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IRREDUCIBLE NON-DENSE AY.MODULES

V.M. FUTORNY

We study the irreducible weight non-dense modules for
Affine Lie Algebra Agl) and classify all such modules having
at least one finite-dimensional weight subspace. We prove
that any irreducible non-zero level module with all finite-
dimensional weight subspaces is non-dense.

1. Introduction.

Let A = _; _3 and G = G(A) is the associated Kac-Moody algebra
over the complex numbers C with Cartan subalgebra H C G, 1-dimensional
center Cc C H and root system A.
A G-module V is called a weight if V = @ Vi, i ={v eV | hv = A(h)v
AEH*
for all h € H}. If V is an irreducible weight G-module then c acts on V as a

scalar. We will call this scalar the level of V| For a weight G-module V, set
PV)={Xxe H* |V, #0}.
Let Q = ZZ(p. It is clear that if a weight G-module V is irreducible

peA
then P(V) C A+ Q for some X\ € H*. An irreducible weight G-module V' is

called dense if P(V) = XA + @Q for some A € H*, and non-dense otherwise.

Irreducible dense modules whose weight spaces are all one-dimensional
were classified by S. Spirin [1] for the algebra A and by D. Britten, F.
Lemire, F. Zorzitto [2] in the general case. It follows from [2] that such mod-
ules exist only for algebras A%, C(). V. Chari and A. Pressley constructed
a family of irreducible integrable dense modules with all infinite-dimensional
weight spaces. These modules can be realized as tensor product of standard
highest weight modules with so-called loop modules [3].

In the present paper we study irreducible non-dense weight G-modules.
We use Kac [4] as a basic reference for notation, terminology and prelimi-
nary results. Our main result is the classification of all irreducible non-dense
G-modules having at least one finite-dimensional weight subspace. This in-
cludes, in particular, all irreducible highest weight modules. Moreover, we
show that this classification includes all irreducible modules of non-zero level
whose weight spaces are all finite- dimensional.
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The paper is organized as follows. In Section 3 we study generalized Verma
modules ME()\, ), ais a real root, A € H*, v € C, € € {+, —} which do not
necessarily have a highest weight (cf. [5]). By making use of the generalized
Casimir operator and generalized Shapovalov form we obtain the criteria
of irreducibility for the modules MZ (X, y) without highest weight (Theorem
3.11).

In Section 4 we classify all irreducible Z-graded modules for the Heisenberg
subalgebra G C G with at least one finite-dimensional graded component.
Irreducible G- modules with trivial action of ¢ were described earlier in [6)].
Let § € A such that ZJ—{0} is the set of all imaginary roots in A. Following

[6] we introduce in Section 5 the category O(a) of weight G-modules V
¢

such that P(V) C | J{\i —ka+nd|k,n € Z,k >0} where \; € H*, but
i=1

without any restriction on the action of the center (unlike in [6] where the
trivial action of the center is required). The irreducible objects in O(«) are
the unique quotients of G-modules M, (A, V), where A € H*, V is irreducible
Z-graded G-module. Modules M, (A, C), with A(c) = 0 were studied in [7-
9]. If A(c) # 0 and at least one graded component of V is finite-dimensional
then the module M, (), V) is irreducible [8, 9]. In Section 6 we classify all
irreducible non-dense G-modules with at least one finite-dimensional weight
subspace (Theorem 6.2). It turns out that these modules are the quotients
of the modules of type M¢(A,7) or M,(\, V). Moreover, any irreducible G-
module of non-zero level whose weight spaces are all finite- dimensional is
the quotient of Mg(), ) for some real root a, A € H*, vy € C, ¢ € {+,—}
(Theorem 6.3).

2. Preliminaries.

We have the root space decomposition for G : G = H® Zgw where dim

peA
G, = 1 for all ¢ € A. Denote by U(G) the universal enveloping algebra of G,
by W the Weyl group and by ( , ) the standard non-degenerate symmetric
bilinear form on G [4, Theorem 3.2]. Let A™ be the set of real roots in A
and A*™ be the set of imaginary roots in A. Fix o € A" and consider a
subalgebra G(a) C G generated by G, and G_,. Then G(a) ~ sl(2) and we
fix in G(a) a standard basis e, €_q, ha = [€q, €_o] Where [hq, 1] = £2€44.
We will use the following realization of G:

G=G(a)®C[t,t '] ® Ccd Cd

with [z®t"+ac+bd, y@t™+a,c+byd] = [z, y] "™ +bmy @t™ —binz @™+
N6n,—m(z,y)c, forall z, y € G(a), a,b,a;, b, € C. Then H = Ch,®Cc®Cd.
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Denote by ¢ the element of H* defined by: 6(h,) = d(c) = 0 and §(d) =
Then A™ = Z6 — {0} and 7 = {e, 6 — a} is a basis of A. Let Ay, = A, (n)
be the set of all positive roots with respect to . The root system A can be
described in the following way: A = {+a+nd | n € Z}U{nd | n € Z — {0}}.
We have Gipins = G1a @ t", n € Z, G5 = Ch, @ t", n € Z — {0}. Set
Cotns = €u @t €_gins = €_o®t", N EZ, eps = hy @™, m € Z — {0}.
Then [ers, €ms] = 2k0k,—mC, [€rs, €xatns] = £2€1at(ntk)s) [Caths) E—atms] =
Ok,—m(Pa + kc) + (1 — 6, —m)e(rt+m)s for any k, m € Z.

