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We correct a proof of the fact that the free Banach-Lie
algebra on a normed space of dimension > 2 is centreless, and
observe that, as a corollary, every Banach-Lie algebra is a
factor algebra of a Banach-Lie algebra faithfully representable
in a Banach space.

1. All the major results of our paper [2] are based on the following statement,
which appears as a part of Theorem 2.1.

T h e o r e m A. The free Banach-Lie algebra on a normed space E is either
trivial (if ami E = 0), or one-dimensional (if dimE = 1), or centreless.

Unfortunately, the proof of the above result presented in [2] is unsatisfac-

tory, and it was Professor W.T. van Est who has kindly drawn the author's

attention to this fact. Below we present a correct proof of Theorem A.
A 1973 investigation [4] of van Est and Swierczkowski was partly mo-

tivated by the question: is every Banach-Lie algebra a factor algebra of
a Banach-Lie algebra faithfully representable in a Banach space? We can
answer this in the positive.

Indeed, every Banach-Lie algebra g is a factor Banach-Lie algebra of a
free Banach-Lie algebra [2]. Since centreless Banach-Lie algebras are exactly
those whose adjoint representation is faithful, the following direct corollary
of Theorem A holds.

T h e o r e m B. Every Banach-Lie algebra is a factor algebra of a Banach-Lie

algebra admitting a faithful representation in a Banach space.

2. Denote by K the basic field (either IR. or C), and let £ be a normed
space. For an n > 0, let Λn(E) = E®*n = E ®π E ®π ®π E be an n-fold
(non-completed) projective tensor product. ([3, III.6.3.]) Endow the space
Bn(E) of all n-linear continuous functionals on En with a norm:

11/11 d=fsup{\f(xu...,xn)\: \\Xi\\<l, i = l , 2 , . . . , n } .
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The spaces Λn(E) and Bn(E) admit a canonical pairing, which determines
an isometric embedding of Λn(E) into the strong dual Bn(E)' ([3, exer.
111.21, (a)]).

Let A+(E) stand for the free associative (non-unital) algebra on E,

A+{E) = ®^=1An(E), endowed with an Zi-type norm, μCίUi χn\i =

Σn=i II χn II Denote by A+(E) the Banach associative algebra completion
of A+(E). It is easy to verify that A+{E) contains an isometric copy of
E in such a way that an arbitrary linear contraction / from E to an asso-
ciative algebra A endowed with a complete submultiplicative norm extends
to a unique algebra homomorphism /: A+(E) —> A of norm < 1. We call
A+(E) the free Banach algebra on E. Denote the Banach space completion
of An{E) by An(E)] then A+(E) is the ίi-type sum of An(E), n — 1,2,

It is clear that the free Banach-Lie algebra TC(E) is naturally isometric
to the Zi-type direct sum of a family of complete normed spaces JΓ£n(J5),
n e N, where TCn(E) is the completion of Cn(E). (Here d{E) = E, and the
linear subspaces Cn(E) of the free Lie algebra, C(E) = ®f=1Ck{E), on the
vector space E [1], are defined in a usual recursive fashion.) The symbol Ex/2

will stand for the normed space (£7, (1/2)|| | |). We will denote by A+(E)
an algebra obtained from the free Banach algebra A+(Eι/2) by doubling its
norm. The doubled norm || | | J is Lie-submultiplicative, and the identity map
Id# extends to a contracting Lie algebra morphism i: TL{E) -> A+{E). The
restriction of i to C(E) is well known to be mono [2]. Since the identity map
A+(E) —ϊ A+(Eι/2) has norm 1/2, its composition with i is a contracting
Lie algebra homomorphism FC{E) ->• Af (2?1/2), which we denote by i as
well.

