Pacific Journal of Mathematics

ENTROPY OF A SKEW PRODUCT WITH A Z^2 -ACTION

KYEWON KOH PARK

Volume 172 No. 1 January 1996

ENTROPY OF A SKEW PRODUCT WITH A \mathbb{Z}^2 -ACTION

KYEWON KOH PARK

We consider the entropy of a dynamical system of a skew product \widehat{T} on X_1xX_2 where there is a Z^2 -action on the fiber X_2 . If the Z^2 -action comes from a Cellular Automaton map, then the contribution of the fiber to the entropy of the skew product is the directional entropy in the direction of the integral of a skewing function φ from X_1 to Z^2 .

1. Introduction.

J. Milnor has defined the notion of directional entropy in the study of dynamics of Cellular Automata [Mi1], [Mi2]. When the notion is applied to a \mathbb{Z}^n action it is considered to be a generalization of the entropy of non co-compact subgroups of \mathbb{Z}^n .

In the case of a Z^2 -action, we denote the generators of the groups by $\{U,V\}$. Let P be a generating partition under the Z^2 -action. We write $P_{i,j} = U^i V^j P$. If a subgroup is generated by $U^p V^q$, then there is a natural way to compute the entropy of $U^p V^q$ as a Z-action on the space. Milnor extended this idea to define the entropy of a vector by embedding Z^2 to the ambient vector space R^2 as follows.

$$h(\vec{v}) = \sup_{B: ext{bounded set}} \overline{\lim}_{t o \infty} \frac{1}{t} H \left(\bigvee_{(i,j) \in B + [o,t)\vec{v}} P_{i,j} \right).$$

Given a vector \vec{v} , we let θ_o be the angle between two vectors \vec{v} and (1,0). Let $w = \frac{1}{\tan \theta_o}$ so that (w,1) is a scalar multiple of the vector \vec{v} . It is easy to see that

$$h(\vec{v}) = \lim_{m \to \infty} \lim_{t \to \infty} \frac{1}{t} H \left(\bigvee_{j=0-m+jw < i < m+jw}^{[ty]} \bigvee_{p=0-m+jw < i < m+jw} P_{i,j} \right),$$

where [a] denote the greatest integer $\leq a$.

We note that if $\vec{v} = (p, q)$, then $h(\vec{v}) = h(U^pV^q)$. And it is easy to see that directional entropy is a homogeneous function, that is $h(c\vec{v}) = ch(\vec{v})$ for any $c \in R$.

Directional entropy in the case of a Z^2 -action generated by a Cellular Automaton map has been investigated in [Pa1, Pa3] and [Si]. D. Lind

defined a cone entropy, denoted by $h^c(\vec{v})$, of a vector \vec{v} . Given a vector $\vec{v} = (x, y)$ and a small angle θ , we consider the vectors $\vec{v}_{\theta} = (x_{\theta}, y)$ and $\vec{v}_{-\theta} = (x_{-\theta}, y)$ where x_{θ} and $x_{-\theta}$ satisfy $\frac{y}{x_{\theta}} = \tan(\theta_o + \theta)$ and $\frac{y}{x_{-\theta}} = \tan(\theta_o - \theta)$ respectively. Cone entropy is defined as follows.

$$h^c(\vec{v}) = \lim_{ heta o 0} \lim_{n o \infty} rac{1}{n} H \left(\bigvee_{j=0 j x_{- heta} \le i \le j x_{ heta}}^{[ny]} V_{i,j} \right).$$

From the definition, it is clear that we have $h^c(\vec{v}) \geq h(\vec{v})$.

We say that a Z^2 -action is generated by a Cellular Automaton if one of the generators of the Z^2 -action, say V, is a block map (a finite code) of U. That is, $(V(x))_i$ depends only on the coordinates $x_{-r}, x_{-r+1}, \ldots, x_r$ [He]. We call r the size of the block map V. We will show that in the case of a Z^2 -action generated by a Cellular Automaton map, the directional entropy and the cone entropy are the same (Theorem 1).