For a Lie algebra A4, S(.A) will denote the corresponding symmetric alge-
bra. We will identify the algebra U(H) = S(H) with the ring of polynomials
C[H*] and denote by o the involutive antiautomorphism on U(G) such that

o(€a) = €, 0(€5-a) =€acs. Set Ny = > Gy No= > G,

PEAL pEAL
3. Generalized Verma modules.

The center of U(G()) is generated by the Casimir element z, = (h, +1)*+
4e_,e,. Denote

No:,_ = Z gtpa ./V:; = Z g—cpa

p€AL—{a} peA—{a}
T,=SH)®Clz,), E.=(H+G()dN, ce{+,—-}.

Let A € H*,v € C. Consider the 1-dimensional T,-module Cv, with the
action (h® 2")vy = h(A\)y™w, for any h € S(H), and construct an H + G(a)-
module

V(A7) =U(G(a) + H) (X) Cus.

T
It is clear that the module V()\,v) has a unique irreducible quotient V, ,.

Proposition 3.1.
(1) IfV is an irreducible weight H + G(a)-module then V ~ V, ., for some
A€EH* yeC.
(i) Vay Vi ifandonlyify =+, N =X+na,n € Z, v # (A hy)+2¢0+
1)? for all integers £,0 < £ < n if n > 0 or for all integers £,n < £ <0
if n <O0.

Proof. This is essentially the classification of irreducible weight s/(2)-modules.

O

Let A€ H*, vy € C, € € {+,—}. Consider V, , as E;-module with trivial
action of N¢ and construct the G-module

M:(X,7) G) & Van
U(ES)
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associated with a, A, ~,e.
The module M (A, y) is called a generalized Verma module. Notice that
V.4 does not have to be finite-dimensional.

Proposition 3.2.
(i) MZ(N\,7y) is a free o(UNZ))- module with all finite-dimensional weight
subspaces.
(ii) MZ(A, ) has a unique irreducible quotient, L:,(X, ).
Qi) ME(\,y) =~ ML (N,v') ifand only ife = €',y =7, X' = Ana,n €%
and v # (AMhy) + 20+ 1) for all ¢ € Z, 0 < ¢ <n ifn >0 or for all
teZ,n<l<0ifn<0.

Proof. Follows from the construction of G- module M:(A,~y) and Proposition

3.1. O

Let Ry = {(A(ho) +2¢+1)* | £ € Z}. Recall that V is called a highest
weight module with respect to A, and with highest weight A € H* if V =
U(G)v, v € Vy and Vyy, = 0 for all ¢ € A, (m). Proposition 3.2, (iii) implies
that M:(A,v) and L (A, ) are highest weight modules with respect to some
choice of basis of A and, therefore, are the quotients of Verma modules [4],
if and only if v € Ry. The theory of highest weight modules was developed
in [4, 10].

Corollary 3.3.

(1) Let V be an irreducible weight G-module, 0 # v € V5 and Ntv = 0.
Then V =~ Lt (XA, 7y) for some y € C.

(i) Let A & Rx. L5(\,y) ~ L5, (N,v') if and only if e = €', & = « or
o =—a,y=v, N = +na,n€Z and v # (Mha) +2¢+ 1) for all
LeZ,0<l<nifn>0o0rforallleZ, n<l<0ifn<0.

Proof. Since V is irreducible G- module, V' = U(G(«a))v is an irreducible
G(a)-module and V =~ o(U(NE))V'. Then V is a homomorphic image of
ME(N,7y) for some v € C and, thus, V =~ L¢(\,v) which proves (i). (ii)
follows from Proposition 3.2, (iii). d

From now on we will consider the modules M (X, v)(= M(A,v)). All the
results for the modules M (A,y) can be proved analogously. Set z = z,.
For A € H*, v € C and integer n > 0 we denote by z(n) the restriction of z
to the subspace M (X, ¥)x_n(s—a)-

Proposition 3.4. If v # (AMhy) + 20+ 1)* for all 0 < £ < 2n then
Specz(n) = {(2k £+ \/7)? |k € 2,0 < k < n}.

Proof. Denote V,, = M (A, ¥)x_n@s—a), » > 0. One can easily show that
Vo = easVn1+e eV 1 +e_n 562V g Let V,op = @V, (1), 7 € C,
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where V, (1) = {veV,,|3IN:(z(n—1)—7)Yv=0}. Then the sub-
space €,—sVn-1(7) + e_sea Vi1 (7) + €_q 52V, _1(7) C V, is z(n)- invariant
and z(n) has on it the eigenvalues 7 and (2 4 /7)?, thanks to the condition
v # (Aha) + 2+ 1)?) 0 < £ < 2n, which implies that z(n) has eigenvalues
(2k+7)?, 0<k<n. O

Corollary 3.5. Ifyv & R, then e, and e_, act injectively on M (X, 7).