Assertion 1. Let n = 1,2, The restriction in ofi: TC(E)
to TCn(E) is an isomorphic embedding of normed spaces; namely, for each
x E TLn{E) one has

(i) l l ^ ) l ^

Proof Define recursively the n-fold commutator, [xXl... , # n ] , by

[xu...,xn] = [ [x ! , . . . ,α; n _i] ,a; n ] . The map (xu... ,xn) H-> [xu...,xn] from

E x E x x E C An(E) to Cn(E) is n-linear and

Therefore, it extends to a unique bounded linear operator (of norm < 2n),
v\ An(Eιi2) -» TLn{E), having the property that if X\,x2,... ,xn € £?, then
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u(x1x2 ...xn) = [xu... jXn]. The restriction of v to Λn{E) is the familiar
Specht-Wever map [1].

While the left hand side inequality in (1) follows from a definition of i,
suppose that \\i(x) || < 1. One can assume without loss in generality that
x G Cn(E). Let an ε > 0 be arbitrary. For a finite collection of elements
Xij G E one has ([3, IΠ.6.3]) i(x) = ]Γ\ a^a;^ ^,n and

that is,

Σll^lUII^IU...||a ; i>n||£<2"(l + ε),

and therefore

/ ^[^2, < 2 n ( l

According to the Specht-Wever theorem [1], u(x) = ^ [ ^ i ^ ^ , . . . , x^n] —
nx, whence x = (l/n) Σ%[χi,i'>χi,2<i ?#*,n] a n ( i II χ II ^ (2n/^)(l + ε). Since
ε > 0 is arbitrary, one has \\x\\ < 2n/n, as desired. D

3, Proof of Theorem A. We can assume that diml? > 2. Let an x e
FC(E), x φ 0 be arbitrary, x — Y^=x Xk, where xk G TCn{E). For at least
one n = 1,2,..., one has xn φ 0. It remains to find a z G E such that
[z,α;fc] φ 0, for clearly then [z,x] φ 0 as well. If E is of finite dimension,
then such is Cn(E)\ if an element x E TCn(E) = Cn(E) commutes with
every element of 22, it must belong to the centre of £(E), which is trivial if
dimjE > 1. In infinite dimensions, however, this argument fails (which was
essentially author's blunder in [2]).

Denote by ad the adjoint representation of FC(E) in the underlying Ba-
nach space, TC(E)+.

Assertion 2. Assume that dimE = oo. Let n G N and let x G TCn(E),
\\x\\ = 1. Then | | adz | | > rύΓn.

Proof. Since || ad || < 1, it is enough to check the desired property for x G
Cn(E): indeed, the unit sphere of Cn(E) is dense in the unit sphere of
TCn{E), and if xn -» x as n -* oo, then ad# n -* ad# in End (TC(E)+) and

The norm of i(α ) in A+(Eι/2) is > n2~n, according to Assertion 1. Assume
that i(x) = 2 i #i,i®#2,i® ®ffn,tj where xjti G β. Let an ε > 0 be arbitrary.
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Choose an / G Bn(E1/2) with || /1 | < 1 and \f(i(x))\ > rΏrn - ε. Due to
infinite-dimensionality of E, there exists a linear functional g: E —>• IK of
norm 1 with g(xn,i) = 0 for all (finitely many) values of i. Let y G E be
such that || y || = 1 and ρ(y) = 1. (The kernel of <?, being one-dimensional,
admits a projection from E of norm 1.) The mapping / ® g of the form
α 0 6 κ f(a) #(6), α E E"/2, b G £Ί/2, is an (n 4- l)-linear functional of norm
< 1 onJS^ 1 . Since

(/ 0 g)(y ® t(ίc)) = 5^ /(i/ 0 Xi,< 0 • 0 xn-i,<) di^i) = 0,
i

one has

l(/ ® 5)(*(ar) ® y - y ® *(aθ)| = |(/ ® g)(i(x) ® y)|

and in view of arbitrariness of ε > 0, the norm of the element i([y,x]) =
i(rz;)y - yi(a ) in ^4+(E1/2) is > n2~n. In view of Assertion 1, the norm of
[y, x] in TCn(E) is > rΏrn as well. D
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