 module by (Va, ).
Let ¢p: U(hy) > Abe h@t™ — Zz\i(h)g?tﬁ be a Z%— graded homomor-

phism of algebras.

1.6. We believe that the conditions for ¢ to be surjective are sufficient to
prove that A, is irreducible, but we could not prove that. Instead we will
give a continuous family of examples where A, = A. In particular for these
examples A, is irreducible.
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1.7. Assume 1 < ¢ < d,a;(¢)/a;(¢) is not a k—th root of unity. Then
by Lemma 4.4 of [CP] the following Z—graded algebra homomorphism is

surjective for all £,
U(h® Clte,t;']) = Clte, 2]

k
h®ty — > Xj(h)al(€)t}

Jj=1

Hence A, contains Clt,,t; ] for all £. So that A, = A.

From here on we will assume that A, is irreducible h,— module.
We will also note 1 and the module (V4, 7) depends on the choice of A's and
ai(e)'s

For any v € V let v(n) = v®1t*. We will now prove that (Vy4, ) as defined
in (1.5) is a completely reducible G ,— module.

1.8. Theorem. Let G C Z? be such that {t2,m € G} is a set of coset
representatives of AfA,. Let v = v; @ --- ® v, where each v; is a highest
weight vector of V(X;). Then

(1) Vi = ®mecU(v(m)) as QA— module where U(v(m)) is the G4 submod-
ule generated by the vector v(m).

(2) Each U(v(m)) is an irreducible gA“ module.
In particular (V4,m) is an irreducible G4 -module whenever A = Ay.

Before we prove the theorem we prove some lemmas.

1.9. Lemma. Any non-zero Go— submodule of V4 contains v(m) for some
m.

Proof. Consider the map S : V4 — V defined by S(w(m)) = w (extend
linearly to V). Then clearly S is a surjective G4- module map (it is not a
G 4-module map).

Claim. S(W) =V for any non-zero Ga module W of (Va, 7).

Since V is an irreducible G4 -module and S(W) is a submodule of V, to
see the claim it is sufficient to prove that S(W) # 0. But that is clear. Since
W is a G 4-module it therefore contains vector of the form w(m),w € V and
S(w(m)) = w # 0. This proves the claim.

Now let w in W be such that S(w) = v where v is the vector defined in
the statement of the theorem. Since S is a h— module map, w and v are
the same weight. {v( ) m € Z9%} are the only such weight vectors of V4
and hence w = ZC v(m?) for some complex numbers C; and some m* € Z°.

But W is a G4 module so is (Zgraded) and it follows that v(m’) belongs
to W. O
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1.10. Lemma. The following are true.

) v(m) € U(hA) (n) if and only if t22 € A,.

) v(m) € U(Ga)v (n) if and only if t272 € Ay.

) U(Ga)v(m) = (QA)U( ) if and only if t272 € A,.

) N =U(Ga)v(m) NU(Ga)v(n) # {0} if and only if t22 € A,,.

Proof. (1) Clear. (2) The “if” part follows from (1). For the “only if” part
write G = N~ @ h® Nt where N* is sum of positive root spaces and N~ is
sum of negative root spaces. Now note that U(G4)v(m) = U(N7)U(h,)v(m)
which follows from the fact that U(NJ)v(m) = 0 and the Poincare-Birkhoff-
witt theorem. Now it is easy to see by a weight argument that v(m) €
U(Ga)v(n) implies that v(m) € U(h,)v(n). So by (1),(2) is complete. (3)
follows from (2). (4) Assume N # {0}. By Lemma (1.9) there is a k such
that v(k) € N. Hence by (2) t-"™ tk2 ¢ A,. But 2% € 4, and therefore
=2 ¢ A,. Converse follows from (3).

Proof of the Theorem 1.8. (2) Let W be a non-zero G4 submodule of
U(Ga)v(m). Then W contains v(n) for some n (by Lemma 1.9). So that
U(Ga)v(n) € W. But by Lemma (1.10), ¢t ¢ A, Now by Lemma
1.10 (3) it will follow that U(Ga)v(n) = U(G4)v(m). In particular W =
U(Ga)v(m).

(1) Let w(m) € V4,w € V,;m € Z*% Since V is irreducible G4— module

(see 1.4) there exist X € U(G,4) such that o(X)v = w. Write X = Z Xn

nezd

(1
(2
(3
(4

where [d;, X,,| = n; X,.
Consider 3> 7(X,)o(-n +m) = ¥ ¢(X)u(m) = p(X)v(m) = w(m).

