Pacific Journal of Mathematics

IRREDUCIBLE NON-DENSE $A_1^{(1)}$ -MODULES

VJACHESLAV M. FUTORNY

Volume 172 No. 1

January 1996

IRREDUCIBLE NON-DENSE $A_1^{(1)}$ -MODULES

V.M. FUTORNY

We study the irreducible weight non-dense modules for Affine Lie Algebra $A_1^{(1)}$ and classify all such modules having at least one finite-dimensional weight subspace. We prove that any irreducible non-zero level module with all finitedimensional weight subspaces is non-dense.

1. Introduction.

Let $A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$ and $\mathcal{G} = \mathcal{G}(A)$ is the associated Kac-Moody algebra over the complex numbers **C** with Cartan subalgebra $H \subset \mathcal{G}$, 1-dimensional center $\mathbf{C}c \subset H$ and root system Δ .

A \mathcal{G} -module V is called a *weight* if $V = \bigoplus_{\lambda \in H^*} V_{\lambda}$, $V_{\lambda} = \{v \in V \mid hv = \lambda(h)v$

for all $h \in H$. If V is an irreducible weight \mathcal{G} -module then c acts on V as a scalar. We will call this scalar the *level* of V, For a weight \mathcal{G} -module V, set $P(V) = \{\lambda \in H^* \mid V_\lambda \neq 0\}$.

$$\begin{split} P(V) &= \{\lambda \in H^* \mid V_\lambda \neq 0\} \,. \\ \text{Let } Q &= \sum_{\varphi \in \Delta} \mathbf{Z} \varphi. \text{ It is clear that if a weight } \mathcal{G}\text{-module } V \text{ is irreducible} \end{split}$$

then $P(V) \subset \lambda + Q$ for some $\lambda \in H^*$. An irreducible weight \mathcal{G} -module V is called *dense* if $P(V) = \lambda + Q$ for some $\lambda \in H^*$, and *non-dense* otherwise.

Irreducible dense modules whose weight spaces are all one-dimensional were classified by S. Spirin [1] for the algebra $A_1^{(1)}$ and by D. Britten, F. Lemire, F. Zorzitto [2] in the general case. It follows from [2] that such modules exist only for algebras $A_n^{(1)}$, $C_n^{(1)}$. V. Chari and A. Pressley constructed a family of irreducible integrable dense modules with all infinite-dimensional weight spaces. These modules can be realized as tensor product of standard highest weight modules with so-called loop modules [3].

In the present paper we study irreducible non-dense weight \mathcal{G} -modules. We use Kac [4] as a basic reference for notation, terminology and preliminary results. Our main result is the classification of all irreducible non-dense \mathcal{G} -modules having at least one finite-dimensional weight subspace. This includes, in particular, all irreducible highest weight modules. Moreover, we show that this classification includes all irreducible modules of non-zero level whose weight spaces are all finite- dimensional. The paper is organized as follows. In Section 3 we study generalized Verma modules $M^{\varepsilon}_{\alpha}(\lambda,\gamma)$, α is a real root, $\lambda \in H^*$, $\gamma \in \mathbf{C}$, $\varepsilon \in \{+,-\}$ which do not necessarily have a highest weight (cf. [5]). By making use of the generalized Casimir operator and generalized Shapovalov form we obtain the criteria of irreducibility for the modules $M^{\varepsilon}_{\alpha}(\lambda,\gamma)$ without highest weight (Theorem 3.11).

In Section 4 we classify all irreducible **Z**-graded modules for the Heisenberg subalgebra $G \subset \mathcal{G}$ with at least one finite-dimensional graded component. Irreducible G- modules with trivial action of c were described earlier in [6]. Let $\delta \in \Delta$ such that $\mathbf{Z}\delta - \{0\}$ is the set of all imaginary roots in Δ . Following [6] we introduce in Section 5 the category $\tilde{\mathcal{O}}(\alpha)$ of weight \mathcal{G} -modules \tilde{V} such that $P(\tilde{V}) \subset \bigcup_{i=1}^{n} \{\lambda_i - k\alpha + n\delta \mid k, n \in \mathbb{Z}, k \ge 0\}$ where $\lambda_i \in H^*$, but without any restriction on the action of the center (unlike in [6] where the trivial action of the center is required). The irreducible objects in $\mathcal{O}(\alpha)$ are the unique quotients of \mathcal{G} -modules $M_{\alpha}(\lambda, V)$, where $\lambda \in H^*$, V is irreducible **Z**-graded *G*-module. Modules $M_{\alpha}(\lambda, \mathbf{C})$, with $\lambda(c) = 0$ were studied in [7-**9**]. If $\lambda(c) \neq 0$ and at least one graded component of V is finite-dimensional then the module $M_{\alpha}(\lambda, V)$ is irreducible [8, 9]. In Section 6 we classify all irreducible non-dense *G*-modules with at least one finite-dimensional weight subspace (Theorem 6.2). It turns out that these modules are the quotients of the modules of type $M^{\varepsilon}_{\alpha}(\lambda,\gamma)$ or $M_{\alpha}(\lambda,V)$. Moreover, any irreducible \mathcal{G} module of non-zero level whose weight spaces are all finite- dimensional is the quotient of $M^{\varepsilon}_{\alpha}(\lambda,\gamma)$ for some real root $\alpha, \lambda \in H^*, \gamma \in \mathbf{C}, \varepsilon \in \{+,-\}$ (Theorem 6.3).

2. Preliminaries.

We have the root space decomposition for $\mathcal{G} : \mathcal{G} = H \oplus \sum_{\varphi \in \Delta} \mathcal{G}_{\varphi}$, where dim

 $\mathcal{G}_{\varphi} = 1$ for all $\varphi \in \Delta$. Denote by $\mathcal{U}(\mathcal{G})$ the universal enveloping algebra of \mathcal{G} , by W the Weyl group and by (,) the standard non-degenerate symmetric bilinear form on \mathcal{G} [4, Theorem 3.2]. Let Δ^{re} be the set of real roots in Δ and Δ^{im} be the set of imaginary roots in Δ . Fix $\alpha \in \Delta^{re}$ and consider a subalgebra $\mathcal{G}(\alpha) \subset \mathcal{G}$ generated by \mathcal{G}_{α} and $\mathcal{G}_{-\alpha}$. Then $\mathcal{G}(\alpha) \simeq sl(2)$ and we fix in $\mathcal{G}(\alpha)$ a standard basis $e_{\alpha}, e_{-\alpha}, h_{\alpha} = [e_{\alpha}, e_{-\alpha}]$ where $[h_{\alpha}, e_{\pm\alpha}] = \pm 2e_{\pm\alpha}$. We will use the following realization of \mathcal{G} :

$$\mathcal{G} = \mathcal{G}(\alpha) \otimes \mathbf{C}[t, t^{-1}] \oplus \mathbf{C}c \oplus \mathbf{C}d$$

with $[x \otimes t^n + ac + bd, y \otimes t^m + a_1c + b_1d] = [x, y] \otimes t^{n+m} + bmy \otimes t^m - b_1nx \otimes t^n + n\delta_{n,-m}(x, y)c$, for all $x, y \in \mathcal{G}(\alpha), a, b, a_1, b_1 \in \mathbf{C}$. Then $H = \mathbf{C}h_{\alpha} \oplus \mathbf{C}c \oplus \mathbf{C}d$.

Denote by δ the element of H^* defined by: $\delta(h_{\alpha}) = \delta(c) = 0$ and $\delta(d) = 1$. Then $\Delta^{im} = \mathbf{Z}\delta - \{0\}$ and $\pi = \{\alpha, \delta - \alpha\}$ is a basis of Δ . Let $\Delta_+ = \Delta_+(\pi)$ be the set of all positive roots with respect to π . The root system Δ can be described in the following way: $\Delta = \{\pm \alpha + n\delta \mid n \in \mathbf{Z}\} \cup \{n\delta \mid n \in \mathbf{Z} - \{0\}\}$. We have $\mathcal{G}_{\pm \alpha + n\delta} = \mathcal{G}_{\pm \alpha} \otimes t^n$, $n \in \mathbf{Z}$, $\mathcal{G}_{n\delta} = \mathbf{C}h_{\alpha} \otimes t^n$, $n \in \mathbf{Z} - \{0\}\}$. We have $\mathcal{G}_{\pm \alpha + n\delta} = e_{-\alpha} \otimes t^n$, $n \in \mathbf{Z}$, $\mathcal{G}_{n\delta} = \mathbf{C}h_{\alpha} \otimes t^n$, $n \in \mathbf{Z} - \{0\}$. Set $e_{\alpha+n\delta} = e_{\alpha} \otimes t^n$, $e_{-\alpha+n\delta} = e_{-\alpha} \otimes t^n$, $n \in \mathbf{Z}$, $e_{m\delta} = h_{\alpha} \otimes t^m$, $m \in \mathbf{Z} - \{0\}$. Then $[e_{k\delta}, e_{m\delta}] = 2k\delta_{k,-m}c$, $[e_{k\delta}, e_{\pm\alpha+n\delta}] = \pm 2e_{\pm\alpha+(n+k)\delta}$, $[e_{\alpha+k\delta}, e_{-\alpha+m\delta}] = \delta_{k,-m}(h_{\alpha} + kc) + (1 - \delta_{k,-m})e_{(k+m)\delta}$ for any $k, m \in \mathbf{Z}$.