Let (X_1, ζ_1, μ_1, G) and (X_2, ζ_2, μ_2, H) be two ergodic measure preserving dynamical systems with finite entropy, where G and H denote the respective group. Given an integrable skewing function $\varphi: X_1 \to H$, we define a skew product G-action \widehat{T} on $(X_1 \times X_2, \zeta_1 \times \zeta_2, \mu_1 \times \mu_2)$ such that $\widehat{T}^g(x, y) = (T^g x, F^{\varphi(x)} y)$ where T denotes the G-action of X_1 and F denotes the H-action on X_2 . When we have G = H = Z, then the entropy of \widehat{T} has been extensively studied by many people (e.g. $[\mathbf{Ab}]$, $[\mathbf{Ma}, \mathbf{Ne}]$). It is well known in this case that $h(\widehat{T}) = h(T) + |\int \varphi \, d\mu | h(F)$. The above formula says that, as we expect, the fiber contribution to the entropy is $|\int \varphi \, d\mu | h(F)$.

We investigate the entropy of \widehat{T} when G=Z and $H=Z^2$. Note that the above formula cannot hold when the acting group on the fiber is a more general group, say Z^2 . First of all, $\int \varphi \, d\mu$ is in general a vector. Secondly, if the skewing function takes a constant value, say (1,1), then the fiber contribution should come from the entropy of UV, not necessarily from the whole Z^2 -action. We prove that if the fiber Z^2 -action is generated by a Cellular Automaton map, then we have the analogous theorem (Theorem 2) to the case when H=Z.

We may mention that directional entropy can be also defined in a topological setting. D. Lind constructed an example whose topological entropy does not satisfy the analogue of our Theorem 3 [Li]. His example involves a \mathbb{Z}^2 -action which is not generated by a Cellular Automaton map. It is not clear that Theorem 3 holds for topological entropy when we have a \mathbb{Z}^2 -action on the fiber generated by a Cellular Automaton map. Lind's example is not interesting in the measure theoretic sense because it has the trivial invariant measure.

We have constructed a counterexample which does not satisfy Theorem 3

[Pa2]. For the example we explicitly construct the base transformation and use the Z^2 -action due to Thouvenot [Th] on the fiber. Both of them are constructed by cutting and staking method. It would be interesting to find out how generally Theorem 3 holds. For example, it is unknown if Theorem 3 is true when we have a topological Markov shift which does not satisfy the condition of Corollary 4. We are more interested in the case when the topological Markov shift has 0-entropy as a Z^2 -action.

Although Theorem 2 and 4 are more general than Theorem 1 and 3, we will prove Theorem 1 and 3 because their proofs are easier and more geometric. It is also easy to see the proofs of Theorem 2 and 4 from those of Theorem 1 and 3.

We would like to thank Professor D. Ornstein for helpful discussions and the Referee for many valuable comments.

2. Cone entropy.

Throughout the section we assume that our \mathbb{Z}^2 -action is generated by a Cellular Automaton map. We denote by $H^m(\vec{v})$

$$\lim_{n\to\infty} \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \bigvee_{i=-m+jw}^{m+jw} P_{i,j}\right).$$

Note that $H^m(\vec{v})$ is independent of the size of the vector \vec{v} . Let τ denote $H(P_{0,0})$.

Lemma 1. $H^m(\vec{v}) = H^{m'}(\vec{v})$ if m, m' > 2r + w.

Proof. Case 1. \vec{v} is not a scalar multiple of (1,0).

Suppose $m' \geq m$. Clearly from the definition we have $H^{m'}(\vec{v}) \geq H^m(\vec{v})$. Hence it is enough to show $H^{m'}(\vec{v}) \leq H^m(\vec{v})$. Note that

$$H^{m}(\vec{v}) = \lim_{n \to \infty} \frac{1}{n} H \begin{pmatrix} \bigvee_{j=0}^{n-1} \bigvee_{-m+jw \le i \le m+jw} P_{i,j} \end{pmatrix}$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} H \begin{pmatrix} \bigvee_{-m+jw \le i \le m+jw} P_{i,j} \\ \bigvee_{0 \le k < j} \bigvee_{-m+kw \le i \le m+kw} P_{i,k} \end{pmatrix}$$

$$\begin{split} &= \lim_{n \to \infty} \frac{1}{n} \left\{ H \left(\bigvee_{-m \le i \le m} P_{i,0} \right) \right. \\ &+ \sum_{j=1}^{n-1} H \left(\bigvee_{jw \le i \le (j-1)w+r} P_{i,j} \middle| \bigvee_{0 \le k < j} \bigvee_{kw \le i \le 2m+kw} P_{i,k} \right) \\ &+ \sum_{j=1}^{n-1} H \left(\bigvee_{(j-1)w-r \le i \le jw} P_{i,j} \middle| \bigvee_{1 \le k < j} \bigvee_{-2m+jw \le i \le -2m+(j-1)w+r} P_{i,j} \right) \right\}. \end{split}$$