Hence we have proved that

(1.11) VaC Y U(Ga)v(m).
mez4
We also have by Lemma 1.10 (3)
(1.12) Y UGa)v(m) = > U(Ga)v
mezZd meG

In view of (1.11) and (1.12), to see (1) of the Theorem we only have to
prove that the sum of RHS in (1.12) is direct.
For that it is sufficient to prove that for all m € G.

(1.13) UGavm)n Y U(Ga)v(n) = {0}.
neG, m#n

Suppose (1.13) does not hold for some m € G. Then
UGalo(m) € Y U(Ga)v(n)

neG,m#n
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(since U(G4)v(m) is irreducible). Since all modules under consideration
are h ® D— modules v(m) has to be linear combinations of v(k) where
v(k) € U(Ga)v(n),n # m and n € G. But this is not possible since none
of the k can be equal to m by Lemma 1.10 (2) and the choice of G. This
proves that the sum at RHS in (1.12) is direct and that completes the proof
of the theorem.

2.

In this section we will prove that modules constructed earlier for Ga are
unitarizable subject to some conditions on X’s and a;(¢)’s.

We will start with
2.1. Definition. A conjugate-linear anti-involution of a Lie-algebra G’ is a
map D : G' — G' such that

D(X +Y) =D(X) + D(Y),D(AX) = XD(X)
D[X,Y] = [D(Y),D(X)],D* =1d.

forall X, Y € G’ and A € C.

Such maps are also called forms.
2.2. Definition. A G'— module V is said to be unitarizable with respect
to conjugate linear anti-involution D of G’ if there exists a positive definite
hermitian form (,) on V satisfying,

(Xv1,v9) = (v1, D(X)vs)

for all v;,v, € V and X € G'.

Let w be a conjugate-linear anti-involution of G. Then w, = @ w is
conjugate-linear anti-involution of G;. Define @ on G4 by WX (n) = w(X)(-n)
and W(d;) = d; and verify that it extends uniquely to a conjugate-linear anti-
involution.

Let V(A;) be highest weight unitarizable G— module with respect to w.
Then it is a standard fact that V = ®V();) is a unitarizable Gy— module
with respect to wy.

2.3. Proposition. (V4,7) is a unitarizable Ga— module with respect to @
if | a;(€)|=]a;(®)| for alli,j and L.

Proof. Define an automorphism O : G4 — G4 by O(X(n)) =| a7?" | X(n).
Then the following diagram commutes.

Ga = G
(2.4) w dwg-
G4 400 9n
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2.5. Hence we have po O oW = w; 0 p. Also we have p o O o wX (k)
=| a2* | po WX (k).
Let (,) be a positive definite hermitian form on V satisfying

(26) (X’Ul,’l)g) = ('Ul,'U)kX’UQ),X S gk,’l)l,’l)g eV.
Define a positive definite hermitian form on V, by

|ar™™ | (v1,v,) if m=n

(v1(m),v2(n)) = {

0 otherwise.

The following can be easily seen.

(1) (7divi(n), v2(m)) = (v1(n), 7dive(m))

(2) (7 X (k)vi(n),v2(m)) = (vi(n), rowX (k)ve(m)) =0 if k +n # m.

Let v1,v, € V,X € G,k,n € Z% and m = k + n.
Consider

(r X (E).v1(n), v2(m)) = (X (k)v1)(E + 1), v2(m))

= | a7 | (X (k)vy,v5) (by def)

et | (o, wip X (EJva) (by 2.6)
J2E ) (0, 0000w X (k)vs) (by (2.5))
22| (v, powX (k)vs) (by (2.5))

=|a

o

= (v ( ), (pow X (k))va(n))(by def)

= (v (n), 70X (k)vs(n — k)) (by def of ).

It now follows that V, is unitarizable as G4- module.

3.

517

We will now use the results of Section 1 and 2 to produce irreducible unita-

rizable modules for Toroidal algebras.

First recall the construction of a Toroidal algebra 74 from Section 2 of

[MEY].