For a Lie algebra \mathcal{A} , $S(\mathcal{A})$ will denote the corresponding symmetric algebra. We will identify the algebra $\mathcal{U}(H) = S(H)$ with the ring of polynomials $\mathbf{C}[H^*]$ and denote by σ the involutive antiautomorphism on $\mathcal{U}(\mathcal{G})$ such that $\sigma(e_{\alpha}) = e_{-\alpha}, \ \sigma(e_{\delta-\alpha}) = e_{\alpha-\delta}$. Set $\mathcal{N}_{+} = \sum_{\varphi \in \Delta_{+}} \mathcal{G}_{\varphi}, \ \mathcal{N}_{-} = \sum_{\varphi \in \Delta_{+}} \mathcal{G}_{-\varphi}$.

3. Generalized Verma modules.

The center of $\mathcal{U}(\mathcal{G}(\alpha))$ is generated by the Casimir element $z_{\alpha} = (h_{\alpha} + 1)^2 + 4e_{-\alpha}e_{\alpha}$. Denote

$$\begin{split} \mathcal{N}_{\alpha}^{+} &= \sum_{\varphi \in \Delta_{+} - \{\alpha\}} \mathcal{G}_{\varphi}, \qquad \mathcal{N}_{\alpha}^{-} &= \sum_{\varphi \in \Delta_{+} - \{\alpha\}} \mathcal{G}_{-\varphi}, \\ T_{\alpha} &= S(H) \otimes \mathbf{C}[z_{\alpha}], \quad E_{\alpha}^{\varepsilon} = (H + \mathcal{G}(\alpha)) \oplus \mathcal{N}_{\alpha}^{\varepsilon}, \, \varepsilon \in \{+, -\} \,. \end{split}$$

Let $\lambda \in H^*, \gamma \in \mathbb{C}$. Consider the 1-dimensional T_{α} -module $\mathbb{C}v_{\lambda}$ with the action $(h \otimes z_{\alpha}^n)v_{\lambda} = h(\lambda)\gamma^n v_{\lambda}$ for any $h \in S(H)$, and construct an $H + \mathcal{G}(\alpha)$ -module

$$V(\lambda,\gamma) = \mathcal{U}(\mathcal{G}(\alpha) + H) \bigotimes_{T_{\alpha}} \mathbf{C} v_{\lambda}.$$

It is clear that the module $V(\lambda, \gamma)$ has a unique irreducible quotient $V_{\lambda, \gamma}$.

Proposition 3.1.

- (i) If V is an irreducible weight H + G(α)-module then V ≃ V_{λ,γ} for some λ ∈ H*, γ ∈ C.
- (ii) $V_{\lambda,\gamma} \simeq V_{\lambda',\gamma'}$ if and only if $\gamma = \gamma'$, $\lambda' = \lambda + n\alpha$, $n \in \mathbb{Z}$, $\gamma \neq (\lambda(h_{\alpha}) + 2\ell + 1)^2$ for all integers ℓ , $0 \le \ell < n$ if $n \ge 0$ or for all integers ℓ , $n \le \ell < 0$ if n < 0.

Proof. This is essentially the classification of irreducible weight sl(2)-modules.

Let $\lambda \in H^*$, $\gamma \in \mathbf{C}$, $\varepsilon \in \{+, -\}$. Consider $V_{\lambda,\gamma}$ as E^{ε}_{α} -module with trivial action of $\mathcal{N}^{\varepsilon}_{\alpha}$ and construct the \mathcal{G} -module

$$M^arepsilon_lpha(\lambda,\gamma) = \mathcal{U}(\mathcal{G}) igotimes_{\mathcal{U}(E^arepsilon_lpha)} V_{\lambda,\gamma}$$

associated with $\alpha, \lambda, \gamma, \varepsilon$.

The module $M^{\varepsilon}_{\alpha}(\lambda, \gamma)$ is called a generalized Verma module. Notice that $V_{\lambda,\gamma}$ does not have to be finite-dimensional.

Proposition 3.2.

- (i) $M^{\varepsilon}_{\alpha}(\lambda,\gamma)$ is a free $\sigma(\mathcal{U}(\mathcal{N}^{\varepsilon}_{\alpha}))$ module with all finite-dimensional weight subspaces.
- (ii) $M^{\varepsilon}_{\alpha}(\lambda,\gamma)$ has a unique irreducible quotient, $L^{\varepsilon}_{\alpha}(\lambda,\gamma)$.
- (iii) $M^{\varepsilon}_{\alpha}(\lambda,\gamma) \simeq M^{\varepsilon'}_{\pm\alpha}(\lambda',\gamma')$ if and only if $\varepsilon = \varepsilon', \gamma = \gamma', \lambda' = \lambda + n\alpha, n \in \mathbf{Z}$ and $\gamma \neq (\lambda(h_{\alpha}) + 2\ell + 1)^2$ for all $\ell \in \mathbf{Z}, 0 \leq \ell < n$ if $n \geq 0$ or for all $\ell \in \mathbf{Z}, n \leq \ell < 0$ if n < 0.

Proof. Follows from the construction of \mathcal{G} - module $M^{\varepsilon}_{\alpha}(\lambda, \gamma)$ and Proposition 3.1.

Let $R_{\lambda} = \{(\lambda(h_{\alpha}) + 2\ell + 1)^2 \mid \ell \in \mathbf{Z}\}$. Recall that V is called a highest weight module with respect to \mathcal{N}_+ and with highest weight $\lambda \in H^*$ if $V = \mathcal{U}(\mathcal{G})v, v \in V_{\lambda}$ and $V_{\lambda+\varphi} = 0$ for all $\varphi \in \Delta_+(\pi)$. Proposition 3.2, (iii) implies that $M_{\alpha}^{\varepsilon}(\lambda, \gamma)$ and $L_{\alpha}^{\varepsilon}(\lambda, \gamma)$ are highest weight modules with respect to some choice of basis of Δ and, therefore, are the quotients of Verma modules [4], if and only if $\gamma \in R_{\lambda}$. The theory of highest weight modules was developed in [4, 10].

Corollary 3.3.

- (i) Let V be an irreducible weight \mathcal{G} -module, $0 \neq v \in V_{\lambda}$ and $\mathcal{N}_{\alpha}^{\varepsilon}v = 0$. Then $V \simeq L_{\alpha}^{\varepsilon}(\lambda, \gamma)$ for some $\gamma \in \mathbf{C}$.
- (ii) Let $\lambda \notin R_{\lambda}$. $L^{\varepsilon}_{\alpha}(\lambda, \gamma) \simeq L^{\varepsilon'}_{\alpha'}(\lambda', \gamma')$ if and only if $\varepsilon = \varepsilon'$, $\alpha' = \alpha$ or $\alpha' = -\alpha, \gamma = \gamma', \lambda' = \lambda + n\alpha, n \in \mathbb{Z}$ and $\gamma \neq (\lambda(h_{\alpha}) + 2\ell + 1)^2$ for all $\ell \in \mathbb{Z}, 0 \leq \ell < n$ if $n \geq 0$ or for all $\ell \in \mathbb{Z}, n \leq \ell < 0$ if n < 0.

Proof. Since V is irreducible \mathcal{G} - module, $V' = \mathcal{U}(\mathcal{G}(\alpha))v$ is an irreducible $\mathcal{G}(\alpha)$ -module and $V \simeq \sigma(\mathcal{U}(\mathcal{N}_{\alpha}^{\varepsilon}))V'$. Then V is a homomorphic image of $M_{\alpha}^{\varepsilon}(\lambda,\gamma)$ for some $\gamma \in \mathbf{C}$ and, thus, $V \simeq L_{\alpha}^{\varepsilon}(\lambda,\gamma)$ which proves (i). (ii) follows from Proposition 3.2, (iii).

From now on we will consider the modules $M^+_{\alpha}(\lambda, \gamma) (= M(\lambda, \gamma))$. All the results for the modules $M^-_{\alpha}(\lambda, \gamma)$ can be proved analogously. Set $z = z_{\alpha}$. For $\lambda \in H^*$, $\gamma \in \mathbf{C}$ and integer $n \ge 0$ we denote by z(n) the restriction of z to the subspace $M(\lambda, \gamma)_{\lambda-n(\delta-\alpha)}$.

Proposition 3.4. If $\gamma \neq (\lambda(h_{\alpha}) + 2\ell + 1)^2$ for all $0 \leq \ell < 2n$ then Spec $z(n) = \{(2k \pm \sqrt{\gamma})^2 \mid k \in \mathbf{Z}, 0 \leq k \leq n\}.$

Proof. Denote $V_n = M(\lambda, \gamma)_{\lambda-n(\delta-\alpha)}, n > 0$. One can easily show that $V_n = e_{\alpha-\delta}V_{n-1} + e_{-\delta}e_{\alpha}V_{n-1} + e_{-\alpha-\delta}e_{\alpha}^2V_{n-1}$. Let $V_{n-1} = \oplus V_{n-1}(\tau), \tau \in \mathbf{C}$,

where $V_{n-1}(\tau) = \{v \in V_{n-1} \mid \exists N : (z(n-1)-\tau)^N v = 0\}$. Then the subspace $e_{\alpha-\delta}V_{n-1}(\tau) + e_{-\delta}e_{\alpha}V_{n-1}(\tau) + e_{-\alpha-\delta}e_{\alpha}^2V_{n-1}(\tau) \subset V_n$ is z(n)- invariant and z(n) has on it the eigenvalues τ and $(2 \pm \sqrt{\tau})^2$, thanks to the condition $\gamma \neq (\lambda(h_{\alpha}) + 2\ell + 1)^2, 0 \leq \ell < 2n$, which implies that z(n) has eigenvalues $(2k \pm \sqrt{\gamma})^2, 0 \leq k \leq n$.

