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FUNCTIONS (II)

JOst L. FERNANDEZ, DOMINGO PESTANA AND Jost M. RODRIGUEZ

We present a study of the metric transformation properties
of inner functions of several complex variables. Along the
way we obtain fractional dimensional ergodic properties of
classical inner functions.

1. Introduction.

An inner function is a bounded holomorphic function from the unit ball B,, of
C" into the unit disk A of the complex plane such that the radial boundary
values have modulus 1 almost everywhere. If F is a non empty Borel subset
of OA, we denote by f~!(FE) the following subset of the unit sphere S,, of C*

fTUE) = {{ €S, lim f(ré) exist and belongs to E} .

The classical lemma of Lowner, see e.g. [R, p. 405], asserts that inner
functions f, with f(0) = 0, are measure preserving transformations when
viewed as mappings from S, to dA, i.e. if E is a Borel subset of 0A then
|f~*(E)| = |E|, where in each case | - | means the corresponding normalized
Lebesgue measure.

In this paper we extend this result to fractional dimensions as follows:

Theorem 1. If f is inner in the unit disk A, f(0) =0, and E is a Borel
subset of A, we have:

cap, (f'(E)) > cap,(E), 0<a<l.

Moreover, if E is any Borel subset of A with cap,(E) > 0, equality holds
if and only if either f is a rotation or cap,(F) = cap,(0A).

Moreover, it is well known, see [N], that if f is not a rotation then f is
ergodic, i.e., there are no nontrivial sets 4, with f~1(A) = A except for a set
of Lebesgue measure zero. This also has a fractional dimensional parallel.
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Corollary. With the hypotheses of Theorem 1, if f is not a rotation and if
the symmetric difference between E and f~(E) has zero a-capacity, then
either cap,(F) = 0 or cap,(E) = cap,(0A).

Theorem 2. If f is inner in the unit ball of C*, f(0) =0, and E is a Borel
subset of OA, we have:

CaPsn_aya ([T (E)) 2 K(n,a) " cap,(E),  0<a<l,

and

1

capyn s (/' (E)) (n>1).

S1+(27’l'—2)10gm,
0

Corollary. In particular, for any inner function f, we have that
Dim (f~'(E)) > 2n — 2 + Dim(E)
where Dim denotes Hausdorff dimension.

Here cap, and cap, denote, respectively, a-dimensional Riesz capacity
and logarithmic capacity. We refer to [C], [KS] and [L] for definitions and
basic background on capacity.

For background and some applications of these results we refer to [FP]
where it is shown that Theorem 1 holds with some constants depending on
o.

The outline of this paper is as follows: In Section 2 we obtain an integral
expression for the a-energy that is used in Section 3, where Theorems 1 and
2 are proved. Section 4 contains some further results for the case n = 1.
In Section 5, we prove an analogous distortion theorem, with Hausdorff
measures replacing capacities. Section 6 discusses an open question and
some partial results concerning distortion of subsets of the disc.

We would like to thank José Galé and Francisco Ruiz-Blasco for some
helpful conversations concerning the energy functional. Also, we would like
to thank David Hamilton for suggesting that the right constant in Theorem
1is 1 (see [H]), and the referee for some valuable comments.

2. An integral expression for the a-energy.

In this section we obtain an expression of the a-energy of a signed measure
p in Ey_; (the unit sphere of RY) as an L?-norm of its Poisson extension.
This approach is due to Beurling [B].
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If 41 is a signed measure on Xy_;, and 0 < o < N — 1, then the a-energy
I,(p) of p is defined as

L= [ @uo—u)du(z) dulw),

where )
log—, ifa=0,
Do(t) = 1 t
et f0<a<N-1.

Recall that if E is a closed subset of X x_;, then
(cap,(E))™" = inf{I,(x) : p a probability measure supported on E},

for0<a< N -1,

log = inf{ly(p) : p a probability measure supported on E},

capg (£)
and that the infimum is attained by a unique probability measure y, which
is called the equilibrium distribution of E.

If F is any Borel subset of X _;, then the a-capacity of E is defined as

cap, (E) = sup{cap,(K): K C E, K compact}.
We recall Choquet’s theorem that all Borel sets are capacitables, i.e.
cap, (F) = inf{cap,(O) : E C O, O open}.
As we shall remark later on, for a general Borel set E of ¥y _;, one has

1

cap (@) = inf{I,() : p a probability measure, p(E) =1},

and analogously for the logarithmic capacity.

We first need to obtain the expansion of the integral kernel ®, in terms
of the spherical harmonics. We refer to [SW, Chap. IV] for details about
spherical harmonics; we shall follow its notations.

Let H; be the real vector space of the spherical harmonics of degree k in
RN (N > 1). If a;, is the dimension of H;, we have

[SW, p. 145]

_9 —
ap=1, a; =N, ak:ﬁi_?_k___(N%»k 3).

k k-1
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If ©n_, denotes the unit sphere of RV the space L*(Xy_;,d€) can be de-
composed as

LA (S, dE) = & H,

where d¢ is the usual Lebesgue measure (not normalized).
If £,7 belongs to Ty_1, ZF(£) will denote the zonal harmonic of degree &
with pole 7, and if {Y}*,..., Y} } is any orthonormal basis of H;, we have

ZHE) = Y YEQYE () = 24 (). [SW, p. 143]

The zonal harmonics can be expressed in terms of the ultraspherical (or
Gegenbauer) polynomials P} which are defined by the formula

(1—2rt+72) " =Y P t)r*,
where |r| <1, [t| <1and A > 0.
We have [SW, p. 149], if N > 2,
Z3(€) = Conw PP (€ ).