We make the following observations:

(1)

$$\lim_{n\to\infty}\frac{1}{n}H\left(\bigvee_{-m\leq i\leq m}P_{i,0}\right)=0=\lim_{n\to\infty}\frac{1}{n}H\left(\bigvee_{-m'\leq i\leq m'}P_{i,0}\right).$$

(2)

$$\begin{split} H\left(\bigvee_{jw\leq i<(j-1)w+r} P_{i,j} \left| \bigvee_{0\leq k< j} \bigvee_{kw\leq i\leq 2m+kw} P_{i,k} \right. \right) \\ &\geq H\left(\bigvee_{jw\leq i<(j-1)w+r} P_{i,j} \left| \bigvee_{0\leq k< j} \bigvee_{kw< i\leq 2m'+kw} P_{i,k} \right. \right), \end{split}$$

because we condition on more information.

(3) By the same reason, we have

$$\begin{split} H\left(\bigvee_{(j-1)w-r\leq i\leq jw} P_{i,j} \middle| \bigvee_{0\leq k < j} \bigvee_{-2m+kw < i < kw} P_{i,k} \\ \bigvee\bigvee_{-2m+jw\leq i\leq -2m+(j-1)w+r} P_{i,j} \right) \\ \geq H\left(\bigvee_{(j-1)w-r\leq i\leq jw} P_{i,j} \middle| \bigvee_{0\leq k < j} \bigvee_{-2m'+kw\leq i < kw} P_{i,k} \\ \bigvee\bigvee_{-2m'+jw\leq i\leq -2m'+(j-1)w+r} P_{i,j} \right). \end{split}$$

П

These observations together with the formula for $H^m(\vec{v})$ above shows $H^{m'}(\vec{v}) \leq H^m(\vec{v})$.

Case 2. $\vec{v} = \eta(1,0)$ for some real η . We analogously denote by $H^m(\vec{v})$

$$\lim_{n \to \infty} \frac{1}{n} H \left(\bigvee_{i=0}^{[n\eta]} \bigvee_{j=-m}^{m} P_{i,j} \right).$$

We note that

$$\begin{split} H^{m'}(\vec{v}) &= \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{\lfloor n\eta \rfloor} \bigvee_{j=-m}^{m+2(m'-m)} P_{i,j}\right) \\ &= \lim_{n \to \infty} \frac{1}{n} \left(H\left(\bigvee_{i=0}^{\lfloor n\eta \rfloor} \bigvee_{j=-m}^{m} P_{i,j}\right) \\ &+ H\left(\bigvee_{i=1}^{\lfloor n\eta \rfloor} \bigvee_{j=m+1}^{m+2(m'-m)} \bigvee_{i=0}^{\lfloor n\eta \rfloor} \bigvee_{j=-m}^{m} P_{i,j}\right) \right) \\ &\leq H^{m}(\vec{v}) + \lim_{n \to \infty} \frac{1}{n} \sum_{j=m+1}^{m+2(m'-m)} H\left(\bigvee_{i=0}^{\lfloor n\eta \rfloor} \bigvee_{i=0}^{\lfloor n\eta \rfloor} V_{i,j-1}\right) \\ &\leq H^{m}(\vec{v}) + \lim_{n \to \infty} \frac{1}{n} \sum_{j=m+1}^{m+2(m'-m)} H\left(\bigvee_{i=0}^{r} P_{i,j} \bigvee_{i=\lfloor n\eta \rfloor - r}^{\lfloor n\eta \rfloor} P_{i,j}\right) \\ &\leq H^{m}(\vec{v}) + \lim_{n \to \infty} \frac{1}{n} \sum_{j=m+1}^{m+2(m'-m)} 2r\tau \\ &= H^{m}(\vec{v}) + \lim_{n \to \infty} \frac{4r\tau(m'-m)}{n} \\ &= H^{m}(\vec{v}). \end{split}$$

Since we have $H^{m'}(\vec{v}) \ge H^m(\vec{v})$ by definition, the proof is complete.