Corollary 3.5. If $\gamma \notin R_{\lambda}$ then e_{α} and $e_{-\alpha}$ act injectively on $M(\lambda, \gamma)$.

Proof. If $\gamma \notin R_{\lambda}$ then Spec $z(n) \cap R_{\lambda-n\beta} = \emptyset$ for all integer $n \ge 0$ by Proposition 3.4 and, therefore, e_{α} and $e_{-\alpha}$ act injectively on $M(\lambda, \gamma)$.

Fix $\rho \in H^*$ such that $(\rho, \alpha) = 1$, $(\rho, \delta) = 2$. Since $M(\lambda, \gamma)$ is a restricted module, i.e. for every $v \in M(\lambda, \gamma)$, $\mathcal{G}_{\varphi}v = 0$ for all but a finite number of positive roots φ , we have well-defined action of a generalized Casimir operator Ω on $M(\lambda, \gamma)$ [4]:

$$\Omega v = (\mu + 2
ho, \mu)v + 2\sum_{arphi \in \Delta_+} \overline{e}_{-arphi} e_arphi v, \ v \in M(\lambda, \gamma)_\mu,$$

where $\overline{e}_{-\varphi} \in \mathcal{G}_{-\varphi}$, $(\overline{e}_{-\varphi}, e_{\varphi}) = 1$, $\varphi \in \Delta_+$. Set $\tilde{\Omega} = 2\Omega + id$. Let $s_{\alpha} \in W$, $s_{\alpha}(\mu) = \mu - (\mu, \alpha)\alpha$, $\mu \in H^*$.

Lemma 3.6. For a \mathcal{G} -module $M(\lambda, \gamma)$

$$\Omega = [(\lambda + 2\rho + s_{\alpha}(\lambda + 2\rho), \lambda) + \gamma]id.$$

Proof. Follows from [4, Th.2.6] and definition of Ω .

Lemma 3.7. Let $n > 0, \beta = \delta - \alpha, 0 \neq v \in M(\lambda, \gamma)_{\lambda - n\beta}, \gamma \neq (\lambda(h_{\alpha}) + 2\ell + 1)^2$ for all $0 \leq \ell < 2n$ and $\mathcal{N}_{\alpha}^+ v = 0$. Then $k^2 \gamma = (n(\lambda(c) + 2) - k^2)^2$ for some $k \in \mathbb{Z}, 0 \leq k \leq n$.

Proof. It follows from Lemma 3.6 that $z(n)v = \gamma'v$ and

 $(\lambda - n\beta + 2\rho + s_{\alpha}(\lambda - n\beta + 2\rho), \lambda - n\beta) + \gamma' = (\lambda + 2\rho + s_{\alpha}(\lambda + 2\rho), \lambda) + \gamma$

which implies

$$\gamma' = \gamma + 4n(\lambda(c) + 2).$$

But, $\gamma' = (2k \pm \sqrt{\gamma})^2$ for some $k \in \mathbb{Z}$, $0 \le k \le n$ by Proposition 3.4. Therefore, $k^2\gamma = (n(\lambda(c)+2)-k^2)^2$ which completes the proof.

Corollary 3.8. Let $\lambda \in H^*$, $\gamma \in \mathbb{C} - R_{\lambda}$. If $k^2 \gamma \neq (n(\lambda(c) + 2) - k^2)^2$ for all $n, k \in \mathbb{Z}$, $n > 0, 0 \leq k \leq n$ then \mathcal{G} -module $M(\lambda, \gamma)$ irreducible.

Proof. If the \mathcal{G} -module $M(\lambda, \gamma)$ has a non-trivial submodule M, then M contains a non-zero vector v of weight $\lambda - n(\delta - \alpha)$, n > 0, such that $\mathcal{N}_{\alpha}^+ v = 0$. Now, the statement follows from Lemma 3.7.

 \Box

Consider the following decomposition of $\mathcal{U}(\mathcal{G})$:

$$\mathcal{U}(\mathcal{G}) = \left(\mathcal{N}_{\alpha}^{-}\mathcal{U}(\mathcal{G}) + \mathcal{U}(\mathcal{G})\mathcal{N}_{\alpha}^{+}\right) \oplus T_{\alpha}\mathbf{C}[e_{\alpha}]e_{\alpha} \oplus T_{\alpha}\mathbf{C}[e_{-\alpha}]e_{-\alpha} \oplus T_{\alpha}.$$

Let j be the projection of $\mathcal{U}(\mathcal{G})$ to T_{α} . Introduce the generalized Shapovalov form F, a symmetric bilinear form on $\mathcal{U}(\mathcal{G})$ with values in T_{α} , as follows (cf. [11]): $F(x,y) = j(\sigma(x)y), x, y \in \mathcal{U}(\mathcal{G})$. The algebra $\mathcal{U}(\mathcal{G})$ is Q-graded: $\mathcal{U}(\mathcal{G}) = \bigoplus_{\eta \in Q} \mathcal{U}(\mathcal{G})_{\eta}$. It is clear that $F(\mathcal{U}(\mathcal{G})_{\eta_1}, \mathcal{U}(\mathcal{G})_{\eta_2}) = 0$ if $\eta_1 \neq \eta_2$. Denote

 $\mathcal{U}(\mathcal{N}_{-})_{-\eta} = \mathcal{U}(\mathcal{N}_{-}) \cap \mathcal{U}(\mathcal{G})_{-\eta}$ and let F_{η} be a restriction of F to $\mathcal{U}(\mathcal{N}_{-})_{-\eta}$.

For $\lambda \in H^*$, $\gamma \in \mathbf{C}$, consider the linear map $\theta_{\lambda,\gamma} : T_{\alpha} \to \mathbf{C}$ defined by $\theta_{\lambda,\gamma}(h \otimes z^n) = h(\lambda)\gamma^n$ for any $h \in S(H)$, $n \in \mathbf{Z}_+$.

Set $\lambda_k = \lambda + k\alpha$, $k \in \mathbb{Z}$. Let $\mu = \lambda - n(\delta - \alpha) \in P(M(\lambda, \gamma))$, $n \in \mathbb{Z}_+$ and $\gamma \neq (\lambda(h_\alpha) + 2s + 1)^2$ for all integer s, $0 \leq s < 2n$. Then $\lambda_{2n} \in P(M(\lambda, \gamma))$, $M(\lambda, \gamma)_{\lambda_{2n}} = \mathbb{C}v_n$ and $M(\lambda, \gamma)_{\mu} = \mathcal{U}(\mathcal{N}_-)_{-n(\alpha+\delta)}v_n$. Set $F^{(n)} = F_{n(\alpha+\delta)}$. We define a a bilinear C-valued form F^0_{μ} on $M(\lambda, \gamma)_{\mu}$ as follows:

$$F^{0}_{\mu}(u_{1}v_{n}, u_{2}v_{n}) = \theta_{\lambda_{2n},\gamma}\left(F^{(n)}(u_{1}, u_{2})\right), u_{1}, u_{2} \in \mathcal{U}(\mathcal{N}_{-})_{-n(\alpha+\delta)}$$

One can see that dim $L(\lambda, \gamma)_{\mu} = \operatorname{rank} F^{0}_{\mu}$.

Lemma 3.9. Let $\lambda \in H^*$, $\gamma \in \mathbf{C} - R_{\lambda}$. The following conditions are equivalent:

- (i) $M(\lambda, \gamma)$ is irreducible.
- (ii) $F^0_{\lambda-n(\delta-\alpha)}$ is non-degenerate for all integers n > 0.
- (iii) $\theta_{\lambda_{2n},\gamma}$ (det $F^{(n)}$) $\neq 0$ for all integers n > 0.

Proof. Follows from the Corollary 3.5.

Consider in T_{α} the following polynomials: $f_{m,k} = k^2 z - (m(c+2) - k^2)^2$, $g_s = z - (h_{\alpha} + 2s + 1)^2$, $s, m, k \in \mathbb{Z}$, $0 \le k \le m$. Lemma 3.7 implies that if $\theta_{\lambda,\gamma}(g_s) \neq 0$ for all $s \in \mathbb{Z}$, $0 \le s < 2n$ and $\theta_{\lambda_{2m,\gamma}}(f_{m,k}) \neq 0$ for all $m, k \in \mathbb{Z}$, $0 < m \le n$, $0 \le k \le m$, then $M(\lambda, \gamma)_{\lambda - n(\delta - \alpha)} = L(\lambda, \gamma)_{\lambda - n(\delta - \alpha)}$ and $\theta_{\lambda_{2n,\gamma}}$ (det $F^{(n)}$) $\neq 0$. We conclude that the polynomial det $F^{(n)}$ is not identically equal to zero and has its zeros in the union of zeros of polynomials $f_{m,k}$, $0 < m \le n$, $0 \le k \le m$, g_s , $0 \le s \le 2n$. Therefore, det $F^{(n)}$ is a product of factors of type $f_{m,k}$ and g_s .

Lemma 3.10. Let $n, m \in \mathbb{Z}$, n > 0, $0 < m \le n$. Then $f_{m,k}$ is a factor of det $F^{(n)}$ if and only if k is a divisor of m or k = 0.