It is easy to compute the constants Cy y. First, if wy_; denotes the Lebesgue
measure of Xy_1, then
2 a
k k
“Z,7 ||2 - : [SW, p. 144]

WN-1

while, on the other hand,

ay _ 02
= YN
WN_1 N1

1 2 . _
=C2y wN‘zf_l ‘Pﬁ”‘2)/2(t)| (1 - )V gt

PR )| d

Now, the polynomials P,SN_Z)/ ?(t) form an orthogonal basis of
£* ([-1,1], (1= )N972 )

[SW, p. 151], [AS, p. 774], and

[AS, p. 774]

“PI£N_2)/2“2 _ w24 ND(k + N — 2)
2 N -2

K2k + N —2)T (-2—)2
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where I'(-) denotes the Euler’s Gamma function, and, therefore

2
2 — N 2)/2 -2 N+2k—2)2F(N—2)
Ck’N WN-1WN_2 ”P ” 16 7N 2
Hence
N+2k-2_(N-2
Crw = 4mN/2 2 ’

and

N+2k-2_(N-2
Zk(f) :;rN/Z F( 5 )p(N 2/2(§ 7).

The case N = 2 is slightly different. In this case we can take P = Ty,
the Chebyshev’s polynomials defined in [—1, 1] by

Ty (cos ) = cos k8.

It is known that these polynomials form an orthogonal basis of
£ ([-1,1, (-7 dt) .
In this particular case, if £ = €¥,n = €'¥, then £ - n = cos(6 — 9), and
1 1
k
Z5(6) =+ cos k(9 — ) = ~Tu(cos(0 )

1
= P&, k=12,
11

0(¢\ — = _ = po(g.
Zn(&)_2ﬂ_ 27TP0(€ T,)
Therefore,
l, ifk>0,
Cr2=4T
—, ifk=0

We can now write down the expansion of the kernel ®,(|z—y|) in a Fourier
series of Gegenbauer’s polynomials. Fix, first, @, with0 < a < N —1. If we
denote by g(t) the function

ot) = (5—:1%)/ ,

then we can express the kernel @, in terms of g as

(| —nl) = (\/Iél"’ 2 - n+|nl2) =g(¢-m).
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Now, develop g(t) as a Fourier series
- N— N-— 2 -
9(t) =Y gePN (), where g [PV = (g, PP
k=0

and conclude

1 (1€ ) = o6 7) = 30" 250
where g*Cy x = gi. Hereafter F will denote the usual hypergeometric func-
tion ,
2 (@) (b)) t™
Flabi ) = 3 e
where
(Wm=ufu+1)...(u+m—-1) = MT(—Z)T—)

The polynomials P(N 972 can be expressed in terms of F' [AS, p. 779].
N >2,

Pk(N—2)/2(t) _ (k +1]:7— 3> F(=k,k+N—-2;(N-1)/2;(1 —1)/2).

Then,
<9,P,§N‘2)/2>:<'“+N )/ F=k,k+ N —2(N —1)/2; (1 — 1)/2)
(2-20)7%2(1 — )N/ g

Therefore

(N-2)/2\ _ gN-2—« k+N -3 /1 —14+(N=1—-a)/2(1 _ \—1+(N—-1)/2
<g,Pk >_2 ( . s (1—s)

F(—=k,k+ N —2;(N —1)/2;s)ds.
Using the relationship

PNy = (PRSP, [SW, p. 149), [AS, p. 775)
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we have
(5,777
. 1
— gN-2-a (k—l—J’:’ 3) (_l)k/o sTIHIN=1=a)/2(] _ o)~ 1+(N-1)/2

-F(—k,k+ N —2;(N —1)/2;1—s)ds.
Term by term integration of the series defining F' gives
/01 s*71(1 - s)"'F(~k,c;b;1 — 5)ds = B(a,b)F(=k,c;a + b;1),
where B(-,-) is the Euler’s Beta function. Moreover, it is easy to see that

([AS, p. 556])

) _T(@+dl(a+b—c+k)
F(=k.ca+b1) = Fla+b+k)I'(a+b—-c)
I'(a +b) y T(l+c—a—0b)
F(a+b+k)(_)F(1+c—a—b—k)’

and so
1
(_1)k/ s M1 —s)"tF(=k,c;b;1 — s) ds
0

C(@)'()I(l+c—a—0b)
Fla+b+kIl(1+c—a—-b—k)

This gives
(0,77
N-1-a«a N -1 a
r =
_2N-2-a(k+N—3)F( )T () (++5)
- k a a ’
1= r(=
P(N 1 2+k) (2)
and
<g, pN= 2>
gk =

2
|22

N-1—-« N «
i P (3T (6 5)
p .
'3

VT I‘(N—l—%+k)
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Therefore,

F(————N—l_a)F(k+9—)
(N=1)/2 2 2

o o)’
P(N-1-Z4k)T(2

( 2+) (2)

if N > 2. On the other hand, if N = 2, the k-th Chebyshev’s polynomial is
Ty (t) = F(—k,k;1/2; (1 — t)/2), (see [AS, p. 779]), and

(2) g =gCry=2"""x

(g, P0) = / 2 —2)"2F(—k,k;1/2; (1 — t)/2)(1 — t*)"Y/2 dt.
Using the above computations when N = 2] we have that
l-«a «a
r (—2 > r (k + ‘i)
a a\
F<1—§+k>1‘<§)
Moreover it is easy to see, [AS, p. 774], that

s

—, ifk>0,
1Pz =492"

w, ifk=0,

(0. Pf)y =27

and also that Cy, = 2 P2 .
Then
kE _ <g’ PIE)
122l
and so (2) is also satisfied in this case (N = 2). Therefore we have proved
the following:

k2

Lemma 1. Forall NeEN, N>1and0<a <N —1,

o(1€ —n)) Zg’“Z’c

r(F=")r(k+5)
gk — 9N-1-a_(N-1)/2

P(N—l—gwc)r(%)

Now we can express the a-energy of a measure p in terms of its Poisson
extension P,.

where
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Lemma 2. If i is a signed measure supported on Y n_1, we have:

(i) If0<a < N —1, then

L(w) :C(N,a)/ol {/2 _ |Pu(r§)|2d§} pa1(1 _ p2yN-2-a gy

with
47TN/2

HOECS]
(ii) If m = p(XN—1), then

Iy(p) =wn_y /01 /EN‘l P,(r§) - ot
+5 [r(7)-Tw-1),

In particular, if N = 2,

=] ["[es

Proof. Let {uf}, k>0,1<j<ay, be the Fourier coefficientes of u, i.e.,

2
de (1 — )N =2
-

dr

r

’I‘B

2

pe D03 Y

k=0 j=1

Recall that P, is defined by
Pu(r§) = /E p(n,r&) du(n),

where p(n, 7€) is the classical (normalized) Poisson kernel

1 1—r2

WN-1 l77 ‘T§1N

p(n,r€) =

We have [SW, p. 145]

p(n,ré) = Zrka ZrkYk Yk(f

57
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Now, Plancherel’s theorem gives that

Pu(ré) = D_r*u Y (€).