Tiq) = GQABN 4 /d 4 where G is finite dimensional simple Lie-algebra and A
is a Laurent polynomial ring in d variables. €, := Q4/d4 is central in 774. Q4
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is a linear space spanned by d(t2)t2 with the relation d(t™)t2 + d(t2)t™ = 0.
The Lie-algebra structure on 7, is defined as

[X(m),Y (n)] = [X,Y)(m + n) + (X,Y)d(t=)t>

where (,) is a Killing form on G.
Let dy,d,, - - - d4 be derivations on 714 defined by

[di, X (m)] = m; X (m), [d;, d(#™)t%] = (m, + n;)d(t™)t2, [d,, d;] = 0.

Let D be the linear span of dy,dy, - - - dg. Then Tjgj := 7(9y® D is a Lie-algebra

and €, is an abelian ideal.
3.1. Let w be any conjugate-linear anti-involution of G and let W be a

conjugate-linear anti-involution of G4 as defined in Section 2. Extend @ to
7~'[d] by
W.d(PR) 2 = d(t72) 2.

We also note that 74 /Qd-;-g~ a- Let S denote the quotient map. So that
any G 4— module can be treated as 74y module via S.

Now let (V();), 7,) be the highest weight module for G. Let V = ®,V(A,)
and V4 =V ® A. Then (V4, ) is a 79— module in the following way.
(32)rX(m).(v; ® - @u)(n) =Y a (1, ® - @7:(X)v, ® - Q@ vi)(n + m)

wd,(v; ® - Qur)(n) =ni(v; ® - @ vr)(n)
ﬂQd.VA =0.

This is precisely the definition given in Section 1.
As earlier let 9 be the Z?— graded algebra homomorphism from U(h,) —
A given by h(m) — Y _A,(h)ai*t™. Denote the image by A,.

3.3. Theorem. (1)(I}A,7r) is a completely reducible Tq— module if Ay is
trreducible as h @ A— module.

(2) (Va, ) is irreducible as Tig—module if a,(€)/a;(€),i # j, is not a k—th
root of unity.

(3) If V(\;) is unitarizable highest weight module for G with respect to the
form w and | a;(€) |=| a;(£) | for all 1,5 and ¢, then (V4,7) is unitarizable
Tjg)— module with respect to .

Proof. (1) and (2) follows from Theorem (1.8) by taking Kac-Moody Lie-
algebra G to be the finite dimensional simple Lie-algebra G.
(3) Follows from Proposition (2.3). 1

The special case where d = 1 and w is a compact form of G is due to [CP].
The case d = 1 and w any form, including twisted affine Lie-algebras is due
to [E).
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3.4. Let G be finite dimensional simple Lie-algebra and let
G =G0 tan, t55,] @ Ce

be the corresponding nontwisted affine Lie-algebra. Let G = G @ Cd where
d is a derivation. Consider the Lie-algebra G 4 and observe that the center
Q! of G, is spanned by {c(m),m € Z?}. Let A' = Ay, be the Laurent
polynomials ring in d + 1 variables. Clearly G,/Q' ~ G41. Let ¢ denote
the quotient map from G4, — G4 which is clearly a central extension. Since
T[a+1) 18 the universal central extension of G 41 (see Proposition 2.2 of MEY]),
there exists a homomorphism ¢! : Tja11] = G4 such that ker ¢! is central.
It is not difficult to write down the homomorphism (see (5.4)) and then one
can see that the ker ¢! consists of homogeneous elements with respect to the
Z%1— grading. Hence we can extend the homomorphlsm o' Ty — Q A

by sending d; + d;(1 < i < d) and dyy; — d. Also any G4 - module can be
treated as 7j441) via @'
3.5. Now let (V(X),7;) be an highest weight module for G and let V =
®;V(\;) and V4 = V® A. Then (V4,n') is a Tg4.1)— module in the following
way.
T X(m)(v; ® - @ v)(n) = Za"‘(Ul@ @ T(X)v; ® - Qi) (n+m)
wdi(v1 ® - v)(m) = ni(v; ® --- @) (n) (1 <4< d)
Tdv ®---@u)(n) =) (1 ®--- @ T(d)v; ® -~ @ vi) ()
mker 'V, =0
for all X € G,v; € V and m,n € Z4.

This definition is precisely the one given at (1.5) by taking the Kac-Moody
Lie-algebra G to be the affine Lie-algebra G.

Let h be a Cartan subalgebra of G and let 1 be Z%—graded algebra ho-
momorphism from U(h,) — A given by h(m) — 3 \;(h)a;*t™ and denote
the image by A,.