Proof. Assume that k is a divisor of m or k = 0. Set r = 2n+2m+k. Consider $\lambda \in H^*$ and $\gamma \in \mathbf{C} - \mathbf{Z}$ such that $\theta_{\lambda,\gamma}(f_{m,k}) = \theta_{\lambda,\gamma}(g_r) = 0$. For integer $s \ge 0$

11			

set $\nu_s = \lambda_{-s} = \lambda - s\alpha$. Then $\theta_{\nu_s,\gamma}(f_{m,k}) = \theta_{\nu_s,\gamma}(g_{r+s}) = 0$ and $\nu_s(h_\alpha) \notin \mathbf{Z}$, which implies that $\theta_{\nu_s,\gamma}(g_\ell) \neq 0$ for all $\ell \in \mathbf{Z}, \, \ell < r+s$. Thus, the form $F^0_{\nu_s - i\beta}$, $\beta = \delta - \alpha$ is defined for all $s \ge 0, \, 0 < i \le n$ and $M(\nu_s, \gamma) \simeq M(\lambda_r), \, s \ge 0$ by Proposition 3.2, (iii), where $M(\lambda_r)$ is the Verma module with highest weight $\lambda_r = \lambda + r\alpha$. Therefore, $M(\nu_s, \gamma)_{\nu_{s-i\beta}} \simeq M(\lambda_r)_{\nu_s - i\beta}, \, 0 < i \le n$ as T_α modules. The operator z(m) has eigenvectors $w_s^+, \, w_s^- \in M(\lambda_r)_{\nu_s - m\beta}$ with eigenvalues $\gamma^+ = (\lambda(h_\alpha) + 4(n+m+k) + 1)^2$ and $\gamma^- = (\lambda(h_\alpha) + 4(n+m) + 1)^2$ respectively. Since $\theta_{\nu_s,\gamma}(f_{m,k}) = 0$, then

$$\gamma^* = \gamma + 4m(\lambda(c) + 2) \in \{\gamma^+, \gamma^-\}$$

and

$$(\nu_s + 2\rho + s_\alpha(\nu_s + 2\rho), \nu_s) + \gamma = (\nu_s - m\beta + 2\rho + s_\alpha(\nu_s - m\beta + 2\rho), \nu_s - m\beta) + \gamma^*.$$

Let $w_s^* \in \{w_s^+, w_s^-\}$ and $z(m)w_s^* = \gamma^* w_s^*.$ Then

$$\tilde{\Omega}w_s^* = [(\nu_s - m\beta + 2\rho + s_\alpha(\nu_s - m\beta + 2\rho), \nu_s - m\beta) + \gamma^*]w_s^*$$

by Lemma 3.6. But, $w_s^* \in M(\lambda_r)$ and

$$\hat{\Omega} w_s^* = (2(\lambda_r + 2\rho, \lambda_r) + 1)w_s^*$$

by Corollary 2.6 in [4]. Hence

$$2(\lambda_r + 2\rho, \lambda_r) + 1 = (\nu_s - m\beta + 2\rho + s_\alpha(\nu_s - m\beta + 2\rho), \nu_s - m\beta) + \gamma^*$$

and

$$(\lambda_r + 2\rho, \lambda_r) = (\lambda_r + 2\rho - \tau^*, \lambda_r - \tau^*)$$

where $\tau^* = m\delta - k\alpha$ if $\gamma^* = \gamma^+$ and $\tau^* = m\delta + k\alpha$ if $\gamma^* = \gamma^-$. If k divides m or k = 0 then τ^* is a quasiroot and $D = Hom_{\mathcal{G}}(M(\lambda_r - \tau^*), M(\lambda_r)) \neq 0$ [10, Prop. 4.1].

Let $0 \neq \chi \in D$. Then $\chi(M(\lambda_r - \tau^*)) \cap M(\lambda_r)_{\nu_s - n\beta} \neq 0$ and therefore, $\theta_{\lambda_{2n-s},\gamma}(\det F^{(n)}) = 0$ for any integer $s \geq 0$. It implies that if $\lambda \in H^*$, $\gamma \in \mathbf{C} - \mathbf{Z}$ and $\theta_{\lambda,\gamma}(f_{m,k}) = 0$ then $\theta_{\lambda,\gamma}(\det F^{(n)}) = 0$. Thus, $f_{m,k}$ is a factor of det $F^{(n)}$. Conversely, suppose that $f_{n,k}$ is a factor of det $F^{(n)}$, $k \neq 0$ and k is not a divisor of n. Let r = 4n + k. Consider a pair $(\lambda, \gamma) \in H^* \times (\mathbf{C} - \mathbf{Z})$ such that $\theta_{\lambda,\gamma}(f_{n,k}) = \theta_{\lambda,\gamma}(g_r) = 0$ but $\theta_{\lambda,\gamma}(f_{p,q}) \neq 0$ for all 0 , $<math>0 \leq q \leq p$ (such λ and γ always exist). Then $\theta_{\lambda,\gamma}(\det F^{(n)}) = 0$ and the Verma module $M(\lambda_r)$ has an irreducible subquotient with highest weight $\lambda_r - \tau^*$, where τ^* is one of $n\delta + k\alpha$, $n\delta - k\alpha$. But, this contradicts the Theorem 2 in [10]. Therefore, $f_{n,k}$ can not be a factor of det $F^{(n)}$ if $k \neq 0$ and k is not a divisor of n. Let now 0 < m < n, 0 < k < m, k is not a divisor of m and $f_{m,k}$ is a factor of det $F^{(n)}$. Consider a pair $(\lambda, \gamma) \in H^* \times \mathbb{C}$ such that $\theta_{\lambda,\gamma}(f_{m,k}) = 0$, $\theta_{\lambda,\gamma}(f_{p,q}) \neq 0$ for all $p, q \in \mathbb{Z}$, $0 , <math>0 \leq q \leq p$, $(p,q) \neq (m,k)$ and $\theta_{\lambda,\gamma}(g_s) \neq 0$ for all $s \in \mathbb{Z}$. As it was shown above $f_{m,k}$ is not a factor of det $F^{(m)}$ which implies that $\theta_{\lambda_{2m},\gamma}(\det F^{(m)}) \neq 0$. Now it follows from Lemma 3.7 that $M(\lambda,\gamma)_{\lambda-n\beta} = L(\lambda,\gamma)_{\lambda-n\beta}$ and $\theta_{\lambda_{2n},\gamma}(\det F^{(n)}) \neq 0$. But, this contradicts the assumption that $f_{m,k}$ is a factor of det $F^{(n)}$. The Lemma is proved.

For $n \in \mathbf{Z}$, n > 0 denote $X_n = \{0\} \cup \{k \in \mathbf{Z}_+ \mid \frac{n}{k} \in \mathbf{Z}\}$.

Theorem 3.11. Let $\lambda \in H^*$, $\gamma \in \mathbb{C} - R_{\lambda}$. *G*-module $M(\lambda, \gamma)$ is irreducible if and only if $k^2 \gamma \neq (n(\lambda(c) + 2) - k^2)^2$ for all $n \in \mathbb{Z}$, n > 0, $k \in X_n$.

 \Box

Proof. Follows from Lemmas 3.9 and 3.10.

4. Irreducible representations of the Heisenberg subalgebra.

Consider the Heisenberg subalgebra $G = \mathbf{C}c \oplus \sum_{k \in \mathbf{Z} - \{0\}} \mathcal{G}_{k\delta} \subset \mathcal{G}$. It is a **Z**-graded algebra with $\deg c = 0$, $\deg e_{k\delta} = k$. This gradation induces a **Z**-gradation on the universal enveloping algebra $\mathcal{U}(G) : \mathcal{U}(G) = \bigoplus \mathcal{U}_i$.

In this section we study the irreducible **Z**-graded G- modules. The central element c acts as a scalar on each such module. In general, we say that a G-module V is a module of level $a \in \mathbf{C}$ if c acts on V as a multiplication by a.

4.1. G-Modules of non-zero level. Let $G_+ = \sum_{k>0} \mathcal{G}_{k\delta}$, $G_- = \sum_{k<0} \mathcal{G}_{k\delta}$. For $a \in \mathbb{C}^* = \mathbb{C} - \{0\}$, let $\mathbb{C}v_a$ be the 1- dimensional $G_{\varepsilon} \oplus \mathbb{C}c$ -module for which $G_{\varepsilon}v_a = 0$, $cv_a = av_a$, $\varepsilon \in \{+, -\}$. Consider the G-module

$$M^{\varepsilon}(a) = \mathcal{U}(G) \bigotimes_{\mathcal{U}(G_{\varepsilon} \oplus \mathbf{C}c)} \mathbf{C}v_{a}$$

associated with a and ε .

The module $M^{\varepsilon}(a)$ is a **Z**-graded: $M^{\varepsilon}(a) = \sum_{i \in \mathbf{Z}} M^{\varepsilon}(a)_i$ where

$$M^{\varepsilon}(a)_i = (\sigma(\mathcal{U}(G_{\varepsilon})) \cap \mathcal{U}_i) \otimes v_a.$$

Proposition 4.1.

- (i) The G-module $M^{\varepsilon}(a)$ is irreducible.
- (ii) $M^{\varepsilon}(a)$ is a $\sigma(\mathcal{U}(G_{\varepsilon}))$ -free module.

(iii) dim $M^{\varepsilon}(a)_i = P(|i|)$ where P(n) is a partition function.

Proof. (ii) and (iii) follow directly from the definition of $M^{\varepsilon}(a)$. Since $a \neq 0$ one can easily show that for any non-zero $u \in \sigma(\mathcal{U}(G_{\varepsilon}))$ there exists $u' \in \mathcal{U}(G_{\varepsilon})$ such that $0 \neq u'uv_a \in M^{\varepsilon}(a)_0$ which implies (i) and completes the proof.