L

Using again Plancherel’s theorem we obtain that
2
[ porde =Y ]
YN-1 kg
and so if we denote by A the right hand side in (i), we have that

2 1
=C(N,a) Z ’,ufl /0 pRhresl(] — p2yN=2=c gp
k.3

and, substituting r? = ¢, we get that
g ) g

C(N,a)zr(mg) T(N —1-a)

2
k.j _1.-
J <k+N 1 >

A=

s =S

Note that we have used the known duplication formula for the Gamma func-

tion in the last equality.
On the other hand, by (1),

(1€ —nl) ngZ’“ £) = ;g’“l’j’“(n)ﬁ’“(é),
©)J
and using Plancherel’s theorem we obtain that
S @alle = nD dut) = Sy,
() = 3o i =
»J

This finishes the proof of (i).

In order to prove (ii) observe that

~/EN_1

Integrating this equality we have that

L =cwe [ [

+m?U(a),

2

2
de + :/E P (r€)|? de .

WN-1

Pu(rf) -

WN-1

2
dé- T,avl(l o TQ)N—?—a d?"

Pu("f) -

WN-1
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where T(N/2)T(N — 1
U(O!) — ( / ) ( -+ a) ,
I'(N—-a)/2)T(N —1-a/2)
and hence
a2
a—0 6%
1 2 d
—wva [ [ P09 - | dg -
0 YN-1 Wn-1 r
On the other hand,
2 2 _
lim Ta(p) = m” U(<) = lim Lo(p) =m” —m? lim Ule) =1
a—0 o a—0 o a—0 o
= I(s) — m?U"(0),
and 1[I (N I’
U'0) = ; [F (5) —F(N—l)] .
This finishes the proof of Lemma 2. O

3. Distortion of a-capacity.
We need the following lemmas.

Lemma 3. Let p be a finite positive measure in OA, and let f be an inner
function. Then, there exists a unique positive measure U in S, such that
P,of =P and

U (f ' (support p)) = 5(S,) .
Moreover, if f(0) =0, then

L 5(s,) = L u(an).

Wan—1 2n

Proof. 1t is essentially the same proof as that of Lemma 1 of [FP], but see
Lemma 10 below for further details.

A different normalization is useful; choosing v = (27 /ws,,_, )V, one obtai

P, = 2n P,of and v(S,) = n(0A).

Wan—1

The following is well known
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Lemma 4. (Subordination principle). Let f : B, — A be a holomorphic
function such that f(0) =0, and let v: A —> R be a subharmonic function.
Then

[ e des 5 [ otre)as.

Waon—1 n

It will be relevant later on to recall the well known fact that, in the case
n = 1, equality in Lemma 4 holds for a given r, 0 < r < 1, if and only if
either v is harmonic in A, = {|z| < r} or f is a rotation. Note also that
there is no such equality statement when n > 1 since in higher dimensions
the extremal functions in Schwarz’s lemma are not so clearly determined
(see e.g. [R, p. 164)).

Lemma 5. Let i be a signed measure on 0A, f an inner function with
f(0) =0, and v a signed measure on S, such that

P, = (21 /wyn_1)Py 0 f.

Then

(i) Ifn=1and 0 <a <1, then

Io(v) < La(p).-
(i) Ifn>1and 0 < a < 1, then
Don21a(v) < K(n,a)la(p),

where
(n—1IT($)
Pn-1+%)"
If « =0 and m = p(0A) = v(S,), we have

K(n,a) =

Lna(v) < (2n = 2)Ip(p) +m?.

The measure v is obtained from Lemma 3 by splitting x4 into its positive
and negative parts. Note that for fixed «,

K(n,a)wnl*"‘/ZI‘(g—), as n — 00,

while for fixed n > 1

K(n,a)w%, as a—0.
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Let us observe also that K(n,«a) takes the value 1 for n = 1.

Proof. Since |Pu - %|2 and IPMI2 are subharmonic, we obtain by subordina-
tion, Lemma 4, that if n =1and a =0
27
d6 < /
0

27 2 2w
[-2fw-
0 0

and if n>1,0 < a <1, that

(3) /Sanu12d§=( . 1) / P (f |2d§<w2n 1/Ozﬂlpmaw.

In the first case, we obtain

2

™ de,

P —

P, - w5

Pu(f)

2

Io(v) < Io(p)

by integrating with respect to 27 dr/r and applying Lemma 2, part (ii).
In the second case, using Lemma 2, part (i), and Lemma 4 with v = | P, |?,
we have that

Fncaralt) = Clon2n=2+.0) [ { [ 1P0e)F depromaven 2

< C(2n,2n -2+ a)
- C(2,0)

2 L 2 12 dr
. P 10 da} a—1__ ="
Wan-1 /0 {./0 [Pulre )| " (1 —r2)e

= K(n,a)la(p),

C(2,a)

where
(n—1)IT (%)

K(TL,O() = m.

Finally, since v(S,) = m,

A

and so, Lemma 2 gives, if n > 1, that

2

2
& = [ IR de —

2n—1

P,(rf) —

Waon—1

2
d¢ r*»3dr.