3.6. Theorem. (1)(V4,n) is a completely reducible Tjqy1) module if Ay is
an irreducible h ,—module.

(2) (Va,m) is irreducible as a Tjgp1j— module if a;(€)/a;(£),i # j is not a
kth root of unity.

(3) If V(\,) is a unitarizable highest weight module for G with respect to the
form w and | a;(¢) |=| a;(£) | for all 1,5 and £, then (V4,n') is unitarizable
Tja+11— module with respect to w.

Proof. (1) and (2) follows from Theorem (1.8) by taking the Kac-Moody
Lie-algebra G to be the affine Lie-algebra G.
(3) Follows from Proposition (2.3).
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3.7. Remark. (1) The modules considered in Theorem (3.3) and (3.6) for
Toroidal algebras are different. In the first case the full centre acts trivially
where as in the second case a part of the centre acts non trivially.

(2) These are the first known irreducible module for Toroidal Lie-algebras
where part of the center acts non trivially. The faithful modules constructed
in [MEY] and [EM] through the use of vertex operators are all reducible.
We will prove towards the end of the paper that the modules constructed in
[MEY) and [EM] admits a filteration such that the successive irreducible
quotient modules are isomorphic to the one considered here upto an auto-
morphism of the Toroidal Lie-algebra.

4.

In this section we briefly review the construction of Fock space and the vertex
operators that act on it. The theory is due to Frenkel-Kac [FK]. For further
details one may also consult [FLM], [GO] and [MEY]. We will closely
follow the notation from [EM]. We will also construct some automorphisms
of Toroidal Lie-algebras.

4.1. Let @ be root lattice of the type ADFE and let o, s, - a4 be a Z-
basis. Let A= (a;;) be the cartan matrix and a;; = (o; | a;). Let T’ be
a free Z- module on generators ay, s, - 0y, 01,00, 0n_1, di,da, - dn_1.
Let (. | .) be a Z—valued symmetric bilinear form such that (4; | ;) = (d; |
d;) = (a; | 6;) = (a; | d;) = 0,(4; | dj) = 6;; and (e | ;) = a;;. Let Q be
the sublattice generated by a;,as,- -y, d,, -+ 0,_1. Here n is any positive
integer.

Let t =C®zI',h = C®z Q and h= C®z (). We will define a Heisenberg

A

algebra structure b= @t(k) ® Cc where each t(k) is an isomorphic copy of ¢
and the isomorphism is by & — a(k). The Lie-algebra structure is defined
by

[a(k)’ﬁ(m)] = k(a | ﬁ)5k+m,oc-

A
Let a= @rezh(k) ® Ce. Define b = @y,t(k) & Cc Cb and b, = ®,>, t(k).

Similarly define a,a, by replacing ¢t by h and a by replacing ¢t by h.

The Fock space representation of b is the symmetric algebra S(b—) of b—
together with an action of b on S(b—) defined by the following:

c acts as 1, a(—m) acts as multiplication by a(—m),m > o
a(m) acts as the unique derivation on S(b—) for which b(—n) — §,, _.m(a |
b).(a,b € t,m,n > 0).

S(b—) affords an irreducible representation of b. However S(a—) does not
afford an irreducible representation of a since the form is degenerate on h.
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A vector § in Q is called a null root if § = n16; + nady + -+ + Np_10,1
for some integers n,. Note that (0 | §) = 0.

Following [EMY] we let € : Q x @ — {%1} be a bi- multiplicative map
satisfying

(1) el a) = (~1)le)

(2) e(a,,@)e(ﬂ,a) = (__1)(a|ﬁ)

(3) e(a,8) =1,
where o, € @ and § a null root. Extend € to a bimultiplicative map of
Q xT' = {£1} and form the vector space C[['], with C basis {e”,v € T'}.
Then C[I'] contains the space C[Q] similarly defined. Following Borcherds
[B] make C[I'] a C[Q] module by defining

e.e’ = e(a,v)e*(a e Q,yel).

Let M C S(b—) be any a— submodule (with respect to the Fock space
action). We define V(I', M) = C[T'|®c M. Of particular interest in the sequal
will be V(T', S(a—)) and V (T, S(b—)) which we simply denote by V(I') and
V (T, b) respectively. We extend the action of @ on M to a on V (T, M) by

a(m)(e” @ u) = e @ a(m)u,m # 0
a(0)e”@u = (alv)e’ ®u.

Vertex operators: Let z be a complex valued variable and let a € Q.