Lemma 4.2. If V is a Z-graded G-module of level $a \in \mathbb{C}^*$ and dim $V_i < \infty$ for at least one $i \in \mathbb{Z}$ then

Spec
$$e_{\delta}e_{-\delta} \mid_{V} \subset \{2ma \mid m \in \mathbf{Z}\}$$
.

Proof. Let $v \in V_j$ be a non-zero eigenvector of $e_{\delta}e_{-\delta}$ with eigenvalue b and $b \neq 2ma$ for all $m \in \mathbf{Z}$. Since $a \neq 0$, if $e_{n\delta}v = 0$ then $e_{-n\delta}v \neq 0$, $n \in \mathbf{Z} - \{0\}$. Denote $Y = \{n \in \mathbf{Z} - \{0,1\} \mid e_{n\delta}v \neq 0\}$. We may assume without lost of generality that j = i and $|Y \cap \mathbf{Z}_+| = \infty$. Elements e_{δ} and $e_{-\delta}$ act injectively on the subspace spanned by $e_{\delta}^k v$, $e_{-\delta}^k v$, $k \in \mathbf{Z}$. Then, for each $k \in Y \cap \mathbf{Z}_+$, $e_{\delta}e_{-\delta}(e_{k\delta}v) = be_{k\delta}v$ and $0 \neq e_{-\delta}^k e_{k\delta}v \in V_i$. Set $w_k = e_{-\delta}^k e_{k\delta}v$. Then $e_{\delta}e_{-\delta}w_k = (b + 2ka)w_k$, $k \in Y \cap \mathbf{Z}_+$. This contradicts the assumption that dim $V_i < \infty$. Therefore, b = 2ma for some $m \in \mathbf{Z}$.

For a **Z**-graded *G*-module *V* and $j \ge 0$ denote by $V^{[j]}$ the **Z**-graded *G*-module with $(V^{[j]})_i = V_{i-j}, i \in \mathbf{Z}$.

We describe now all irreducible \mathbf{Z} -graded G-modules of non-zero level with finite-dimensional components.

Proposition 4.3.

(i) Let V be an irreducible **Z**-graded G-module of level $a \in \mathbf{C}^*$ such that $\dim V_i < \infty$ for at least one $i \in \mathbf{Z}$. Then $V^{[j]} \simeq M^{\varepsilon}(a)$ for some $\varepsilon \in \{+, -\}, j \in \mathbf{Z}$.

(ii)
$$\operatorname{Ext}^{1}((M^{\varepsilon}(a))^{[j]}, M^{\varepsilon'}(a)) = 0 \text{ for any } j \in \mathbf{Z}, \, \varepsilon, \varepsilon' \in \{+, -\}.$$

Proof. (i) By Lemma 4.2 Spec $X |_{V} \subset \{2ma \mid m \in \mathbb{Z}\}$ where X stands for $e_{\delta}e_{-\delta}$. Let $V_i \neq 0$, n be an integer with maximal absolute value such that $2na \in \text{Spec } X |_{V_i}$ and let $0 \neq v \in V_i$, Xv = 2nav. Assume that n > 0. Then $e_{k\delta}v = 0$ for all k > 1. Indeed, if $e_{k\delta}v \neq 0$ for some k > 1 then $X(e_{k\delta}v) = e_{k\delta}Xv = 2nae_{k\delta}v$ and 2(n+k)a is an eigenvalue of X on V_i which contradicts the assumption. Therefore, $e_{k\delta}v = 0$ for all k > 1. If $e_{\delta}\tilde{v} \neq 0$ then $v_p = e_{\delta}^{p}\tilde{v} \neq 0$, $e_{k\delta}v_p = 0$ and, hence $e_{-k\delta}v_p \neq 0$ for all p > 0, k > 1. This would imply that dim $V_i = \infty$. Therefore, $e_{\delta}\tilde{v} = 0$ and $V = \mathcal{U}(G)\tilde{v} \simeq M^+(a)$ up to a shifting of gradation. If $n \leq 0$ then, clearly,

 $V \simeq M^{-}(a)$ up to a shifting of gradation. Suppose that $V_{i} = 0$ but, for example, $V_{i-1} \neq 0$. Then $e_{k\delta}v = 0$ for any non-zero $v \in V_{i-1}$ for all k > 0 and thus $V = \mathcal{U}(G)v \simeq M^{+}(a)$ up to a shifting of gradation. This completes the proof of (i).

(ii) Follows from the proof of (i) and Proposition 4.1, (ii).

Lemma 4.4. Every finitely-generated \mathbb{Z} -graded G-module V of level $a \in \mathbb{C}^*$ such that dim $V_i < \infty$ for at least one $i \in \mathbb{Z}$ has a finite length.

Proof. If $V_i = 0$ then statement follows from Proposition 4.3. Let $V_i \neq 0$, n be an integer with maximal absolute value such that $2na \in \text{Spec } e_{\delta}e_{-\delta} \mid_{V_i}$ and v be a corresponding eigenvector. It follows from the proof of Proposition 4.3, (i) that $V' = \mathcal{U}(G)v \simeq M^{\varepsilon}(a)$ up to a shifting of gradation. Consider a G-module $\tilde{V} = V/V'$. Then dim $\tilde{V}_i < \dim V_i$ and we can complete the proof by induction on dim V_i .

Now we are in the position to establish the completely reducibility for for finitely-generated G-modules of non-zero level with finite-dimensional components.

Proposition 4.5. Every finitely-generated \mathbb{Z} -graded G-module V of a nonzero level such that dim $V_i < \infty$ for at least one $i \in \mathbb{Z}$ is completely reducible.

Proof. Follows from Lemma 4.4 and Proposition 4.3.

4.2. *G*-modules of level zero. The irreducible *G*-modules of level zero are classified by V. Chari [6]. We recall this classification.

Let $\tilde{G} = \mathcal{U}(G)/\mathcal{U}(G)c$ and let $g: \mathcal{U}(G) \to \tilde{G}$ be the canonical homomorphism. For r > 0 consider a **Z**-graded ring $L_r = \mathbf{C}[t^r, t^{-r}]$, $\deg t = 1$ and denote by P_r the set of graded ring epimorphisms $\Lambda : \tilde{G} \to L_r$ with $\Lambda(1) = 1$. Let $L_0 = \mathbf{C}$ and $\Lambda_0 : \tilde{G} \to \mathbf{C}$ is a trivial homomorphism such that $\Lambda_0(1) = 1$, $\Lambda_0(g(e_{k\delta})) = 0$ for all $k \in \mathbf{Z} - \{0\}$. Set $P_0 = \{\Lambda_0\}$.

Given $\Lambda \in P_r$, $r \ge 0$ define a *G*-module structure on L_r by:

$$e_{k\delta}t^{rs} = \Lambda(g(e_{k\delta}))t^{rs}, \ k \in \mathbf{Z} - \{0\}, \ ct^{rs} = 0, s \in \mathbf{Z}.$$

Denote this G-module by $L_{r,\Lambda}$.

Proposition 4.6.

- (i) Let V be an irreducibe **Z**-graded G-module of level zero. Then $V \simeq L_{r,\Lambda}$ for some $r \ge 0$, $\Lambda \in P_r$ up to a shifting of gradation.
- (ii) $L_{r,\Lambda} \simeq L_{r',\Lambda'}$ if and only if r = r' and there exists $b \in \mathbb{C}^*$ such that $\Lambda(g(e_{k\delta})) = b^k \Lambda'(g(e_{k\delta})), \ k \in \mathbb{Z} \{0\}.$

 \square

Proof. (i) is essentially Lemma 3.6 in [6]; (ii) follows from [6, Prop. 3.8]. \Box

Remark 4.7. All the results of Section 4, except Proposition 4.1 (iii), are hold for the Heisenberg subalgebra of an arbitrary Affine Lie Algebra.

5. The category $\tilde{\mathcal{O}}(\alpha)$.

Let $\alpha \in \pi$. Following [6] we define category $\tilde{\mathcal{O}}(\alpha)$ to be the category of weight \mathcal{G} -modules M satisfying the condition that there exist finitely many

elements $\lambda_1, ..., \lambda_r \in H^*$ such that $P(M) \subseteq \bigcup_{i=1}^{r} D(\lambda_i)$ where $D(\lambda_i) = \{\lambda_i + k\alpha + n\delta \mid k, n \in \mathbb{Z}, k \leq 0\}.$

Notice that the trivial action of c, as in [6], is no longer required. It is clear that $\tilde{\mathcal{O}}(\alpha)$ is closed under the operations of taking submodules, quotients and finite direct sums.

Denote $B_{\alpha} = \sum_{n \in \mathbb{Z}} \mathcal{G}_{\alpha+n\delta}$. Then $\mathcal{G} = B_{-\alpha} \oplus (H+G) \oplus B_{\alpha}$.

Let V be an irreducible **Z**-graded G-module of level $a \in \mathbf{C}$ and let $\lambda \in H^*$, $\lambda(c) = a$. Then we can define a $B = (H + G) \oplus B_{\alpha}$ -module structure on V by setting: $hv_i = (\lambda + i\delta)(h)v_i$, $B_{\alpha}v_i = 0$ for all $h \in H$, $v_i \in V_i$, $i \in \mathbf{Z}$.

Consider the \mathcal{G} -module

$$M_{lpha}(\lambda,V) = \mathcal{U}(\mathcal{G}) \bigotimes_{\mathcal{U}(B)} V$$

associated with α, λ, V .

Proposition 5.1.