Corollary 1. If \vec{v} is not a scalar multiple of (1,0), then we have

$$\begin{split} &\left|\frac{1}{n}H\left(\bigvee_{j=0}^{n-1}\bigvee_{-m+jw\leq i\leq m+jw}P_{i,j}\right) - \frac{1}{n}H\left(\bigvee_{j=0}^{n-1}\bigvee_{-m'+jw\leq i\leq m'+jw}P_{i,j}\right)\right| \\ &\leq \frac{1}{n}H\left(\bigvee_{m<|i|\leq m'}P_{i,0}\right) \\ &\leq \tau\frac{2(m'-m)}{n}. \end{split}$$

Theorem 1. $h^c(\vec{v}) = h(\vec{v})$.

Proof. It is enough to show that $h^c(\vec{v}) - h(\vec{v})$ is small. If $\vec{v} = (x, y)$ where $y \neq 0$, then by rescaling, we may assume that $\vec{v} = (x, 1)$. Given any $\varepsilon > 0$, there exists θ such that if $\kappa \leq \theta$, then

(i)

$$\lim_{n \to \infty} \frac{1}{n} H \left(\bigvee_{0 \le j < n} \bigvee_{j x_{\kappa} \le i \le j x_{-\kappa}} P_{i,j} \right) < h^{c}(\vec{v}) + \varepsilon$$

(ii) $|x_{-\theta}-x_{\theta}| < \gamma$ where γ satisfies that $\gamma \tau < \varepsilon$. There exists m_0 such that if $m \ge m_0$, then

$$\lim \frac{1}{n} H\left(\bigvee_{j=0}^{n-1} \bigvee_{-m+jx \le i \le m+jx} P_{i,j}\right) = h(\vec{v}).$$

We choose n_o such that if $n \geq n_o$, then we have

(iii)

$$h(\vec{v}) - \varepsilon < \frac{1}{n} H \left(\bigvee_{0 \le j \le n-1} \bigvee_{-m_o + jx \le i \le m_o + jx} P_{i,j} \right) \le h(\vec{v}) + \varepsilon,$$

(iv)

$$h^c(ec{v}) - 2arepsilon < rac{1}{n}H\left(igvee_{o \leq j \leq n-1} igvee_{jx_{ heta} \leq i \leq jx_{- heta}} P_{i,j}
ight) \leq h^c(ec{v}) + 2arepsilon,$$

(v)

$$\frac{1}{n}H\left(\bigvee_{o \leq j < K} \bigvee_{-m_o + jx < i < m_o + jx} P_{i,j}\right) < \varepsilon, \text{ where }$$

$$K = \max\{j : j|x_{\theta} - x| < m_o \text{ and } j|x_{-\theta} - x| < m_o\},$$

and

(vi)

$$\frac{1}{n}H\left(\bigvee_{0\leq j< n}\bigvee_{jx_{\theta}\leq i\leq jx_{-\theta}}P_{i,j}\right)\geq \frac{1}{n}H\left(\bigvee_{0\leq j< n}\bigvee_{-m_{o}+jx\leq i\leq m_{o}+jx}P_{i,j}\right).$$

We compute

$$|h^{c}(\vec{v}) - h(\vec{v})|$$

$$\leq \left| \frac{1}{n} H \left(\bigvee_{o \leq j < n} \bigvee_{jx_{\theta} \leq i \leq jx_{-\theta}} P_{i,j} \right) - \frac{1}{n} H \left(\bigvee_{o \leq j < n} \bigvee_{-m_{o} - jx \leq i < m_{o} + jx} P_{i,j} \right) \right| + 3\varepsilon$$

$$\leq \left| \frac{1}{n} H \left(\bigvee_{o \leq j < n} \bigvee_{n(x_{\theta} - x) + jx \leq i \leq n(x_{-\theta} - x) + jx} P_{i,j} \right) - \frac{1}{n} H \left(\bigvee_{o \leq j < n} \bigvee_{-m_{o} + jx \leq i < m_{o} + jx} P_{i,j} \right) \right| + 3\varepsilon$$

$$\leq \frac{1}{n} H \left(\bigvee_{n(x_{\theta} - x) \leq i \leq n(x_{-\theta} - x)} P_{i,o} \right) + 3\varepsilon$$

$$\leq \frac{1}{n} \gamma n\tau + 3\varepsilon.$$

Hence we have

$$|h(\vec{v}) - h^c(\vec{v})| < 4\varepsilon.$$

In the case of $\vec{v} = (x, o)$, it is not hard to see that the idea of the second part of the proof of Lemma 1 combined with the idea of the proof above will give the desired result.