Define )
T (a,2) = —-Z—a(n)z*".

n
>

n<o

(a|x)

Then the vertex operator for « in @ is defined as X (a,2) =272 expT(q, 2)
where exp T'(a, z) = exp T- (a, z)e® 2*®) exp T', (o, 2) and the operators z*(®)
is defined by

2407 @y = (@7 g 4.

X (v, z) can be formally expanded in powers of z to give

X(a,2) = ZXn(a)z_"

nez
and the moments X, (a) = ;- [ X (a, z)2™% are operators on V(T', M).
Let A be a root system and let X, « EA, h E_f; be a Chevalley basis. Let
r = (r,re, - Thoy) € Z" ' and 7 = (r,r,) € Z™ Let 6, = i + - +
Tn—10n_1.
We will now recall the main Theorem 3.14 of [EM].
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4.2. Theorem. The Lie-algebra generated by operators X, (a + §),

(@ €A,m € Z and § a null root) on V(T,b) is isomorphic to the Toroidal
Lie-algebra 71,). The isomorphism is given by

Xr(a+68)~ Xo®t ,a €N

T! (6r) —h®t"

TS (8,) >ttt (1<i<n—1)
X, (6,) — 7t 1dt,

where t7 = t7't52 - - - t™ and

T () = —2%;/ :9(2) X (o, 2) : d?zz’".

4.3. Here we construct certain automorphisms 74 which are needed in our
main result in section 5. Let SL(d,Z) be the group of matrices of order d x d
with integral entries and determinate 1.

Let A = (aj;) isiss be an element of SL(d,Z). Let r = (ry,7s,---74) and

s = (51,82, 84) be such that r;,s; € Z. Let e; = (0,---,1,---0) where
1 is at the ith place. Let ArT = m7T, As” = nT and Ael = a(z)T where
m = (my,my,---mg),n = (ny,ny,---ng) and a(i) = (ayi, a2i,- - ag;) and T
denotes the transpose. We now define an automorphism of 7j4 again denoted
by A.

AX(r) =X(m)

A(d(tm)t2) = d(t=)tz

It is straightforward to check that A is an automorphism of 7(5. We will

now extend it to 4. Let (di,d3,---d})T = A~'(dy,d,--- ,d4)T. Define
A(d;) = d} and check that it defines an automorphisms of 7).
Remark. A does not quite preserve the natural Z%—gradation of 7.

5.

The purpose of this section is to describe the subquotients of V(I') = C[I'| ®
S(a—). We will follow the notation of §5 of  MEY].
Let A € I" and define V() := e**?®S(a—). Note that V() = @rer/oV(A).
Each V() is a cyclic 7j,;— module with generator e* ® 1. Towards the end
of the section we will exhibit a decreasing filteration of modules and describe
its successive irreducible quotients.

Fix A € T and let W(\) := W = e**? ® S(a—). This is a module for
the non-twisted affine Lie-algebra G,5; =G ®Clt,,t,,']®Cc generated by the
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operators X, (a),a €A. But we know by Frenkel-Kac theory [FK] that this
is an irreducible level 1 representation of G,;;. Let V = V(A).
The following Lemma is trivial to see.

5.1. Lemma.

V= 6Bn1,n2,'-~m¢>0,k20 61'1 (_nl) e 6ik (—nk)eA+Q ® S(Q _)'

Let M = @, ny,mp 0,050 0ir(—11) -+ 05 (—1x )2 @ S(a —).

By Lemma (5.1) it is easy to verify that M is a 7[,)— module.

We will recall the following Lemma (5.2) of [MEY], which though stated
for the n = 2 case there, is true for any n.

5.2. Lemma. Let A € T, let 6 be a null root, let N = (A | d) and let m € Z.
Then

e(6,0)e*M® 8 . n(0),m+n<0
Xn(0)e*®1 =L e[, N)e**®@1,m+n=0
0,m+n>0

where the operators S,(d) are defined by expT_(6,2) = ZSp(é)z”.
p=0

5.3. Set 7; = X_n,(d;) where N; = () | §;). We note that 7F = X_;n, (kd;).
Let 7@ = 7™ 7" ... """ and let

W ®tm = 12 = D mi5i+Q®S(g- =)

Lemma. V/M =W ® Aj,_1) as Vector spaces.
Our aim is to describe V/M as a 7j,j)— module.