IQn—Z (V) =

(n — 2) Wop—1
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By Lemmas 3 and 4, we get that

2 2

2w m
[ o) = =" de = [ | =R - &
Sn Won_1 Sn | Wan—1 Wan—1
2 \? m|?
- (=) [ |pueer -5 a
Wan—1 Sn 21
2w 2
L / Pure®y — | ap.
Wan—1 Jo 27
Therefore
47" boow m 4 m|*  dr
I e < m? / / P AN -
omo(V) <m’ + =21 )y wons o . (re’) o do .
4™ 1
2
- S
met (n—2)!w2n_1 O(H)
=m>+ (2n — 2) [y () .
The proof of Lemma 5 is finished. [l

Finally, we can prove

Theorem 1. If f is inner in the unit disk A, f(0) =0, and E is a Borel
subset of OA, we have:

cap, (f7'(E)) > cap,(E), 0<a<l.

Moreover, if E is any Borel subset of OA with cap,(F) > 0, equality holds
if and only if either f is a rotation or cap,(F) = cap,(9A).

Notice the following consequence concerning invariant sets. It is well
known that an inner function f with f(0) = 0, which is not a rotation,
is ergodic with respect to Lebesgue measure, see e.g. [P]. As a consequence
of the above, it is also ergodic with respect to a-capacity. More precisely,

Corollary. With the hypotheses of Theorem 1, if f is not a rotation and
if the symmetric difference between E and f~'(E) has zero a-capacity, then
either cap,(F) = 0 or cap,(FE) = cap,(0A).

In higher dimensions we have

Theorem 2. If f is inner in the unit ball of C*, f(0) =0, and E is a Borel
subset of 0A, we have:

CaDsn 940 (f"Y(E)) > K(n,a) " cap,(E), O<a<l,



DISTORTION UNDER INNER FUNCTIONS 63

and

<14 (2n—2)log (n>1).

cap,, o (f71(E)) capy(E) ’

Proof of Theorems 1 and 2. To prove the inequalities in the theorems we
may assume that F is closed. Assume first that n =1, 0 < o < 1. Let us
denote by p, the a-equilibrium probability distribution of F, and let v be
the probability measure such that P, = P,, o f. By Lemma 5,

(4) L(v) < L(ne) = (cap,(E)) ™

But, from Lemma 3, v (f~'(F)) =1, and so

L) = //f—1<E)xf-1<E) (|7 — w|) dv(2) dv(w).

Now, let {K,} be an increasing sequence of compacts subsets in 0A, K,, C
fY(F), such that v(K,) /1. Then, for each n > 1,

L(v) = //f_l(E)xf_l(E) &, (17 — w|) dv(2) dv(w)

\ dv(z) dv(w)
>v(K,) //KnxKn Pu(lz — wl) v(K,) v(K,)

> v (K,)" (cap, (Kn)) ™
> v (K,)® (cap, (f71(E))) ",

and consequently

() Ia(v) 2 (cap, (f 7 (E)))

The inequality in Theorem 1 follows now from (4) and (5).
The cases n > 1 (Theorem 2) and n = 1, @ = 0 are completely analogous.

-1

Proof of the equality statement of Theorem 1. First we prove it assuming
that E is closed, to show the ideas that we will use to demonstrate the
general case.

Suppose that 0 < o < 1. We have seen that

1 1
cap. (f1(B) < L(v) < 1o (pe) = cap(E) -

Therefore, if E and f~!(F) have the same a-capacity, then

I, (v) = Lo (pe)
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and this is possible only if for all r € (0,1),

/O " |P. (o) ap = / 1B () do.

This can occur only if either f is a rotation or | P, |? is harmonic. In the latter
case, we obtain that . is normalized Lebesgue measure, or equivalently that
cap,(E) = cap,(0A). Since E is closed, it follows that E = dA.

In order to prove the general case we need a characterization of the a-
capacity of E when E is not closed (see Lemma 6 below) We begin by
recalling some facts about convergence of measures.

We will say that a sequence of signed measures {o,,} with supports con-
tained in a compact set K converges w* to a signed measure o if

/h(a:) don(z) — [ h(z)do(z), for all he C(K).

n—00
Here, the w*-convergence refers to the duality between the space of signed
measures on K and the space C(K) of continuous functions with support
contained in K.

In this Section, we will denote by M, (K) (0 < a < 1) the vector space
of all signed measures whose support is contained in the set K and whose
a-energy is finite. M, (C) or My(A) is denoted simply by M,, and M7
denotes the corresponding cone of positive measures.

The positivity properties of I, [L, p. 79-80] allow us to define an inner
product in M, (for 0 < @ < 1) and e.g. in My({|z| = 1/2}) (for a = 0) as
follows

(0.7) = [[ @alla = yl) do@ar(v).
Observe that the associated norm verifies
lol? = I.(o) .

In the next lemma we collect some useful information concerning the above
inner product.

Lemma 6.
(i) If0<a<1, K is a compact subset of C, {0,} is a Cauchy sequence

(with respect to the inner product) in Mt (K) and o, o, then
lon, — ol — 0, as n— o0o.

(ii) If E is any Borel subset of K, then

cap.(B) =inf{I,(p): p a probability measure, p(E) =1},
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and there exists a probability measure y, supported on E such that

1

W = Ia(/J’e) .

In fact, if K, is an increasing sequence of compact subsets of E such that

cap, (K,) 7 cap,(E),

and if p, s the equilibrium distribution of K,,, then
pn=rpe  and  lun = pell — 0,

as 1 — 0.

These statements remain true in the case a =0, if K is a compact subset
of A.

Lemma, 6 is contained in [L, p. 82, 89, 145] if 0 < & < 1. The case « =0
is similar, though we need the restriction K C A so that || - || is a norm
(L, p. 80].

Now we are ready to finish the proof of Theorem 1. Let F be a Borel sub-
set of A such that

(6) cap, (f7(E)) = cap,(E) > 0.

We choose an increasing sequence of compact sets K, C E such that
cap,(K,)  cap,(E). Let pu, be the a-equilibrium measure of K, and
let 1. be the probability measure supported on E given by Lemma 6. We
have .

o= e and  To(pn) N Ta(pte)

as n — oo. In fact,
||/J'n—/1'e”_>0a as n — oo.