Theorem 2. If $\sum_{m=0}^{\infty} H\left(P_{0,1} \middle| \bigvee_{-m \leq i \leq m} P_{i,0}\right)$ is finite, then we have $h^c(\vec{v}) = h(\vec{v})$.

Proof. We note that if we choose M so that

$$\sum_{m=M}^{\infty} H\left(P_{0,1} \left| \bigvee_{-m \le i \le m} P_{i,0} \right) \right| < \varepsilon,$$

then we get

$$\sum_{k=-m+M}^{m-M} H\left(P_{k,1} \middle| \bigvee_{-m \le i \le m} P_{i,0}\right) < 2\varepsilon,$$

for all m > M. Using this, it is easy to see that if $m_2 \ge m_1 \ge M$, we have that for any n,

$$\frac{1}{n}H\left(\bigvee_{j=0}^{[ny]}\bigvee_{i=m_2+jw}^{-m_2+jw}P_{i,j}\right) < \frac{1}{n}H\left(\bigvee_{j=0}^{[ny]}\bigvee_{i=-m_1+jw}^{m_1+jw}P_{i,j}\right) + 2\varepsilon + \frac{m_2-m_1}{n}\tau$$

where $\frac{m_2 - m_1}{n} \tau$ comes from the difference between $\frac{1}{n} H \left(\bigvee_{i=-m_1}^{m_1} P_{i,0} \right)$ and $\frac{1}{n} H \left(\bigvee_{i=-m_1}^{m_2} P_{i,0} \right)$.

Hence for a given $\varepsilon > 0$, there exist m_o as in Theorem 1 such that for a sufficiently large n,

$$\begin{aligned} &|h^{c}(\vec{v}) - h(\vec{v})| \\ &\leq \left| \frac{1}{n} H \left(\bigvee_{o \leq j < n} \bigvee_{n(x_{\theta} - x) + jx \leq i \leq n(x_{-\theta} - x) + jx} P_{i,j} \right) \right. \\ &\left. - \frac{1}{n} H \left(\bigvee_{o \leq j < n} \bigvee_{-m_{o} + jx \leq i < m_{o} + jx} P_{i,j} \right) \right| + 3\varepsilon \\ &\leq \frac{1}{n} \gamma n\tau + 2\varepsilon + 3\varepsilon. \end{aligned}$$

Corollary 2. If V is a finitary code with finite expected code length, then $h^c(\vec{v}) = h(\vec{v})$.

 \Box

Proof. It is easy to see that a finitary code with finite expected code length satisfies the condition of Theorem 2. See [Pa3].

3. Main Theorem.

Let $\lambda = \mu_1 \times \mu_2$. We denote $\sum_{i=0}^{n-1} \varphi_k(T^i z)$ by $\varphi_k^n(z)$ for k=1 or 2 and $z \in X_1$. Given two partitions, β_1 and β_2 , we write $\beta_1 \leq \beta_2$ if β_2 is a finer partition than β_1 .

Theorem 3.
$$h(\widehat{T}) = h(T) + h(\vec{v})$$
 where $\vec{v} = \int \varphi \ d\mu = (\int \varphi_1 \ d\mu, \int \varphi_2 \ d\mu)$.

Proof. Since $\int \varphi \ d\mu$ is finite, as in the case of a Z-valued skewing function, there exists φ' which is bounded and cohomologous to φ . Hence we may assume that φ is bounded. Let $|\varphi_1(z)| \leq L$ and $|\varphi_2(z)| \leq L$. Suppose $\vec{v} = \int \varphi \ d\mu = (x, y)$ where $y \neq 0$. We let α denote the generating partition

of the base. Let β denote a partition of X_2 . Both of the partitions α and β can be considered in a natural way to be a partition of $X_1 \times X_2$. For a given $z \in X_1$, we denote the set $\{(z, u) : u \in X_2\}$ by I_z .