- (i) The *G*-module $M_{\alpha}(\lambda, V)$ is $S(B_{-\alpha})$ -free.
- (ii) $M_{\alpha}(\lambda, V)$ has a unique irreducible quotient $L_{\alpha}(\lambda, V)$.
- (iii) $P(M_{\alpha}(\lambda, V)) = (D(\lambda) \{\lambda + n\delta \mid n \in \mathbf{Z}\}) \cup P(V) \subset D(\lambda).$
- (iv) $M_{\alpha}(\lambda, V) \simeq M_{\alpha'}(\lambda', V')$ if and only if $\alpha' \in \{\alpha + n\delta \mid n \in \mathbb{Z}\}$ and there exists $i \in \mathbb{Z}$ such that $\lambda = \lambda' + i\delta$ and $V^{[i]} \simeq V'$ as graded G-modules.

Proof. Follows from the construction of \mathcal{G} - module $M_{\alpha}(\lambda, V)$.

Now we describe the classes of isomorphisms of irreducible modules in $\tilde{\mathcal{O}}(\alpha)$.

Proposition 5.2.

(i) Let V be an irreducible object in O(α). Then there exist λ ∈ H* and an irreducible G- module V such that V ≃ L_α(λ, V).

(ii) $L_{\alpha}(\lambda, V) \simeq L_{\alpha}(\lambda', V')$ if and only if there exists $i \in \mathbb{Z}$ such that $\lambda = \lambda' + i\delta$ and $V^{[i]} \simeq V'$ as graded G-modules.

Proof. One can see that \tilde{V} contains a non-zero element $v \in \tilde{V}_{\lambda}$ such that $B_{\alpha}v = 0$. Then $V = \mathcal{U}(G)v$ is an irreducible **Z**-graded G- module and $\tilde{V} \simeq \mathcal{U}(B_{-\alpha})V$. This implies that \tilde{V} is a homomorphic image of $M_{\alpha}(\lambda, V)$ and, therefore, is isomorphic to $L_{\alpha}(\lambda, V)$, which proves (i). Part (ii) follows from Proposition 5.1, (iv).

Lemma 5.3. If $0 < \dim L_{\alpha}(\lambda, V)_{\mu} < \infty$ for some $\mu \in H^*$ then $\dim V_i < \infty$ for all $i \in \mathbb{Z}$.

Proof. If $\lambda(c) = 0$ then $V^{[j]} \simeq L_{r,\Lambda}$ for some $r \ge 0$, $\Lambda \in P_r$, $j \in \mathbb{Z}$ by Proposition 4.6 and, hence dim $V_i \le 1$ for all $i \in \mathbb{Z}$. Let $\lambda(c) = a \in \mathbb{C}^*$ and $V^{[j]} \simeq M^{\varepsilon}(a)$, for any $j \in \mathbb{Z}$, $\varepsilon \in \{+, -\}$. By Proposition 4.3, (i), dim $V_i = \infty$ for all i. If $a \in \mathbb{Q}_+$ ($a \notin \mathbb{Q}_+$ respectively) then $\lambda(h_{\alpha}) - na \notin \mathbb{Z}_+$ for all integer $n \ge n_0$ ($n \le n_0$ respectively) and for some $n_0 \in \mathbb{Z}$. Thus, $e_{\alpha-n\delta}e_{-\alpha+n\delta}$ acts injectively on $L_{\alpha}(\lambda, V)$ for all $n \ge n_0$ ($n \le n_0$ respectively) which implies that dim $L_{\alpha}(\lambda, V)_{\mu} = \infty$. But, this contradicts the assumption. We conclude that $V^{[j]} \simeq M^{\varepsilon}(a)$ for some $j \in \mathbb{Z}$, $\varepsilon \in \{+, -\}$ and dim $V_i < \infty$ for all $i \in \mathbb{Z}$.

Theorem 5.4. Let $\tilde{V} \in \tilde{\mathcal{O}}(\alpha)$ be an irreducible.

- (i) [6] If \tilde{V} is of level zero then $\tilde{V} \simeq L_{\alpha}(\lambda, L_{r,\Lambda})$ for some $\lambda \in H^*$, $\lambda(c) = 0$, $r \ge 0$, $\Lambda \in P_r$.
- (ii) If \tilde{V} is of level $a \in \mathbb{C}^*$ and $\dim \tilde{V}_{\mu} < \infty$ for at least one $\mu \in P(\tilde{V})$ then $\tilde{V} \simeq L_{\alpha}(\lambda, M^{\varepsilon}(a))$ for some $\lambda \in H^*$, $\lambda(c) = a, \varepsilon \in \{+, -\}$.

Proof. (i) follows from Propositions 5.2 and 4.6, while (ii) follows from Lemma 5.3, Propositions 5.2 and 4.3. \Box

In some cases we can describe the structure of modules $L_{\alpha}(\lambda, V)$.

Let $\lambda(c) = 0, r = 0, \Lambda = \Lambda_0, L_{0,\Lambda_0} \simeq \mathbf{C}$. Set $\tilde{M}(\lambda) = M_{\alpha}(\lambda, \mathbf{C})$. Notice that $\tilde{M}(\lambda) \simeq S(B_{-\alpha})$ as vector spaces and, therefore, $P(\tilde{M}(\lambda)) = \{\lambda - n\alpha + k\delta \mid k, n \in \mathbf{Z}, n > 0\} \cup \{\lambda\}$ and

 $\dim \tilde{M}(\lambda)_{\lambda-n\alpha+k\delta} = \infty, n > 1, \dim \tilde{M}(\lambda)_{\lambda} = \dim \tilde{M}(\lambda)_{\lambda-\alpha+k\delta} = 1, k \in \mathbf{Z}.$

Proposition 5.5.

- (i) $L_{\alpha}(\lambda, \mathbf{C}) \simeq \tilde{M}(\lambda)$ if and only if $\lambda(h_{\alpha}) \neq 0$.
- (ii) If $\lambda(h_{\alpha}) = 0$ then $L_{\alpha}(\lambda, \mathbf{C})$ is a trivial one-dimensional module.

Proof. Proposition follows from [7, Proposition 6.2] and is also proved in [8].

Let
$$\lambda(c) = a \in \mathbf{C}^*$$
. Set $M^{\varepsilon}(\lambda, a) = M_{\alpha}(\lambda, M^{\varepsilon}(a))$. We have

$$P(M^{\varepsilon}(\lambda, a)) = \{\lambda - k\alpha + n\delta \mid k, n \in \mathbf{Z}, \, k > 0\} \cup \{\lambda - \varepsilon n\delta \mid n \in \mathbf{Z}_{+}\}$$

and

 $\dim M^{\varepsilon}(\lambda, a)_{\lambda - k\alpha + n\delta} = \infty, \, k > 0, n \in \mathbf{Z}, \dim M^{\varepsilon}(\lambda, a)_{\lambda - \varepsilon n\delta} = P(n), \, n \in \mathbf{Z}_+.$

Proposition 5.6. [8, 9] $L_{\alpha}(\lambda, M^{\varepsilon}(a)) \simeq M^{\varepsilon}(\lambda, a)$.

Recall, that \mathcal{G} -module \tilde{V} is called *integrable* if $e_{\pm\alpha}$ and $e_{\pm(\delta-\alpha)}$ act locally nilpotently on \tilde{V} . All irreducible integrable \mathcal{G} - modules in $\tilde{\mathcal{O}}(\alpha)$ of level zero were classified in [**6**]. In fact, they are the only integrable modules in $\tilde{\mathcal{O}}(\alpha)$.

Corollary 5.7. If \tilde{V} is irreducible integrable \mathcal{G} -module in $\tilde{\mathcal{O}}(\alpha)$ then \tilde{V} is of level zero.

Proof. Suppose \tilde{V} is of level $a \neq 0$. Since \tilde{V} is integrable, it follows from Proposition 5.6 that $\tilde{V} \neq L_{\alpha}(\lambda, M^{\varepsilon}(a)), \varepsilon \in \{+, -\}$. Then $\tilde{V} \simeq L_{\alpha}(\lambda, V)$ and for any $k \in \mathbb{Z}_+$ there exist i > k, j < -k such that $V_i \neq 0, V_j \neq 0$. Now the same arguments as in the proof of Lemma 5.3 show that $e_{-\alpha}$ and $e_{\delta-\alpha}$ are not locally nilpotent on such module and, therefore, \tilde{V} has a zero level.

Remark. (i) The structure of modules $L_{\alpha}(\lambda, L_{r,\Lambda})$, r > 0 is unclear is general. Some examples were considered in [1, 12].

(ii) Most of the results of Section 5 can be generalized for an arbitrary Affine Lie Algebra [6, 7, 12].

6. Non-dense *G*-modules.

Definition. An irreducible weight \mathcal{G} -module V is called dense if $P(V) = \lambda + Q$ for some $\lambda \in H^*$ and non-dense otherwise.

In this section we classify all irreducible non-dense \mathcal{G} - modules with at least one finite-dimensional weight subspace. Our main result is the following Theorem.

Theorem 6.2. If \tilde{V} is an irreducible non-dense \mathcal{G} -module with at least one finite-dimensional weight subspace then \tilde{V} belongs to one of the following disjoint classes:

- (i) highest weight modules with respect to some choice of π ;
- (ii) $L^{\varepsilon}_{\alpha}(\lambda,\gamma), \alpha \in \Delta^{re}, \lambda \in H^*, \gamma \in \mathbf{C} R_{\lambda}, \varepsilon \in \{+,-\};$
- (iii) $L_{\alpha}(\lambda, L_{r,\Lambda}), \ \alpha \in \Delta^{re}, \ \lambda \in H^*, \ \lambda(c) = 0, \ r \ge 0, \ \Lambda \in P_r.$

(iv)
$$L_{\alpha}(\lambda, M^{\varepsilon}(a)), \alpha \in \Delta^{re}, \lambda \in H^*, a \in \mathbb{C}^*, \lambda(c) = a, \varepsilon \in \{+, -\}.$$

Moreover, we can describe the irreducible \mathcal{G} -modules of non-zero level with finite-dimensional weight subspaces.