5.4. Note that Goss ® A1) =G @A ® Y Cec® ™.
_17_162"_1
See Section (3.4) where we considered such a Lie-algebra.

Define a Lie-algebra homomorphism ¢! : 7, -G, £f ®Ap_1) by
1) ¢' is Id. on G QA

0if m, #0
2) @ (t™t;7'dt:) ={0ifm, =0,1<i<n-—1

c®t™ if m, =0and i =n.
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5.5. Let (V,7) be an irreducible highest weight module for G,;;. Then
Ve Afn—1) admits an action by Go5f ® Afn—1) in the following way,
X(m)v(n) = Xv(m +n), (X € Gogs,v € V).
Now we extend the module action to one of 7, via the surjective homo-
morphism ¢!. That is

Xo(m) = ¢'(X).v(m).

It is easy to see that V ® Aj,_;) admits a natural Z"~!- gradation and is
graded irreducible as a 7,)— module. In other words 7, irreducible (one
can apply Theorem 3.6(2) taking d + 1 =n and k£ = 1).

We can twist the module action of 7},; by an automorphism A considered
in (4.3), so that (V ® Aj,—_1), Aoyp'or) is a 7, irreducible module.

With the notations in (5.3) we have the following result.

5.6. Theorem. V/M is isomorphic to (W ® Ajn—1), Aop'om) as T,— mod-
ule where A = (b;;) and b; = L,b;, = (A ]| 6;),1 <i <n-1,b; =0
otherwise.

We need some lemmas before we give a proof of the Theorem.

5.7. Lemma. The following equality holds as operators on V/M.
0ifn#o
(1) dul) = {0 7
(A bm) ifn=0
O0ifn+ (M| bn 0
() Xa(05) = {0 T O 100) £
T2 ifn+ (M| dn) =0

(3) Xl + 8m) = X—(216m) () Xt (116 (@) = Xns (i) (@) T, @ €A
(4) T2 (0m) = h(n+ (A | 00)) X-r5m) (Om) = B(n + (A | 0m)) 7™, b €.

Proof. First observe that 6,,(n) and X, (d,,) are central operators on V' and
hence are determined on the generator e* ® 1.
1. By definition §,,(n)e*®1 = 0 forn > 0 and 6,,(0)e*®1 = (A | §,n)e* ®1.
Hence d,,(n) on V/M is zero for n > 0 and (A | d) for n = 0. For
n <0,6n(n)e*®1 = e*Q®b,(n) € M and hence d,,(n) is zero on V/M.
2. The case n+ (A | d,) > 0 follows from the Lemma (5.2). Also for the
case n + (A | 6,) < 0, note that

X.(0n)e* ®1 € M (by Lemma 5.2).

Hence X, (d,,) is zero on V/M. Now let n + (A | 6,) = 0. First we
will note that it will follow from the definition of vertex operators that
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X(a+ B,2) = X(a,2)X (B, z) whenever (a | ) = 0. Hence we have
the following:

X (Om) = > Xy (my8y) -+ X, (Mn_161)
kit+ko+---+kn_1=n

= Z Xk, (mydy) -+ Xy, _,(mp_10,_1) (by Lemma 5.2).

ki+ka+: - t+kn1=
n,k, + mi(A]4d;) <0

But 0 = n+ (A | 0w) = D (ki + mi(X | 6;)) < 0. It follows that

ki4+m;(A|4;) =0 for all 4. Now by Lemma 5.2 (2) we have X, (m;(A |
4;)) = 7,™. Hence X, (0,,) = T2

3. Since (a | d) = 0,a €A we have

= Xnt(Alb) (@) X_(Aj6)(0m) on V/M (by(2))
= Xni(rsm) (@) 7 (by (2)).

4. The proof is similar to (3). We only note that
T:(‘Sm) = Zh(n — k)X, () (by def).

k

O

Proof of the Theorem 5.6. We will first describe the 7j,)— module (W ®
A1), Aoplor).
X k) = (X @t o) (r + k).