Proof. If v ¢ R then Specz(n) () Ry_ns = @ for all integer n > 0 by Propo-
sition 3.4 and, therefore, e, and e_, act injectively on M (7). |

Fix p € H* such that (p,a) =1, (p,d) = 2. Since M (], ) is a restricted
module, i.e. for every v € M(),7v), G,v = 0 for all but a finite number
of positive roots ¢, we have well-defined action of a generalized Casimir
operator € on M(A,vy) [4]:

Q= (n+2p,p)v+2 Y T ye,0, vE MY,

wEAL

where €_, € G_,, (_,,e,) =1, ¢ € A,. Set Q = 2Q + id.
Let s € W, so(u) = p — (g, @), p € H*.
Lemma 3.6. For a G-module M()\,~)

Q=[(A+2p+ sa(A+2p), A) +7]id.

Proof. Follows from [4, Th.2.6] and definition of €.

+ O

Lemma 3.7. Letn>0,8=0—a, 0#£v € M\, YV)a-ns, ¥ # (A(ha)
20+ 1)% for all0 < £ < 2n and NJv = 0. Then k*y = (n(A\c) + 2) — k?)
for some k€ Z, 0 <k <n.

~

Proof. 1t follows from Lemma 3.6 that z(n)v = v'v and
A=—nB8+20+5,(A—nB+2p),A\=nB)+v =A+2p+s.(A+2p), \) +7
which implies

v =y +4n(A(c) + 2).
But, v = (2k £ /7)* for some k € Z, 0 < k < n by Proposition 3.4.
Therefore, k*y = (n(A(c) + 2) — k?)? which completes the proof. U

Corollary 3.8. Let A € H*, vy € C — Ry. If k*y # (n(\(c) + 2) — k?)? for
alln,k €Z, n>0,0<k<n then G-module M(X,~) irreducible.

Proof. If the G-module M (),~) has a non-trivial submodule M, then M
contains a non-zero vector v of weight A — n(d — a) , n > 0, such that
Njv = 0. Now, the statement follows from Lemma 3.7. O
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Consider the following decomposition of U(G):
UG) = (NUG) +UG)N]) & Ty Cleslea ® ToCle_ye_y & Ty

Let j be the projection of U(G) to T,. Introduce the generalized Shapo-
valov form F, a symmetric bilinear form on 4 (G) with values in T,, as follows
(cf. (11]): F(z,y) = j(o(z)y), =,y € U(G). The algebra U(G) is Q-graded:
UG) = PU(G),. 1t is clear that F(U(G)n,, U(G)n,) = 0 if my # ms. Denote

ne

Q

UWN_)_y =UWN_-)NU(G)-, and let F, be a restriction of F to UN_)_,.

For A € H*, v € C, consider the linear map 6, , : T, — C defined by
Oxr(h ® z™) = h(\)y" for any h € S(H), n € Z,..

Set \p = A+ka,k€Z. Let uy=X—n(d —a) € P(M(A,7)), n € Z, and
v # (A(ha) + 25 + 1)? for all integer s, 0 < s < 2n. Then Ay, € P(M(), 7)),
M(X\,Y)x,, = Cv, and M(\, %), = UN_)_n(ars)Vn- Set F™ = Fr,is). We
define a a bilinear C-valued form F? on M(}, ), as follows:

Fg(ulvn, UgU,) = Oy, (F(")(ul, uz)) , Ur, Uy € UND) _p(ats)-

One can see that dim L(A,7), = rank F}.

Lemma 3.9. Let A € H*, v € C— Ry. The following conditions are
equivalent:
(i) M\, 7) is irreducible.
(i) FY_,(5_a) 18 non-degenerate for all integers n > 0.
(iii) O, (det F™) 5£ 0 for all integers n > 0.

Proof. Follows from the Corollary 3.5. O

Consider in T, the following polynomials: f,., = k*z — (m(c + 2) —
k*)?, gs = z — (ho + 25 + 1)%, s,m,k € Z, 0 < k < m. Lemma 3.7 implies
that if 65 ,(gs) # 0 for all s € Z, 0 < s < 2n and 0, o(fm k) # 0 for all
m,k €Z,0<m <n,0< k< m, then M(A\¥)r—ni—a) = LA, Y)r-n(6-a)
and 6,,, , (det F(™) # 0. We conclude that the polynomial det F(™ is not
identically equal to zero and has its zeros in the union of zeros of polynomials
ik, 0<m<n,0<k<m,g,,0< s <2n. Therefore, det F(™ is a product
of factors of type f, x and g;.

Lemma 3.10. Letn,m € Z,n>0,0<m <n. Then fni is a factor of
det F™ if and only if k is a divisor of m or k = 0.