Theorem 6.3. Let \tilde{V} be an irreducible \mathcal{G} -module of level $a \neq 0$ with all finite-dimensional weight subspaces. Then $\tilde{V} \simeq L^{\varepsilon}_{\alpha}(\lambda, \gamma)$ for some $\alpha \in \Delta^{re}$, $\lambda \in H^*$, $\lambda(c) = a, \gamma \in \mathbf{C}, \varepsilon \in \{+, -\}$.

Remark 6.4. Theorems 6.2, 6.3 imply that in order to complete the classification of all weight irreducible \mathcal{G} -modules one has to study the following classes:

- (i) Modules of type $L_{\alpha}(\lambda, V)$ where V is a graded irreducible G-module of non-zero level with all infinite- dimensional components.
- (ii) Dense \mathcal{G} -modules of zero level.
- (iii) Dense \mathcal{G} -modules of non-zero level with an infinite-dimensional weight subspace.

These classification problems are still open.

The proof of Theorem 6.2 is based on some preliminary results. We start with the following Definition.

Definition 6.5. A subset $P \subset \Delta$ is called closed if $\beta_1, \beta_2 \in P, \beta_1 + \beta_2 \in \Delta$ imply $\beta_1 + \beta_2 \in P$. A closed subset $P \subset \Delta$ is called a partition if $P \cap -P = \emptyset$, $P \cup -P = \Delta$.

Lemma 6.6. Let P be a partition, $P \ni \delta$, $P^{re} = P \cap \Delta^{re}$, $\beta \in \Delta^{re}$.

- (i) If $|P^{re} \cap \{\beta + k\delta \mid k \in \mathbb{Z}_+\} | < \infty \text{ or } |P^{re} \cap \{-\beta + k\delta \mid k \in \mathbb{Z}\} | < \infty$ then $P^{re} = \{\varphi + n\delta \mid n \in \mathbb{Z}\}$ for some $\varphi \in \Delta^{re}$.
- (ii) If $|P^{re} \cap \{\beta + k\delta \mid k \in \mathbf{Z}\} |=|P^{re} \cap \{-\beta + k\delta \mid k \in \mathbf{Z}_+\} |= \infty$ then $P = \Delta_+(\tilde{\pi})$ for some basis $\tilde{\pi}$ of Δ .

Proof. Recall that $\Delta = \{\pm \beta + k\delta \mid k \in \mathbb{Z}\} \cup \{n\delta \mid n \in \mathbb{Z} - \{0\}\}$. It follows from [7] that there exist $w \in W$ and $\beta' \in \Delta^{re}$ such that

$$wP = \{\beta' + k\delta \mid k \in \mathbf{Z}\} \cup \{k\delta \mid k > 0\}$$

or

$$wP=\{eta'+n\delta,-eta'+k\delta\mid n\geq 0,\ k>0\}\cup\{k\delta\mid k>0\}=\Delta_+(\pi')$$

where $\pi' = \{\beta', \delta - \beta'\}$. Then

$$P = \left\{ w^{-1}\beta' + k\delta \mid k \in \mathbf{Z} \right\} \cup \left\{ k\delta \mid k > 0 \right\}$$

or $P = \Delta_+(w^{-1}\pi')$. This implies the statement of Lemma.

Definition 6.7. A non-zero element v of a \mathcal{G} -module V is called admissible if $\mathcal{N}_{\varphi}^{\varepsilon}v = 0$ or $B_{\varphi}v = 0$, for some $\varphi \in \Delta^{re}$, $\varepsilon \in \{+, -\}$.

Lemma 6.8. If the \mathcal{G} -module V contains a non-zero vector $v \in V_{\lambda}$ such that $e_{\varphi}v = 0$ and $\lambda + k\delta \notin P(V)$ for some $\varphi \in \Delta^{re}$, $k \in \mathbb{Z} - \{0\}$ then V contains an admissible vector.

Proof. We will assume that k > 0. The case k < 0 can be considered analogously. We prove the Lemma by the induction on k. Let k = 1. Then we have $e_{\varphi+m\delta}v = e_{\delta}v = 0$ for all $m \ge 0$. If $e_{\varphi-i\delta}v = 0$ for all i > 0 then $B_{\varphi}v = 0$ and v is admissible. Let $e_{\varphi-n\delta}v \ne 0$ for some n > 0 and $e_{\varphi-i\delta}v = 0, 0 \le i < n$. Set $\tilde{v} = e_{\varphi-n\delta}v \ne 0$. Then $e_{\varphi-i\delta}\tilde{v} = e_{\delta}\tilde{v} = e_{-\varphi+(n+1)\delta}\tilde{v} = 0, i < n$ and, thus, $e_{\psi}\tilde{v} = 0$ for any $\psi \in \tilde{P} = \{\varphi - i\delta, -\varphi + (n + j + 1)\delta, (j + 1)\delta \mid i < n, j \ge 0\}$. One can see that $\tilde{P} \cup \{-\varphi + n\delta\}$ is a partition and $\tilde{P} = \Delta_+(\tilde{\pi}) - \{\varphi'\}$ for some $\varphi' \in \Delta^{re}, \tilde{\pi} = \{\varphi', \delta - \varphi'\}$, by Lemma 6.6. Hence, $\mathcal{N}^+_{\varphi'}\tilde{v} = 0$ which proves the Lemma for k = 1.

Assume now that the Lemma is proved for all 0 < k' < k and consider two cases:

(i) There exists $n \in \mathbb{Z}$, 0 < n < k such that $e_{\varphi+i\delta}v = 0$ for all $0 \le i < n$ but $e_{\varphi+n\delta}v \ne 0$. Then $e_{\varphi+i\delta}\tilde{v} = e_{-\varphi+(k-n)\delta}\tilde{v} = 0, 0 \le i < n$ where $\tilde{v} = e_{\varphi+n\delta}v$ and $e_{-\varphi+(k-n)\delta}\tilde{v} \in V_{\lambda+k\delta} = 0$. If k - n = 1 or k - n > 1 and $e_{-\varphi+\delta}\tilde{v} = 0$ then $\mathcal{N}_+v = 0$ and \tilde{v} is admissible. Let k - n > 1 and $v' = e_{-\varphi+\delta}\tilde{v} \ne 0$. Then $v' \in V_{\lambda'}, e_{\varphi'}v' = 0, \lambda' + (k - n - 1)\delta \notin P(V)$ where $\lambda' = \lambda + (n + 1)\delta$, $\varphi' = -\varphi + (k - n)\delta$ and V has an admissible element by the induction hypotheses.

(ii) Let $e_{\varphi+i\delta}v = 0$ for all $0 \le i \le k$. Since $e_{k\delta}v = 0$ we have $e_{\varphi+i\delta}v = 0$ for all $i \ge 0$. If $\tilde{v}_m = e_{m\delta}v \ne 0$ for some 0 < m < k then $\tilde{v}_m \in V_{\lambda'}$, $\lambda' = \lambda + m\delta, \ e_{\varphi}\tilde{v}_m = 0, \ \lambda' + (k - m)\delta \notin P(V)$ and we can apply induction. Assume that $\tilde{v}_m = 0$ for all 0 < m < k. Then we have $e_{\varphi+i\delta}v = e_{m\delta}v = 0$, $i \geq 0, \ 0 < m \leq k$. If $e_{\varphi - j\delta}v = 0$ for all j > 0 then $B_{\varphi}v = 0$ and vis admissible. Otherwise, let n be a minimal positive integer such that $\tilde{v} = e_{\varphi - n\delta}v \neq 0$. Then $e_{\varphi - j\delta}\tilde{v} = e_{-\varphi + (n+k)\delta}\tilde{v} = e_{i\delta}\tilde{v} = 0, \ i \geq 0, \ j < 0$ n. Assume that $e_{-\omega+(n+1)\delta}\tilde{v} = 0$. We have $e_{\psi}\tilde{v} = 0$ for any $\psi \in P = 0$ $\{\varphi - j\delta, -\varphi + (n+m)\delta, m\delta \mid j < n, m > 0\}$. The set $\tilde{P} \cup \{-\varphi + n\delta\}$ is a partition, $|\tilde{P}^{re} \cap \{\varphi + i\delta \mid i \geq 0\} |= |\tilde{P}^{re} \cap \{-\varphi + i\delta \mid i > 0\} |= \infty$ and, therefore, $\tilde{P} = \Delta_{+}(\tilde{\pi}) - \{\varphi'\}$ for some $\varphi' \in \Delta^{re}$, $\tilde{\pi} = \{\varphi', \delta - \varphi'\}$ by Lemma 6.6. We conclude that $\mathcal{N}_{\omega'}^+ \tilde{v} = 0$ and \tilde{v} is admissible. Finally, suppose that $v' = e_{-\omega + (n+1)\delta} \tilde{v} \neq 0$. Then $v' \in V_{\lambda'}, e_{\omega}v' = 0, \lambda' + (k-1)\delta \notin P(V)$ where λ' stands for $\lambda + \delta$ and, thus V has an admissible element by the assumption of induction. This completes the proof of Lemma.