Let v, be the probability measure, with v, (f~'(K,)) = 1, such that P, =
P, o f (see Lemma 3). We can suppose after extracting a subsequence if
necessary, that v,, converges w* to a probability measure v on f~!(E). Since
the Poisson kernel is continuous in A we obtain, by using the w*-convergence,
that

P, —-P, and P, =P, as n — 0o,

pointwise. Therefore P, = P, o f, which in particular shows that v is a
probability measure supported on f~}(E).
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Claim. I,(v,) — I,(v) as n — co.
Since v, is a probability measure on f~'(E), Lemma 6 guarantees that

1
cap, (f~(E))
and so, by letting n — oo, and using that P, = P, o f (by Lemma 5) we
obtain that
L ) <L) = —

T IRTE Y v al\Me) = 7 -

cap, (FH(E) = =T cap, (B)
From (6), we deduce that 1,(v) = I,(u.). Finally, we can reason as in
the case of E being closed and conclude that either f is a rotation or . 1s
normalized Lebesque measure, i.e., cap,(F) = cap,(9A).

Proof of the Claim. Consider first the case 0 < a < 1. Since P, _,, =
P, ..o f, by Lemma 5 we obtain that

”L'P - Vn“2 = Ia(l/p —vy) < Ia(:“'p — fn) = Il“p - .unH2 p);jooo-
Therefore {v,} is a Cauchy sequence in the norm and so, by Lemma 6, we
have that

v —v||—0 and I,(v,) = I,(v)

as n — oo.
For A > 0, and A C C, we will denote by AA the set \A = {Az: z € A}
If E is a Borel subset of A, then ;F is a Borel subset of {|z| = 1/2}.
Also, if ¢ is a probability measure in A, we will denote by ¢* the probability
measure in {|z| = 1/2} defined by

1
(1) o(4) = o (5 A) ,
for A a Borel subset of 0A. It is clear that

(8) Iy(o*) = Iy(o) +log 2.

Now, in order to prove the case a = 0, let u} and v} be the measures
defined from p,, and v,, by (7). Then using again Lemma 5 and (8) we have
that

vy = vill? = Io(v; — vy) = Io(vp — vn) + log 2

— 0.

P,n—00

* <2
iu‘p—ll’n

< Io(pp — pn) +1og2 = ‘
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Therefore {v;} is a Cauchy sequence in the norm and again by Lemma 6,
we obtain that

vy —v*|| =0 and ILy(v;) = Ly(v")

as n — oo. It follows, from (8) that

Iy(vy,) = L(v), as n — oo.
il
4. Some further results on distortion of capacity in the case
n=1.
First we show that Theorem 1 is sharp. In what follows | - | will denote not

normalized Lebesgue measure in OA (i.e. |0A]| = 27).

Proposition 1. cap, (f~'(F)) can take any value between cap,(E) and
cap, (0A). More precisely, given 0 < s < t < cap,(0A) there exist a Borel
subset E of OA and an inner function f with f(0) = 0 such that cap,(E) = s
and cap, (f~}(E)) =1t.

In order to prove this, we need the following lemma whose proof will given
later.

Lemma 7. Let I be any closed interval in OA with |I| > 0, and let B be a
finite union of closed intervals in OA such that |B| = |I|. Then there ezists
an inner function f such that

F0)=0 and fNI)=B.
In fact, if 0 < |I| < 2x, then f is unique.

Remark. It is natural to wonder if this lemma holds in higher dimensions,
more precisely: Is it true that given an interval I in A and a Borel subset
B of S,, such that

Bl _ 11

Wan—1 2m

there is an inner function f : B, — A such that f~*(I)=B ?

It is not possible to construct such f by using the Ryll-Wojtaszczyk poly-
nomials (see [R1]), since in that case the following stronger result would be
true too:
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Given E, I subsets of A with |E| = |I| and N € N, there exists an inner
function f : A — A such that

E=fI), and  fU0)=0, ifj<N.

But it is easy to see, as a consequence of Lemma 8, that in general this is
not possible.

Proof of Proposition 1. Let I be a closed interval in 0A centered at 1 and
such that cap,(I) = s. Consider the function g(z) = z?. Then (see e.g.
[FP] or Proposition 3 below),

s = cap,(I) < cap, (¢7*(1)) < --- < cap, (g7 " (1)) . cap,(94).
Therefore, if t = cap, (¢7*(I)) for some k, we are done.

Note that g=*(I) consists of 2* closed intervals of length |I|/2* and cen-
tered at the points z;; = €2™i/2" (j =1,...,2*).

If cap, (g~ *~V(I)) < t < cap, (97*(I)) a simple continuity argument
shows that there exist a finite union B of 2% closed intervals in A of total
length |I| with cap,(B) = t.

Finally, applying Lemma 7 to the pair I/, B we obtain an inner function
f with f(0) =0 and f~'(I) = B. O

Proof of Lemma 7. Let u be the Poisson integral of the characteristic function
of B, and let % be its conjugate harmonic function chosen such that @(0) = 0.
Since u(0) = |B|/27 the holomorphic function F' = u + 4G transforms A into
the strip S = {w : 0 < Rew < 1}. Notice that F' has radial boundary values
except for a finite number of points, and F applies the interior of B into
{w: Rew =1} and A \ B into {w : Rew = 0}.

Now, let G be the Riemann mapping of S chosen such that

G(|B|/2r) = 0.

G transforms {w : Rew = 1} onto an interval J of JA. On the other
hand, the function h = G o F is clearly an inner function, A(0) = 0 and
h~'(I) = B. By composing h with an appropriate rotation we finish the
proof of the existence statement.

To show the uniqueness of f, it is sufficient to prove the following

Lemma 8. If A is any Borel subset of A, such that [, e **d0 # 0, and f,
g are inner functions with f(0) = g(0) = 0 such that

fiA)=g71(4),
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then f = g.
Here = denotes equality up to a set of zero Lebesque measure.

Proof. Let F: A — {w: 0 < Rew < 1} be the holomorphic function given

by
1 [ef+2
F(z) = — . .
(2) 27 /A el —z d0
F is univalent in a neighbourhood of 0, because
1 )
F(0) = —/ e"d # 0.
TJA

Now, observe that Re (F' o f) = Re (F o g) almost everywhere on 0A. Since
Re(F o f) and Re(F o g) are bounded harmonic functions it follows that
Fof=Fog+icin A, where c is a real constant. Since f(0) = g(0), we
deduce that F o f = F o g which proves the lemma because F' is univalent
in a neighbourhood of 0. O

Observe that, in particular, the condition [, e~*df # 0 is satisfied e.g. if
A is any interval in A with 0 < |A] < 2.