Proof. Assume that & is a divisor of m or k = 0. Set r = 2n+2m+k. Consider
A € H* and v € C—Z such that ) .,(fm x) = 0r~(g-) = 0. For integer s > 0
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set vy, = A_y = A —sa. Then 0,, (fmx) = 0., ,(9r+s) = 0 and vs(h,) € Z,
which implies that 0,, . (g,) # 0 forall£ € Z, £ < r+s. Thus, the form F;) _,,
B =6—aisdefined for all s > 0,0 < i <nand M(v,,vy) ~ M(),),s>0by
Proposition 3.2, (iii), where M (),) is the Verma module with highest weight
Ar = A+ ra. Therefore, M(vs,7y),, ., = M(A)y,—ig, 0 < @ < n as Ty
modules. The operator z(m) has eigenvectors w}, w; € M(),),, _mg with
eigenvalues v© = (A(hy) +4(n+m+k)+1)? and v~ = (A(hy) +4(n+m)+1)?
respectively. Since 6,, (fn.x) =0, then

v =7+4mA(c) +2) € {v", 77}
and
(Vs +2p+ 50 (Vs +2p), v5) +7 = (Vs =mB+2p+sa(vs —mB+2p), vs —mB) +77.
Let w! € {w},w;} and z(m)w? = y*w?*. Then

Qu; = [(vs —mpB + 2p + sa(vs —~ mB + 2p),vs — mpB) + 7" |w]

L)

by Lemma 3.6. But, w} € M()\,) and
Quw? = (2(\, + 20, \,) + Dw?
by Corollary 2.6 in [4]. Hence
200 + 20, X)) + 1 = (s —mB+2p+ s4(vs —mB + 2p),vs —mpB) + 7"

and
A +20,0) = (A +2p = 7", A = 77)

where 7 = md — ka if v* =41 and 7* = md + ka if v* = ~. If k divides
m or k =0 then 7* is a quasiroot and D = Homg(M (A, — %), M (X)) # 0
(10, Prop. 4.1].

Let 0 # x € D. Then x(M(A, — 7)) N M(\,)y,—ng # 0 and therefore,
Ox,,_.,(det F(™) = 0 for any integer s > 0. It implies that if A € H*,
v € C~2Z and 0y ,(fmi) = 0 then 8, ., (det F™) = 0. Thus, f, is a factor
of det F(™. Conversely, suppose that f, ; is a factor of det F(™, k # 0 and
k is not a divisor of n. Let r = 4n+k. Consider a pair (\,v) € H* x (C—Z)
such that 0, ,(fnx) = 0x,(9-) = 0 but 0, ,(fp,) # 0 forall 0 < p < n,
0 < g < p (such X and + always exist). Then 0, ,(det F(™) = 0 and the
Verma module M ()\,) has an irreducible subquotient with highest weight
A, — 7%, where 7* is one of nd + ko, nd — ka. But, this contradicts the
Theorem 2 in [10]. Therefore, f,  can not be a factor of det F(™) if k £ 0
and k is not a divisor of n.
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Let now 0 < m < n, 0 < k < m, k is not a divisor of m and f,,; is a
factor of det . Consider a pair (),7) € H* x C such that 85 ,(fn ) =0,
Orr(fpq) #0forallpge Z, 0<p<n,0<gq<p, (pg) # (mk) and
0,,(g9s) # 0 for all s € Z. As it was shown above f,, ; is not a factor
of det F(™ which implies that 8,,,, ,(det F™) s 0. Now it follows from
Lemma 3.7 that M()\,7)a—ns = L(X\,Y)a_np and 0y, ,(det F™) # 0. But,
this contradicts the assumption that f,, ; is a factor of det F(™. The Lemma
is proved. O

For n € Z, n > 0 denote X,, = {0} U{ke Z, |2 € Z}.

Theorem 3.11. Let A € H*, v € C— Ry. G-module M (), ) is irreducible
if and only if K>y # (n(A(c) +2) — k*)? foralln€ Z, n >0, k€ X,,.

Proof. Follows from Lemmas 3.9 and 3.10. 1

4. Irreducible representations of the Heisenberg subalgebra.

Consider the Heisenberg subalgebra G = Cc @ Z Gro C G. Tt is a
k€Z—{0}

Z-graded algebra with degc = 0, degers = k. This gradation induces a

Z-gradation on the universal enveloping algebra U (G @L{

In this section we study the irreducible Z-graded G- modules. The central
element ¢ acts as a scalar on each such module. In general, we say that a
G-module V is a module of level a € C if ¢ acts on V as a multiplication by
a.

4.1. G-Modules of non-zero level. Let G, = EQM, G_ = nga- For
E>0 k<0

a € C* = C— {0}, let Cu, be the 1- dimensional G. @ Cc-module for which
G.v, =0, cv, = av,, € € {+,—}. Consider the G-module

M*(a) =U(G) ® Cu,

U(G.®Ce)

associated with a and €.
The module M¢(a) is a Z-graded: M*(a ZME (a); where

Me(a); = (o(U(G.)) NU) ® va.

Proposition 4.1.
(i) The G-module M¢(a) is irreducible.

(i1) M¢=(a) is a o(U(G.))-free module.
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(iii) dim M®(a); = P(|i|) where P(n) is a partition function.