0if 7y + Sp + (A | 6,45) # 0

d(t")tv(k) = {(Tn +A|o)wk+r+s)ifr,+s,+(A]|6pgs) =0

This follows from definition of A, ¢! and .
We will now compute the action of 7j,; on V/M using Lemma (5.7) and
then verify it to be exactly as above. That will complete the proof.
(a) Xo(F)w(k) =X, (a+)w(k) (by Theorem 4.1)
= X, +(s,) (@w(r + k) (by Lemma 5.7 and Notation at 5.3)

= 1(Xo ®tw M )u(r + k) (by [FK]),
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(b) h(F).w(k) =T} (a+ 6, )w(k) (by Theorem 4.1)
+ (M| 6;))w(r + k) (by Lemma 5.7 and Notation 5.3)
h @ t™+A)w(r + k) (by [FK)),

—_— o~
<
3

(©) d(E)-Fuw(k) = (T, (brrs) +TnXrsn (rse) (k) (by Theorem 4.1)
- 5£('rn + sp + (>‘ | (5I+§))w(& +r+ §.)
+ 72X, 5. (0r4s)w(k + 17+ ) (by Lemma 5.7 and Notation at 5.3)
_J A 6) w4+ 1+ 5) if 45,4+ (A | dpp) =0
0 otherwise

(follows from Lemma 5.7 (1) and 5.7 (2)). O

5.8. Remark. Note that the derivations d;,ds, - - - d,_; act on V as d;(0).e*®
a = (A | d;)e* ® a and remain the same on the quotient V/M. Also note
that A™'d; = d} = d;(1 <i < n—1) (see 4.3). Hence the isomorphism in
the theorem preserves the natural Z"~! gradation.

5.9. Remark. Let Vy = ®>n0;, (—n1) - - - 6, (—7x)e*? ® S(a—) which is a
T(n) Submodule of V. Further V. =V, 2 V; 2 V, D --- is decreasing sequence
of 7,— modules. Consider Viy/Vnyi = @3, (—n1)--- iy (—nn)er 9@
S(a —) as 7,j— module. Then for a fixed 4,4 --- ,iy and ny,ny,--- ,ny,
F = §;,(—m) - diy (—nn)eM? ® S(a —) is a 7, submodule of Vy/Viy.
It is also easy to see that F = V/M as 7[,)— module. In other words there
exists a filteration of 7[,; submodules of V' such that the successive quotients
are Z" '— graded irreducible and isomorphic to V/M.

5.10. Recall dy,d,,--d,_; from Section 4. Let N > 0 and let
Wn = ®o<k<ndi, (—11) - - d;, (—n)V.

Clearly V. =W, C W; C W, C ---. We will first prove that Wy is a 7j,—
module. Since X,(o) generate 7, as a Lie-algebra (see Theorem 3.14 of
[EM]) it is sufficient to prove the

5.11. Lemma. For a,m,k and for allv in V

Xm(a)dh( nl) lk(—nk)v € Wk

Proof. By induction on k. Clearly this is true for k =0. For k =1,

X (@)di, (—n1)v = d;, (=) X (@)v + (| diy) Xin—n, (@)v
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(by 3.8 (1) of [EM]). Clearly d;, (—n;) X, (a)v € W; and X,,,_,,, (@) € W, C
W,. Hence we are done.
We will now assume the Lemma for all £,1 < ¢ < k and prove it for
£=k+1.
Consider
Xm(a@)di, (—n1) -~ di .y (kg )V

= Z T'J + dil (_nl) o dik+1 (—nk-f'l)Xm(a)v
1<5<k+1
where T; = d;, (—ny) - [Xm(a),d;, (—n;)] - - - di,,, (—ng41)v. For 1 < j <
k+1, we have k£ 4+ 1 — j < k and by induction hypothesis we have

(a| dj)Xm—nj (Ol)di,ﬂ (—'nj+1) T dik+1(—”k+1)’u € Wig1-j.

Hence T; € Wy, C Wi41. (See 3.8 (1) of [EM]). This completes the proof of
the Lemma. O
From the above we also have

(6.12) X (a)d;, (—n1) - - diy, (—Npga)v =
di, (—ny) - - dis iy (=) Xm(@)v in Wiy, /Wy,

Further Wy, /W, = @d;,(—n1)---d;,,,(—nk41)V and from (5.12) each
di, (=) - - - d;,,, (—nk41)V is a submodule of W, /W, isomorphic to V.
Put U;5oW; = b(X) and remember each W; depends on V' and V in turn
depends on A.

5.13. Remark. (1) The full Fock space V(T', b) = @xcr/ob(A) as 7p,j— mod-
ule.

(2) Each b(\) admits a filteration by an increasing sequence of modules
whose successive quotients are isomorphic to V' (see above).

(3) Each V above admits a filtration by a decreasing sequence of modules
such that the successive quotients are irreducible (see Remark 5.9).
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