The condition [, e7*df # 0 is not only a technicality. If A is k-symmetrical
(i.e., there exists a subset Ay C A, with 4y C [0,27/k], such that A= A4, U
(Ao +27m/k) U (Ao +4n/k)U--- U (A + 2m(k — 1)/k)), and [, e~**¢df # 0,
then f = wg, where w is a k-th root of unity. To see this, one can use Lemma
8 with the functions h o f, h o g and the set h(A), where h(z) = z*.

Also, note that if A is the union of two intervals in A, then f = *g,
because [, e=*df = 0 implies that A4 is 2-symmetrical.

Notice that if the function ¢ in Lemma 8 were the identity, and 0 <
|A| < 27, then, by ergodicity, we would have that f is a rotation of rational
angle. This, together with the above remark, could suggest that perhaps the
following statement was true:

If A is any Borel subset of A, such that 0 < |A| < 2w, and f, g are inner
functions with f(0) = g(0) = 0 such that

fH(A)=g7'(4),

then f = A\g with || = 1.
But this is false as the next example shows: Let B be the following

Blaschke product
2z —1

2—z
By applying a theorem of Stephenson [S, Theorem 3] to the pair B, —B, one
obtains two inner functions f and g with f(0) = g(0) = 0, such that

Bof=-Bog.

B(z) =z
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But then (B(f))* = (B(g))?, and so, if we had f = Ag, we could conclude
that B(z) = —B(Az). But, since B'(0) # 0, we had A = —1, ie., B(z) =
—B(—z), a contradiction.

The following is well known, at least for o = 0, see for instance [A, p. 35-36]
where it is credited to Beurling.

Proposition 2. Let 0 < o < 1. If I is any interval in A, then I has
the minimum a-capacity between all the Borel subsets of OA with the same
Lebesgue measure than 1.

Proof. Let E be a Borel set such that |F| = |I|. A standard approximation
argument shows that for all € > 0 there exists a finite union B, of closed
intervals such that

[E| = 1Bel| <e  and | cap,(E) —cap,(B:)| <e.

Let I, be a closed interval with the same center than I and such that |I.| =
|B.|. By Lemma 7, we can find an inner function f. such that

f-(0)=0 and fFYI.)=8B. .
Therefore, by Theorem 1,
cap, (E) + € > cap,(B.) > cap,(I.),
but cap,(I.) = cap,(I) as ¢ = 0. Il

The following proposition is not unexpected since ergodic theory says that
f~*(E) is well spread on 0A. Hereafter f¥ = fo---of denotes the k-iterate

of f and f=F = (fF)~L.

Proposition 3. If f : A — A is inner but not a rotation, f(0) = 0,
0 < a <1 and E is a Borel subset of 0A with cap,(E) > 0, then

cap, (f*(E)) — cap,(9A) as k— 0.

The proof of this result is an easy consequence of the following lemma.

Lemma 9. With the hypotheses of Proposition 3, if u is any probability
measure on E with finite a-energy and if vy is the probability measure in
[ *(E) such that P, = P, o f*, then

|-

I,(v) — I, (———) as k — 00.
27
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With this, we have

1 |- . 1
cap, (fH(B)) = Tal) — L (%)= cap. (04)

giving us the conclusion of Proposition 3.

Proof of Lemma 9. We will prove it for 0 < a < 1; the case a = 0 being
similar.
By Lemma 2 (i), we have with an appropriate function g, that

I, (o) =/01 /027r|12,(7~e”9)|2 d go(r) dr

for any probability measure o on JA.
Using (3) we have for all € (0,1) that

/% |P,, (re®)|” df < /277 P, (re')” df.
0 0

Since p has finite a-energy, the right hand side in the last inequality, as
a function of r, belongs to L'(g,(r) dr). Therefore, by using the Lebesgue’s
dominated convergence theorem, we would be done if we show that

2m . 1
(9) / |P,, (7“6"9)|2 dg — — as k — oo,
0 2m

for each r with 0 < r < 1. But, by Schwarz’s lemma, and since f is not a
rotation, |f* (re"”)| — 0 as k — oo, uniformly on 6 for r fixed. Therefore,
for each r, B, (re?®) = P, (f* (re"’)) — 1/2m, as k — oo, uniformly on 6,
and this implies (9). |

Even in the case when cap,(E) = 0, the sets f~*(E) are well spread on
OA.

Proposition 4. If f : A — A is an inner function (but not a rotation)
with f(0) =0, E is any non empty Borel subset of A, and p is any probabil-
ity measure on E, then for some absolute constant C' and a positive constant
A that only depends on |f'(0)|, we have that

w(n - < gemne,

for each interval I C QA. In particular,

-]
I/k—-)27r
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in the usual weak-+ topology.
Here vy, is the probability measure concentrated in f~*(E) such that P,, =
P, o fk.

Proof. The proof is similar to that of Lemma 3 in [P], but using here the
fact that P,, = P, o f* instead of Lemma 1 in [P]. |

Proposition 5. If f : B, — A is inner, then f assumes in OB, all the
values in OA.

Proof. Let f : B, — A be an inner function. It is enough to prove that

{1} # @. But,

. 1+ f\ _ 1-|f)? :
(10) u.-Re(l_f)—ll_fI2>0, in B,.

Therefore, v is harmonic and positive in B, and so there exists a positive

measure in S, such that
1+ f
Re (1) =P

By (10) P, tends radially to 0 a.e. with respect to Lebesgue measure, since
f is inner and (by Privalov’s theorem, (see e.g., [R, Theorem 5.5.9])) f can
assume the value 1 at most in a set of zero Lebesgue measure. Then, the
Radon-Nikodym derivative of u with respect to Lebesgue measure is zero
a.e., and so p is a singular measure.