Proof. (ii) and (iii) follow directly from the definition of M*(a). Since a # 0
one can easily show that for any non-zero u € o(U(G.)) there exists u' €
U(G.) such that 0 # u'uv, € M*(a), which implies (i) and completes the
proof. O

Lemma 4.2. IfV is a Z-graded G-module of level a € C* and dim V; < oo
for at least one © € Z then

Spec ese_s |y C {2ma | m € Z}.

Proof. Let v € V; be a non-zero eigenvector of ese_s; with eigenvalue b and
b # 2ma for all m € Z. Since a # 0, if e,5v = 0 then e_,5v # 0, n €
Z — {0}. Denote Y ={n € Z —{0,1} | ens5v # 0}. We may assume without
lost of generality that j = ¢ and | Y N Z, |= oco. Elements e; and e_; act
injectively on the subspace spanned by efv, e* v, k € Z. Then, for each
k€Y NZ,, ese_s(ersv) = bersv and 0 # e¥ zersv € V. Set wy = eF sexsv.
Then ese_swy = (b+ 2ka)wy, k € Y NZ,. This contradicts the assumption
that dim V; < co. Therefore, b = 2ma for some m € Z. O

For a Z-graded G-module V and j > 0 denote by VU the Z-graded G-
module with (VU); = V,_;, i € Z.

We describe now all irreducible Z-graded G-modules of non-zero level with
finite-dimensional components.

Proposition 4.3.

(i) Let V be an irreducible Z-graded G-module of level a € C* such that
dim V; < oo for at least one i € Z. Then VUl ~ M¢(a) for some
e€{+,~}, jEZ.

(i) Ext'((M*(a))V, M¥ (a)) =0 for any j € Z, ,¢' € {+,—}.

Proof. (i) By Lemma 4.2 Spec X |yC {2ma | m € Z} where X stands for
ese_s. Let V; # 0, n be an integer with maximal absolute value such that
2na € Spec X |y, and let 0 # v € V;, Xv = 2nav. Assume that n > 0.
Then ewsv = 0 for all & > 1. Indeed, if egsv # O for some k > 1 then
X(ersv) = ersXv = 2naegv and 2(n + k)a is an eigenvalue of X on
V; which contradicts the assumption. Therefore, e;sv = 0 for all £ > 1.
Consider the element © = e} 'v # 0. Then e_ses0 = x50 = 0, k > 1.
If es0 # 0 then v, = €§¥ # 0, exsv, = 0 and, hence e_gsv, # 0 for all
p > 0, k > 1. This would imply that dim V; = co. Therefore, e;o = 0 and
V =U(G)o ~ M*(a) up to a shifting of gradation. If n < 0 then, clearly,
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V >~ M~ (a) up to a shifting of gradation. Suppose that V; = 0 but, for
example, V,_;, # 0. Then esv = 0 for any non-zero v € V,_; for all k > 0
and thus V = U(G)v ~ M™*(a) up to a shifting of gradation. This completes
the proof of (i).

(ii) Follows from the proof of (i) and Proposition 4.1, (ii). 0l

Lemma 4.4. Fvery finitely-generated Z-graded G-module V of level a € C*
such that dim V, < oo for at least one i € Z has a finite length.

Proof. If V; = 0 then statement follows from Proposition 4.3. Let V; # 0, n be
an integer with maximal absolute value such that 2na € Spec ese_s |y, and
v be a corresponding eigenvector. It follows from the proof of Proposition
4.3, (i) that V' = U(G)v ~ M*(a) up to a shifting of gradation. Consider a
G-module V = V/V'. Then dim V; < dim V, and we can complete the proof
by induction on dim V;. ]

Now we are in the position to establish the completely reducibility for
for finitely-generated G-modules of non-zero level with finite-dimensional
components.

Proposition 4.5. Fvery finitely-generated Z-graded G-module V' of a non-
zero level such that dim V, < oo for at least one i € Z is completely reducible.

Proof. Follows from Lemma 4.4 and Proposition 4.3. [l

4.2. G-modules of level zero. The irreducible G-modules of level zero are
classified by V. Chari [6]. We recall this classification.

Let G = U(G)/U(G)c and let g : U(G) — G be the canonical homomor-
phism. For r > 0 consider a Z-graded ring L, = C[t",t7"], degt = 1 and
denote by P, the set of graded ring epimorphisms A : G — L, with A(1) = 1.
Let Ly = C and Ay : G — C is a trivial homomorphism such that Ag(1) = 1,
Ao(glers)) =0 for all k € Z — {0}. Set Py = {Ao}.

Given A € P,., r > 0 define a G-module structure on L, by:

ek5trs = A(g(ek(;))t”, keZ— {O}, ct™ = 0,3 € 7.
Denote this G-module by L, 4.

Proposition 4.6.
(i) LetV be an irreducibe Z-graded G-module of level zero. ThenV =~ L, 5
for some r >0, A € P, up to a shifting of gradation.
(i) Lyp =~ Ly if and only if r = ' and there exists b € C* such that
Ag(exs)) = b"A'(g(exs)), k € Z — {0}
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Proof. (i) is essentially Lemma 3.6 in [6]; (ii) follows from [6, Prop. 3.8].
U

Remark 4.7. All the results of Section 4, except Proposition 4.1 (iii), are
hold for the Heisenberg subalgebra of an arbitrary Affine Lie Algebra.