Since

$$\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^i(\alpha\bigvee\beta)\right) = \frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^i\alpha\right) + \frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^i\beta\left|\bigvee_{i=0}^{n-1}\widehat{T}^i\alpha\right.\right)$$

and

$$\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^i\beta\left|\bigvee_{i=0}^{n-1}\widehat{T}^i\alpha\right.\right)=\int\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^i\beta|I_z\right)\,d\mu,$$

we have

$$\sup_{\beta} h\left(\widehat{T}, \alpha^{\vee} \beta\right) = \sup_{\beta} \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i}(\alpha^{\vee} \beta)\right) \\
= h\left(\widehat{T}, \alpha\right) + \sup_{\beta_{m}} \lim_{n \to \infty} \int \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z}\right) d\mu \\
= h\left(\widehat{T}, \alpha\right) + \lim_{m \to \infty} \lim_{n \to \infty} \int \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z}\right) d\mu,$$

where β_m denote the partition $\bigvee_{i=-m}^{m}\bigvee_{j=0}^{L-1}P_{i,j}$.

We denote
$$\lim_{n\to\infty} \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^i \beta_m | I_z\right)$$
 by $h_z\left(\widehat{T}, \beta_m\right)$.

As in Lemma 1, it is not hard to see that for sufficiently large m and m', we have

$$h_z\left(\widehat{T},\beta_m\right) = h_z\left(\widehat{T},\beta_{m'}\right).$$

We will show that for sufficiently large m,

$$\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^i\beta_m|I_z\right)\to h(\vec{v}) \text{ as } n\to\infty, \text{ for a.e. } z\in X_1.$$

We denote by x_{ℓ} the x-intercept of a line in \mathbb{R}^2 passing through $\varphi^{\ell}(z)$ with the same slope as \vec{v} . Let

$$s_n = \max\{x_1, \dots, x_n\}$$
 and $t_n = \min\{x_1, \dots, x_n\}.$

Given $\varepsilon > 0$, let k_o be the integer such that if $k \geq k_o$, then we have

(i)
$$\left| h(\vec{v}) - \lim_{n \to \infty} \frac{1}{n} H\left(\bigvee_{0}^{[ny]} \bigvee_{i=-k+jw}^{k+jw} P_{i,j} \right) \right| < \varepsilon.$$

Given any $\delta > 0$ and $\varepsilon > 0$, there exists n_o such that if $n \geq n_o$, then we have

(ii)

$$\mu E_1 = \mu \left\{ z : \left| \int \varphi \ d\mu - \frac{1}{n} \varphi^n(z) \right| < \delta \right\} > 1 - \varepsilon,$$

(iii)

$$\left| h(\vec{v}) - \frac{1}{n} H \left(\bigvee_{j=0}^{[ny]} \bigvee_{i=-k_o+jw}^{k_o+jw} P_{i,j} \right) \right| < \varepsilon,$$

(iv)

$$\mu E_2 = \mu \left\{ z: \ \left| h_z \left(\widehat{T}, \beta_{k_o} \right) - \frac{1}{n} H \left(\bigvee_{i=0}^{n-1} \widehat{T}^i \beta_{k_o} | I_z \right) \right| < \varepsilon \right\} > 1 - \varepsilon,$$

$$\text{(v) } k_o < \frac{\varepsilon}{2} n_o,$$

and

(vi)
$$|s_n - t_n| < 2n\delta$$
.

We choose $\delta < \varepsilon^2$ and choose n_o satisfying (ii)-(vi) above. We fix m_o such that $k_o < (\varepsilon/2)n_o < m_o < \varepsilon n_o$. For notational convenience, we write m and n instead of m_o and n_o respectively. We note that

$$\bigvee_{j=0}^{n-1} \widehat{T}^{j} \beta_{m} \text{ on } I_{Z}$$

$$\leq \beta_{m} \bigvee_{F^{\varphi(z)}} (\beta_{m}) \bigvee_{F^{\varphi^{2}(z)}} (\beta_{m}) \bigvee_{\cdots} \bigvee_{F^{\varphi^{n-1}(z)}} (\beta_{m}) \text{ on } I_{z}$$

$$\leq \bigvee_{j=0}^{\varphi_{2}^{n-1}(z)+L-1} \bigvee_{i=t_{n}-m+jw} P_{i,j} \text{ on } I_{Z}.$$