By Lemma 11 it follows that P, — +o0 in a set of full u-measure. But
this is the same to say that f(re) — 1 in that set. a

When the inner function f has order £ > 1 at 0, we can improve Theorem
1 in the case a=0.

Theorem 3. If f : A — A is inner,

fFO =f(0)=--=f*D0)=0, f®0O)£0, (k>1),
and E is a Borel subset of 0/, then
(11) cap, (f1(E)) > (capo(E))"" .

Moreover, if capy(E) > 0, equality holds if and only if either f(z) = \z¥,
with |A| = 1, or capy(E) = capy(0A).

Proof. For such a function f, Schwarz’s lemma says us that |f(z)| < |z]¥,
with equality only if f(z) = AzF with |A] = 1. With this in mind, the
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subordination principle says now (see e.g. [HH]) that if v is a subharmonic
function in A, then

/21r v (f (re®)) df < /21r v (rfe') df,

with equality for a given r only if v is harmonic in {|z| < r} or f is a rotation
of z*.

Now, in order to prove (11), we can assume that F is closed. If p. is the
equilibrium probability distribution of E and v is the probability measure
in f~'(E) such that P, = P, o f, then

12 : 1)? dr
_ 0yy _ -
W) =2 [ [P (7 (re) = 5| a0
1 p2n ) 1 2 d
< 27r/ / P, (rke®) — —| o=
0o Jo s r
Substituting 7* = ¢, we obtain that
1
Lv) = ¢ To(pe) -
This finishes the proof of (11). The equality statement can be proved in the
same way as that of Theorem 1. O

Remark. For other o’s (0 < a < 1) we can show

1 S Ca< 11 )
cap, (f~1(E))  cap,(0A) = k'~ \cap,(E)  capa(9A)

where C, is a constant depending only on a.
We expect C,, = 1, but we have not been able to show this.

5. Distortion of a-content.

The following is an extension of Lowner’s lemma.

Theorem 4. If f:B, — A is inner, f(0) =0 and E is a Borel subset of
OA, then, for 0 < a <1,

(i) Mon_z+a (f7(E)) Z Cna Mo(E)

(i) Mon-rsa (F(B)) 2 Cl o Ma(E).
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Here My and Mg denote, respectively, S-dimensional content with respect
to the euclidean metric and with respect to the metric in S,, given by

d(aa b) = |1 - <a'a b) |1/2:

where (a,b) = 3 a; b; is the inner product in C*. This metric is equivalent
to the Carnot-Carathéodory metric in the Heisenberg group model for S,,.
We refer to [R] for details about this metric.

Recall that in a general metric space (X, d) the a-content of a set E C X
is defined as

M,(FE) = inf{er‘ : EC UBd(mi,ri)} .
Observe that, as a consequence of Theorem 4, one obtains
Corollary. If f : B, — A is inner and E is a Borel subset of OA, then
Dim (f~'(E)) > 2n — 2 + Dim(E)

and
Dim (f'(E)) > 2n — 2 + 2Dim(E)

where Dim and Dim denote, respectively, Hausdorff dimension with respect
to the euclidean metric and the metric d.

In order to prove Theorem 4 we will prove a lemma about Poisson inte-
grals. We need to consider the classical Poisson kernel (not normalized)

Pe,s) =~ (em,, ccs,),

€ — z|*n
and the invariant Poisson kernel

_ -
Q(&z)_n—(z,f)l?” ( E]Bna£€Sn)'

Of course, they coincide if n = 1. In this section if v is a positive measure
in S,,, we will denote by P, the function

P = [ P(e2)dv(e)
and by @, the invariant Poisson extension of v

Qu(z) = /S Q(E, ) dv(€).
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Lemma 10. Let u be a finite positive measure in OA, and let f : B, — A
be an inner function. Then, there exists a finite measure v > 0 in S, such
that P, o f = P,, and if v has singular part o and continuous part v, and
we denote by A the set

A={¢€S,: P,(rf) > +o0, asrT — 1}
and by B the set
B={¢€S,: 3limf(re) = f(€), [f(©)| =1 ond limP,(r§) >0},
then A has full c-measure, B has full y-measure and
AU B C f~!(support i)

and so
v (f~(supportu)) = [|v|.
The same is true if we replace P, by Q, (P,o f = Q. ) and A, B by the
following sets

A'={€eS,: Qu(rf) = +oo, asr — 1},
and
B'={¢€S,: INimf(re) = (&), /() =1 and limQ,(re) >0},

where o' and 7' denote, respectively, the singular and the continuous part of
!

V.
Proof. We will prove the lemma only for the measure v/, since the proof of
the result for v is similar and standard.

Let U : A — C be a holomorphic function such that ReU = P,. Then
U o f is also holomorphic and so Re(U o f) = P, o f is pluriharmonic, i.e.
harmonic and M-harmonic (see e.g. [R, Theorem 4.4.9]). Therefore there
exist finite positive measures v and v’ in S,, such that

Puof:Pva Pnof:Qu’-

Let us denote by E the support of u. If & € A', then |f(ré)| — 1 as
r — 1. The curve {f(rf) : 0 < r < 1} in A must end on a unique point
e = f(€) € A, since otherwise we would have P, = 400 on a set of positive
Lebesgue measure. Now, €'V € E, since otherwise P, vanishes continuously
at €. Therefore A’ C f~1(E). Similarly one sees that B’ C f~'(E).
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The set A’ has full o'-measure since by the inequality (14), that we will
prove later,

{ees Do) =0} ca,

where

! I LU OI(Bd(f,’I‘))
R T

and the set {{ : Do'(§) = oo} has full o’-measure (see Lemma 11 below).
Let us observe that ([R, p. 67))

| Ba(&,7)| ~ 1"

The set B’ has full v'-measure, since as r — 1

Q. (ré) — % a.e.

with respect to Lebesgue measure L (see, e.g., [R, Theorem 5.4.9]) and
{% > 0} has full v'-measure. U

Lemma 11. Suppose that i is a singular positive Borel measure (with respect
to Lebesque measure) in S,. Then

Du(z) = o0 a.e. W.