5. The category O(a).

Let a € 7. Following [6] we define category O(a) to be the category of
weight G-modules M satisfying the condition that there exist finitely many

elements Ay, ..., A, € H* such that P(M) C UD()‘i) where
=1

D) ={\+ka+nd|kneZ, k<0}.

Notice that the trivial action of ¢, as in [6], is no longer required. It is clear
that O(«a) is closed under the operations of taking submodules, quotients

and finite direct sums.
Denote B, = Y Goyns- Then G = B_, & (H + G) @ B..

nez
Let V be an irreducible Z-graded G-module of level a € C and let A € H*,

A(c) = a. Then we can define a B = (H + G) ® B,-module structure on V'
by setting: hv; = (A +id)(h)v;, Bov; =0 forallh € H,v; € V,, i € Z.
Consider the G-module

M, (A V)=UG) RV
U(B)

associated with o, A\, V.

Proposition 5.1.

(i) The G-module My(\, V) is S(B_,)- free.

(i) M,(A, V) has a unique irreducible quotient Lo (A, V).

(iii) P(M,(\,V))=(DA)—={ +nd|neZ})uP(V)C D).

(iv) Mu(A\V) = M, (N, V") if and only if &' € {a+nd | n € Z} and there
exists 1 € Z such that A = N + i and VI ~ V' as graded G-modules.

Proof. Follows from the construction of G- module M, (A, V). 0

Now we describe the classes of isomorphisms of irreducible modules in

O(w).

Proposition 5.2. 3
(i) LetV be an irreducible object in O(«a). Then there ezist A € H* and
an irreducible G- module V' such that V ~ L,(\, V).
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(i1) La(A, V) = L,(N, V") if and only if there exists 1 € Z such that A =
X +46 and VI ~ V' as graded G-modules.

Proof. One can see that V contains a non-zero element v € V, such that
Bov = 0. Then V = U(G)v is an irreducible Z-graded G- module and
V ~ U(B_,)V. This implies that V is a homomorphic image of M,(\,V)
and, therefore, is isomorphic to L, (A, V'), which proves (i). Part (ii) follows
from Proposition 5.1, (iv). O

Lemma 5.3. [f0 < dim L, (), V), < oo for some p € H* then dim V; < oo
for alli € 2.

Proof. If Mc) = 0 then VUl ~ L _, for somer >0, A € P,, j € Z by
Proposition 4.6 and, hence dim V; <1 for all ¢ € Z. Let A(c) = a € C* and
VUl ~ M#(a), forany j € Z, ¢ € {+, —}. By Proposition 4.3, (i), dimV; = oo
foralli. fa € Q4 (a & Q4 respectwely) then A(h,)—na & Z, for all integer
n > ng (n < ng respectively) and for some ng € Z. Thus, €, n5€_qins
acts injectively on L,(A, V) for all n > ny (n < ng respectively) which
implies that dim L, (A, V), = co. But, this contradicts the assumption. We
conclude that VU ~ M¢(a) for some j € Z, ¢ € {+,—} and dim V; < oo for
all i € Z. t

Theorem 5.4. Let V € O(a) be an irreducible.
(i) [6] If V is of level zero then V ~ Ly (), L, 5) for some A € H*, \(c) = 0,
r>0, A€ P,.
(ii) If V is of level a € C* and dim f/,, < oo for at least one p € P(V)
then V ~ L, (A, M*(a)) for some A € H*, A(c) = a, € € {+,—}.

Proof. (i) follows from Propositions 5.2 and 4.6, while (ii) follows from
Lemma 5.3, Propositions 5.2 and 4.3. [

In some cases we can describe the structure of modules L, (A, V)

Let A(c) = 0, 7 =0, A = Ay, Lop, =~ C. Set]\;.f()\): (A, C
Notice that M()\) ~ S(B_,) as vector spaces and, therefore, P(M()))
{A—na+ké|kneZ n>0}U{\} and

)-

dim M () _pagrs = 00,1 > 1,dim M(A), = dim M(\)x_asks = 1,k € Z.

Proposition 5.5.
(i) Lo(X, C) =~ M(X) if and only if A(hy) # 0.
(i1) If AM(ho) = 0 then L, (A, C) is a trivial one-dimensional module.

Proof. Proposition follows from [7, Proposition 6.2] and is also proved in

8]. O
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Let AM(c) =a € C*. Set M*(\,a) = M,(\, M®(a)). We have
PM:(Na)={A—ka+nd|kneZ k>0 U{A—end|neZ,}
and
dim M°(A,a)x—katns = 0, k > 0,n € Z,dim M*(\,a)y_cns = P(n),n € Z,.
Proposition 5.6. [8, 9] L,(A\,M®(a)) ~ M¢(}, a).

Recall, that g—module V is called integrable if e, and €4(5-a) ACH locally
nilpotently on V. All irreducible integrable G- modules in O(«) of level zero
were classified in [6]. In fact, they are the only integrable modules in O(«).

Corollary 5.7. IfV is irreducible integrable G-module in O(a) then V is
of level zero.