 \Box

Proposition 6.9. Let V be an irreducible non-dense \mathcal{G} -module. Then V contains an admissible element.

Proof. Let $\lambda \in P(V)$ and $\lambda + \varphi \notin P(V)$ for some $\varphi \in \Delta$. We can assume that $\varphi \in \Delta^{re}$. Indeed, let $\varphi = \delta$. If $e_{\alpha}v = e_{\delta-\alpha}v = 0$ for some $0 \neq v \in V_{\lambda}$, $\alpha \in \Delta^{re}$ then V is a highest weight module with respect to $\{\alpha, \delta - \alpha\}$ and v is admissible. If, for example, $e_{\alpha}v \neq 0$ then $\lambda' = \lambda + \alpha \in P(V)$ and $\lambda' + (\delta - \alpha) \notin P(V)$. Hence, we can assume that $\lambda + \varphi \notin P(V), \varphi \in \Delta^{re}$. Let $0 \neq v \in V_{\lambda}$. If $v' = e_{\varphi-n\delta}v \neq 0$ for some $n \in \mathbb{Z} - \{0\}$ then $e_{\varphi}v' = 0, v' \in V_{\lambda}$, $\tilde{\lambda} = \lambda + \varphi - n\delta, \ \tilde{\lambda} + n\delta \notin P(V)$ and Proposition follows from Lemma 6.8. If $e_{\varphi-n\delta}v = 0$ for all $n \in \mathbb{Z}$ then $B_{\varphi}v = 0$ and v is admissible.

Corollary 6.10. If \tilde{V} is an irreducible non-dense \mathcal{G} -module then either $\tilde{V} \simeq L^{\varepsilon}_{\alpha}(\lambda, \gamma)$ or $\tilde{V} \simeq L_{\alpha}(\lambda, V)$ for some $\alpha \in \Delta^{re}$, $\lambda \in H^*$, $\gamma \in \mathbb{C}$, $\varepsilon \in \{+, -\}$ and irreducible G-module V.

Proof. Follows from Proposition 6.9, Corollary 3.3 (i) and Proposition 5.2. \Box

Now Theorem 6.2 follows from Corollary 6.6 and Theorem 5.4.

Proof of Theorem 6.3. Let $\mu \in P(\tilde{V})$. Consider the \mathcal{G} -submodule $V = \mathcal{U}(G)\tilde{V}_{\mu} \subset \tilde{V}$. Then it follows from Proposition 4.5 that V is completely reducible and moreover each irreducible component is isomorphic to $M^{\varepsilon}(a)$, $\varepsilon \in \{+, -\}$ up to a shifting of gradation by Proposition 4.3, (i). Denote by V^+ the sum of all irreducible components of V isomorphic to $M^+(a)$ and assume that $V^+ \neq 0$. Let $0 \neq v \in V^+ \cap \tilde{V}_{\chi}, \chi \in P(\tilde{V})$ and $V^+ \cap \tilde{V}_{\chi+\delta} = 0$. We will show that for any $\alpha \in \Delta^{re}$ there exists $m_{\alpha} \in \mathbb{Z}_+$ such that $e_{\alpha+m\delta}v = 0$ for all $m \geq m_{\alpha}$. Indeed, let $v_0 = e_{\alpha}v \neq 0$. Consider the G-module $\mathcal{U}(G)v_0$ which is again completely reducible by Proposition 4.5. If $e_{k\delta}v \neq 0$ for all k > 0 then $v_k = e_{\delta}^k v_0 \neq 0$ for all k > 0. But, for big enough k, v_k will belong to the direct sum of irreducible components of $\mathcal{U}(G)v_0$ each of which is isomorphic to $M^-(a)$ up to a shifting of gradation. This contradicts Proposition 4.1, (ii), since $e_{\delta}^2 v_k = 2^{k+2}e_{\alpha+(k+2)\delta}v = 2e_{2\delta}v_k$. Thus, there exists $m_{\alpha} \geq 0$ such that $e_{\alpha+m_{\alpha}\delta}v = 0$ and, therefore, $e_{\alpha+m\delta}v = 0$ for any $m \geq m_{\alpha}$.

Suppose that $\chi + \delta \in P(\tilde{V})$. Since \tilde{V} is irreducible there exists $0 \neq u \in \mathcal{U}(\mathcal{G})$ such that $0 \neq uv \in \tilde{V}_{\chi+\delta}$. It follows from the discussion above that $e_{n\delta}uv = 0$ for big enough $n \in \mathbb{Z}_+$. The *G*-submodule $V' = \mathcal{U}(G)uv$ is completely reducible by Proposition 4.5 and since $V^+ \cap \tilde{V}_{\chi+\delta} = 0$, any irreducible component $L \subset V'$ such that $L \cap \tilde{V}_{\chi+\delta} \neq 0$ is isomorphic to $M^-(a)$ up to a shifting of gradation. Hence, $e_{n\delta}\tilde{v} \neq 0$ for any non-zero $\tilde{v} \in V' \cap \tilde{V}_{\chi+\delta}$ by Proposition 4.1, (ii) and $e_{n\delta}uv \neq 0$ in particular. This contradiction implies that $\chi + \delta \notin P(\tilde{V})$ and therefore \tilde{V} is a non-dense

 \mathcal{G} -module. Applying Theorem 6.2 we conclude that $\tilde{V} \simeq L^{\varepsilon}_{\alpha}(\lambda, \gamma)$ for some $\alpha \in \Delta^{re}, \ \lambda \in H^*, \ \lambda(c) = a, \ \gamma \in \mathbf{C}, \ \varepsilon \in \{+, -\}$ which completes the proof.

Acknowledgement.

The author gratefully acknowledges the support of the Natural Sciences and Engineering Research Council of Canada.

References

- [1] S. Spirin, \mathbb{Z}^2 -graded modules with one-dimensional components over the Lie Algebra $A_1^{(1)}$, Funkts. Anal. Prilozhen., **21** (1987), 84-85.
- [2] D. Britten, F. Lemire and F. Zorzitto, Pointed torsion free Modules of Affine Lie Algebras, Commun. in Algebra, 18 (1990), 3307-3321.
- [3] V. Chari and A. Pressley, A new family of irreducible, integrable modules for Affine Lie Algebras, Math. Ann., 277 (1987), 543-562.
- [4] V. Kac, Infinite Dimensional Lie Algebras, 3rd Edition, Cambridge University Press 1990.
- [5] J. Lepowsky, Generalized Verma modules, loop space cohomology and MacDonald type identities, Ann. Sci. Ecole Norm. sup., **12** (1979), 169-234.
- [6] V. Chari, Integrable representations of Affine Lie Algebras, Invent. Math., 85 (1986), 317-335.
- H. Jakobsen and V. Kac, A new class of unitarizable highest weight representations of infinite dimensional Lie algebras, Lecture Notes in Physics, 226 (1985), 1-20.
- [8] V. Futorny, On Imaginary Verma modules over the affine Lie algebra $A_1^{(1)}$, Oslo University preprint, 1991-9.
- [9] , Irreducible graded $A_1^{(1)}$ modules, Funkts. Anal. Prilozhen., **26** (1992), 73-75.
- [10] V. Kac and D. Kazhdan, Structure of representations with highest weight of infinitedimensional Lie algebras, Advances in Math., 34 (1979), 97-108.
- [11] N. Shapovalov, On bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funkts. Anal. Prilozhen., 6 (1972), 307-312.
- [12] V. Futorny, Imaginary Verma modules for Affine Lie Algebras, Canad. Math. Bull., to appear.

Received July 12, 1993 and revised December 2, 1993.

KIEV UNIVERSITY KIEV, 252617, UKRAINE *E-mail address*: futorny@uni-alg.kiev.ua

PACIFIC JOURNAL OF MATHEMATICS

Volume 172 No. 1 January 1996

A class of incomplete non-positively curved manifolds BRIAN BOWDITCH	1
The quasi-linearity problem for C^* -algebras	41
L. J. BUNCE and JOHN DAVID MAITLAND WRIGHT	
Distortion of boundary sets under inner functions. II JOSE LUIS FERNANDEZ PEREZ, DOMINGO PESTANA and JOSÉ RODRÍGUEZ	49
Irreducible non-dense $A_1^{(1)}$ -modules VJACHESLAV M. FUTORNY	83
<i>M</i> -hyperbolic real subsets of complex spaces	101
GIULIANA GIGANTE, GIUSEPPE TOMASSINI and SERGIO VENTURINI	101
Values of Bernoulli polynomials ANDREW GRANVILLE and ZHI-WEI SUN	117
The uniqueness of compact cores for 3-manifolds LUKE HARRIS and PETER SCOTT	139
Estimation of the number of periodic orbits BOJU JIANG	151
Factorization of <i>p</i> -completely bounded multilinear maps CHRISTIAN LE MERDY	187
Finitely generated cohomology Hopf algebras and torsion JAMES PEICHENG LIN	215
The positive-dimensional fibres of the Prym map JUAN-CARLOS NARANJO	223
Entropy of a skew product with a Z ² -action KYEWON KOH PARK	227
Commuting co-commuting squares and finite-dimensional Kac algebras TAKASHI SANO	243
Second order ordinary differential equations with fully nonlinear two-point boundary conditions. I	255
H. BEVAN THOMPSON	
Second order ordinary differential equations with fully nonlinear two-point boundary conditions. ${\rm II}$	279
H. BEVAN THOMPSON	
The flat part of non-flat orbifolds FENG XU	299