Proof. Let A be a Borel set such that |A| = 0, and p is concentrated on A.
Define for a > 0

Aa:{zEA: I_)u(x)<a}.

It is enough to prove that u(A,) = 0, and by regularity that p(K) = 0 for
all K compact subset of A,.

Fix € > 0. Since K C A, C A, |K| = 0 and so there exists an open set V
with K C V and |V| <€ (| - | denotes Lebesgue measure).

Now, for each z € K, we can find r, > 0 such that

[L(Bd(ﬂi,’/'z))

and By(z,r,/3) C V.
|Ba(z, 1) o 7219)

The family {By(z,r,/3) : z € K} covers K, hence we can extract a finite
subcollection ® that also covers K. Now, using a Vitaly-type lemma (see,
e.g., [R, Lemma 5.2.3]), we can find a disjoint subcollection I" of ® such that

K cC UBd(zz,'r’wi) .
r
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Note that as a consequence of Proposition 5.1.4 in [R] we have that

|Bd($aT2)|
@ = —_— 0.
<= 5P Bz, . /3)]

Therefore
w(K) <> pu(Balzi,rs,)) < @Y |Bal@i a,)|
T T

< @daZIBd(a:i,rmiB)l <B4alV| <O ac.
T

O

Proof of Theorem 4. We will prove only (ii), since (i) is obtained in a similar
way.

Assume, as we may, that E is a closed subset of A and M,(F) > 0.
Then, see e.g. [T, p. 64], there exists a positive mass distribution on E
of finite total mass, such that: (a) p(E) = M,(E), (b) u(l) < C,|I|* for
any open interval I, where C, is a constant independent of E. A standard
estimate shows that

Ca

A= €8

(12) P,(z) <

with C, a new constant. Let v’ > 0 be a measure in S,, such that P, o f =
Q.. Schwarz’s lemma (see e.g. [R, Theorem 8.1.2]) and (12) give the
corresponding inequality for v':
(13) Qu(z) < —Ce (zeB,)

ST @ =l .

We claim that for each z € B,

V(BAE QU= D) g
1=zl ’ n
where £ = z/||z|| and By(§, R) denotes the d-ball with center ¢ and radius

R.
Assuming (14) for the moment and using (13), we obtain that

(14) QV’(Z) Z Cn

(15) V'(Ba(€, R)) < Cpo R4 (£€8S,,R>0).

If we cover the set A' U B' (see Lemma 14) with d-balls of radii R;, we

see by (15) that
V(A'UB') < Cro Y RIS
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and so
V]l = V(AU B') < G Moo 1109 (A" U B)
< Chya Man—11a) (FT(E)) .
So, since f(0) =0,
Mo(E) = [lpll = IVl < Cjo Manitay (f7(E)) -

Therefore, in order to finish the proof, it remains only to prove (14).
Observe first that we can assume that £ = e¢; = (1,0,...,0) since d is
invariant under the unitary transformations of S,, for the inner product (-, -).
Now, if z = re, , write 6> = 2(1 —r). If n € By(e; ,d), then

[T—rm|<[L=m|+m|(1—r) <31 -r).
Hence, if n € By(ey ,9)

1—r2 )" S 9—n
’1“”71[2

Q(n%)z( A=

Since () is invariant under the action of the unitary group for the inner
product (-,-) in S,,, we obtain that if z = r£ and n € B,(¢,0), then

g-n
Q(n,z) > (l_——_r—)—'; .

Finally,

6. Distortion of subsets of the disc.

We have discussed how inner functions distort boundary sets. There are
some results on how they distort subsets of A. On the one hand Hamilton
[H] has shown that

Theorem H. For all Borel subsets E of A,

H, (f(E) 2 Ho(E), 0<a<l,
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where H, denotes a-Hausdorff measure.
One naturally expects the following to be true:
If f: A — A is inner, f(0) =0 and E is a Borel subset of A, then

cap, (f1(E)) > cap,(E).

This we can prove only if & = 0. The idea comes from [P1, p. 336].
Theorem 5. Let f : A — A be an inner function. If for some k > 1
JO) = f1(0) = =4O =0, fOO) #0,

then,
cap, (f ' (E)) > (cap,(E))"*,

for all Borel subsets of A. Moreover, this inequality is sharp.

Sketch of proof. By approximation, it is enough to prove it if £ is closed
and f is a finite Blaschke product. Let f be

d
k iz Z— 4
Z) =2z He .
1) - l1—a,z
j=1

Denote by gg, gr the Green’s functions of the unbounded connected com-
ponent of C\ E and C\ F (here F = f~'(FE)) with pole at co. Therefore,

+0 (|27,

z) —loglz| = lo
gr(2) — log|z| & cane(E)

1
z) —log|z| = lo +0 (|z|™),
ar(2) ~log] el =log "o+ O (121 )

as |z| = co. Moreover, since k > 1

: 1
gE(f(Z)) - k‘lOg'Zl + 1Og],_[ 'a’jl = lOg CapO(E) +0 (’Z]Al) ’

Jj=1

as |z| = oco. It is easy to see that

is harmonic in the unbounded connected component of C\ (F U (U?Zl {a;* }))
and it is bounded at the points @;' (here gp(z,a;') denotes the Green’s
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function of the unbounded connected component of C\ F' with pole at a;').
Therefore, the function

(16) G(z) = - gu(f(2)) - Ei: ( )

??‘lb—t

is harmonic and bounded in the unbounded connected component of C \ F.
Since G = 0 on the outer boundary of F, it follows that G = 0.
Now, by using the symmetry of Green’s function, we have that

QF( )_‘)QF(_l): as |z| = 00,

and so, from (16),

1 S
(17) logm logH|a]|—klog E:: ( ):0.

j=1

On the other hand, since F C A, the maximum principle says that

gr(z) > ga(z) = log|z], |z| > 1.

Hence, from (17), we obtain that

1 1
log logH la,| — klog o (F) > Zlog la;| ™,

cap, (E) i

and the inequality in the theorem follows.
Finally, to show that the inequality is sharp one simply has to consider
the function f(z) = 2*. ]
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