Proof. Suppose V is of level a # 0. Since V is integrable, it follows from
Proposition 5.6 that V # L,(\,M¢(a)), e € {+,—}. Then V ~ L,()\,V)
and for any k£ € Z, there exist ¢ > k, j < —k such that V; # 0, V; # 0.
Now the same arguments as in the proof of Lemma 5.3 show that e_, and
€5—o are not locally nilpotent on such module and, therefore, V has a zero
level. ]

Remark. (i) The structure of modules L, (A, L, ), 7 > 0 is unclear is
general. Some examples were considered in [1, 12].

(i1) Most of the results of Section 5 can be generalized for an arbitrary Affine
Lie Algebra [6, 7, 12].

6. Non-dense G-modules.

Definition. An irreducible weight G-module V is called dense if P(V) =
A+ @ for some A € H* and non-dense otherwise.

In this section we classify all irreducible non-dense G- modules with at
least one finite-dimensional weight subspace. Our main result is the following
Theorem.

Theorem 6.2. IfV is an irreducible non-dense G-module with at least one
finite-dimensional weight subspace then V belongs to one of the following
disjoint classes:

(i) highest weight modules with respect to some choice of ;

(i) Le(\,5y),a€ A", Ne H*,y€ C—-Ry,e € {+,—};
(i) La(A,Lyp), @ € A", A€ H* A(¢) =0,7>0,A € P,.
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(iv) La(A,M¢(a)),a€ A", A€ H*, a € C*, X(c) =a,c € {+,-}.

Moreover, we can describe the irreducible G-modules of non-zero level
with finite-dimensional weight subspaces.

Theorem 6.3. Let V be an irreducible G-module of level a # 0 with all
finite-dimensional weight subspaces. Then V ~ Lt /(A,7) for some a € A",
A€ H*, M(c)=a,7€C,e€{+,-}.

Remark 6.4. Theorems 6.2, 6.3 imply that in order to complete the clas-
sification of all weight irreducible G-modules one has to study the following
classes:
(1) Modules of type L,(A, V) where V is a graded irreducible G-module
of non-zero level with all infinite- dimensional components.
(i) Dense G-modules of zero level.

(iti) Dense G-modules of non-zero level with an infinite-dimensional weight
subspace.
These classification problems are still open.

The proof of Theorem 6.2 is based on some preliminary results. We start
with the following Definition.

Definition 6.5. A subset P C A is called closed if 8,,0; € P, i + B, € A
imply 3 +8; € P. A closed subset P C A is called a partition if PN—P = §,
PU-P=A.

Lemma 6.6. Let P be a partition, P 3§, P = PNA™, B € A™.
(i) If|Pen{B+ké|keZ,}|[<ooor|Pen{—L+kéd|keZ}|< oo
then P = {¢p +nd | n € Z} for some ¢ € A™.
(i) If| Pen{B+ké|keZ} |=| PeN{-B+kd|kecZ,} |= oo then
P = A, (%) for some basis T of A.

Proof. Recall that A = {3+ ké |k € Z} U{nd|n € Z — {0}}. It follows
from [7] that there exist w € W and ' € A" such that

wP={f'+ké|keZ}U{ké|k>0}
or
wP={f'+nd,-B +ké|n>0,k>0U{ké|k>0}=A(n")
where 7' = {#',6 — 3'}. Then

P={w'B +ké|keZ}U{ks|k>0}
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or P = A (w™'w'). This implies the statement of Lemma. O

Definition 6.7. A non-zero element v of a G-module V is called admissible
if V5o = 0 or Bv =0, for some p € A™, ¢ € {+,~}.

Lemma 6.8. If the G-module V contains a non-zero vector v € Vy such
that e,v = 0 and A+ kd ¢ P(V) for some ¢ € A", k € Z — {0} then V
contains an admissible vector.

Proof. We will assume that k£ > 0. The case k£ < 0 can be considered analo-
gously. We prove the Lemma by the induction on k. Let £ = 1. Then we have
ep+ms¥ = €50 = 0 for allm > 0. Ife,_;5v = 0 for all 4 > 0 then B,v = 0 and
v is admissible. Let e,_,sv # 0 for some n > 0 and e,_;sv =0, 0 <@ < n.
Set 7 = €y_nsv # 0. Then e,_;50 = 50 = €_,4(nt1)67 = 0, 4 < n and, thus,
ey =0forany ) € P = {p—id,—p+ (n+j+1)§,(j +1)d | i < n,j > 0}.
One can see that P U {—p + nd} is a partition and P = A, (7) — {¢'} for
some ¢' € A™, & = {¢',d — ¢'}, by Lemma 6.6. Hence, N34 = 0 which
proves the Lemma for k = 1.

Assume now that the Lemma is proved for all 0 < k' < k and consider
two cases:

(i) There exists n € Z, 0 < n < k such that e, 5v =0forall0 < i <n
but e,4nsv # 0. Then e,y 57 = €_pt(k—n)s? = 0,0 < i < n where ¥ = €,1nsv
and e_,q(k—n)s¥ € Vaqrs = 0. f k—n=1ork—-n>1and e_,450 =0
then Myv = 0 and o is admissible. Let k —n > 1 and v' = e_ 440 # 0.
Then v' € Vy, eyt =0, N + (k—n—1)§ & P(V) where X' = A+ (n + 1)4,
¢ = —p+ (k—n)d and V has an admissible element by the induction
hypotheses.

(ii) Let e,4s5v = 0 for all 0 < i < k. Since exsv = 0 we have e,y ;50 = 0
for all 4 > 0. If 9,, = ensv # 0 for some 0 < m < k then ¥,, € V),
XN =X+mé, ey, =0, N+ (k—m)d € P(V) and we can apply induction.
Assume that 9, = 0 for all 0 < m < k. Then we have e, ;5v = ensv = 0,
1 >0,0<m<k Ife,_js5v =0 foral j >0 then Bjv = 0 and v
is admissible. Otherwise, let n be a minimal positive integer such that
v = €p—ns¥ # 0. Then €y 15‘5 = 6_‘p+(n+k)5’5 = eyt = 0,1 >0, 2 <
n. Assume that e_,i(ny1)60 = 0. We have eyv = 0 for any v € P =
{p—36,~p+(n+m)d,md|j<n,m>0} The set PU{—p+né} is a
partition, | PN {<p+26 |i>0} |=| PN {—p+id|i>0} |= oo and,
therefore, P = A, (%) — {¢'} for some ¢’ € A™, 7 = {¢',d — ¢'} by Lemma
6.6. We conclude that N 0 = 0 and 7 is admlss1ble Finally, suppose that
V' = e_pt(nt1)s¥ # 0. Then v' €V, e,v' =0, N+ (k—1)6 € P(V) where X
stands for A + 4 and, thus V has an admissible element by the assumption
of induction. This completes the proof of Lemma. O
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Proposition 6.9. Let V be an irreducible non-dense G-module. Then V
contains an admissible element.

Proof. Let A € P(V) and A\ + ¢ ¢ P(V) for some ¢ € A. We can assume
that ¢ € A™. Indeed, let ¢ = 4. If e,v = e5_,v = 0 for some 0 # v € Vj,
a € A™ then V is a highest weight module with respect to {¢,d — a} and
v is admissible. If, for example, e,v # 0 then ' = A+ a € P(V) and
XN+ (6—a) € P(V). Hence, we can assume that A\+¢ € P(V), ¢ € A", Let
0#wv eV, Ifv'=e, nsv #0 for some n € Z — {0} then e,v' =0, v' € V3,
A=X+po—nd A+nd¢ P(V) and Proposition follows from Lemma 6.8. If
ey—ns¥ = 0 for all n € Z then B,v = 0 and v is admissible. O

(}orollary 6.10.~ If V is an irreducible non-dense G-module then either
V ~Le(Ay) orV ~ L,(\, V) forsomea € A", A€ H*,ye€ C,e € {+,—}
and irreducible G- module V.

Proof. Follows from Proposition 6.9, Corollary 3.3 (i) and Proposition 5.2.
O

Now Theorem 6.2 follows from Corollary 6.6 and Theorem 5.4.

Proof of Theorem 6.3. Let u € P(V). Consider the G-submodule V =
U (G)f/u C V. Then it follows from Proposition 4.5 that V is completely
reducible and moreover each irreducible component is isomorphic to M¢(a),
e € {+,—} up to a shifting of gradation by Proposition 4.3, (i). Denote by
V+ the sum of all irreducible components of V isomorphic to M*(a) and
assume that V+ # 0. Let 0 # v € VTNV, x € P(V) and VNV, = 0. We
will show that for any a € A" there exists m, € Z, such that e, ,sv = 0 for
all m > m,. Indeed, let vy = e,v # 0. Consider the G-module U (G)v, which
is again completely reducible by Proposition 4.5. If exsv % 0 for all £ > 0
then v, = eXvy # 0 for all k > 0. But, for big enough &, v, will belong to the
direct sum of irreducible components of U(G)v, each of which is isomorphic
to M~ (a) up to a shifting of gradation. This contradicts Proposition 4.1,
(i), since ejvy = 28 %€, (k42)50 = 2€25v;. Thus, there exists m, > 0 such
that e, . sv = 0 and, therefore, e,y m5v = 0 for any m > m,.

Suppose that x +d € P(V). Since V is irreducible there exists 0 #
u € U(G) such that 0 # uv € V,,s. It follows from the discussion above
that e,suv = 0 for big enough n € Z,. The G-submodule V' = U(G)uv
is completely reducible by Proposition 4.5 and since V* N VXH = 0, any
irreducible component L C V' such that L N VXH # 0 is isomorphic to
M~ (a) up to a shifting of gradation. Hence, e,;0 # 0 for any non-zero
# € V' N V,4s by Proposition 4.1, (ii) and ensuv # 0 in particular. This
contradiction implies that xy + 6 ¢ P(V) and therefore V is a non-dense
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G-module. Applying Theorem 6.2 we conclude that V ~ LZ(\,) for some
a € A", A € H*, XNc) = a, v € C, ¢ € {+,~} which completes the

proof.

O
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