Since t_n and s_n satisfy that

$$|(t_n + m) - (s_n - m)| = |2m + t_n - s_n| > |2m - 2n\delta| > k_o$$

and

$$|(s_n+m)-(t_n-m)|<\varepsilon n,$$

if $z \in E_1$, then by our Corollary and (ii), we have

$$\begin{split} &\left|\frac{1}{n}H\left(\bigvee_{j=0}^{\varphi_{2}^{n-1}(z)+L-1}\bigvee_{i=t_{n}-m+jw}^{s_{n}+m+jw}P_{i,j}\right) - \frac{1}{n}H\left(\bigvee_{j=0}^{[ny]}\bigvee_{i=-k_{o}+jw}^{k_{o}+jw}P_{i,j}\right)\right| \\ &< \frac{1}{n}H\left(\bigvee_{i=t_{n}-m}^{s_{n}+m}P_{i,0}\right) + \frac{1}{n}H\left(\bigvee_{j=q_{1}}^{q_{2}}\bigvee_{i=t_{n}-m+jw}^{s_{n}+m+jw}P_{i,j}\right) \\ &< \frac{1}{n}\tau\varepsilon n + \frac{1}{n}(q_{2}-q_{1})\tau(w+2r) \\ &< \tau(\varepsilon+\delta(w+2r)), \end{split}$$

where $q_1 = \min\{[ny], \ \varphi_2^{n-1}(z) + L - 1\}$ and $q_2 = \max\{[ny], \ \varphi_2^{n-1}(z) + L - 1\}$. Hence we have

$$\begin{split} &\left|\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)-h(\overrightarrow{v})\right| \\ &\leq \left|\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)-\frac{1}{n}H\left(\bigvee_{j=0}^{[ny]}\bigvee_{i=-k_{o}+jw}^{k_{o}+jw}P_{i,j}\right)\right|+\varepsilon \\ &\leq \left|\frac{1}{n}H\left(\bigvee_{j=0}^{\varphi_{2}^{n-1}(z)+L-1}\bigvee_{i=t_{n}-m+jw}^{s_{n}+m+jw}P_{i,j}\right)-\frac{1}{n}H\left(\bigvee_{j=0}^{[ny]}\bigvee_{i=-k_{o}+jw}^{k_{o}+jw}P_{i,j}\right)\right|+\varepsilon \\ &\leq \tau(\varepsilon+\delta(w+2r))+\varepsilon. \end{split}$$

Let $E = E_1 \cap E_2$. If $z \in E$, then by our choice of m and Corollary 1, we have

$$\begin{split} &\left| \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) - h_{z} \left(\widehat{T}, \ \beta_{m} \right) \right| \\ &\leq \left| \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) - \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{k} | I_{z} \right) \right| \\ &+ \left| \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{k} | I_{z} \right) - h_{z} \left(\widehat{T}, \ \beta_{k} \right) \right| + \left| h_{z} \left(\widehat{T}, \ \beta_{k} \right) - h_{z} \left(\widehat{T}, \ \beta_{m} \right) \right| \\ &\leq \varepsilon + \varepsilon + \frac{1}{n} m\tau < \varepsilon (2 + \tau). \end{split}$$

Since φ_1 and φ_2 are bounded, it is easy to see that there exists ω such that $\left|h_z\left(\widehat{T},\;\beta\right)\right|<\omega$ for all β and all z. We may also assume that $h(\vec{v})$ is

bounded above by ω . Now we compute

$$\begin{aligned} & \left| \sup_{\beta} \int h_{z} \left(\widehat{T}, \beta \right) d\mu - h(\overrightarrow{v}) \right| \\ & \leq \int_{E} \left| h_{z} \left(\widehat{T}, \beta_{m} \right) - h(\overrightarrow{v}) \right| d\mu + \sup_{\beta} \int_{E^{c}} \left| h_{z} \left(\widehat{T}, \beta \right) - h(\overrightarrow{v}) \right| d\mu + \varepsilon \\ & \leq \int_{E} \left| h_{z} \left(\widehat{T}, \beta_{m} \right) - \frac{1}{n} H \left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) \right| d\mu \\ & + \int_{E} \left| \frac{1}{n} H \left(\bigvee_{i=0}^{n-1} \widehat{T}^{i} \beta_{m} | I_{z} \right) - h(\overrightarrow{v}) \right| d\mu \\ & + \sup_{\beta} \int_{E^{c}} \left| h_{z} \left(\widehat{T}, \beta \right) - h(\overrightarrow{v}) \right| d\mu + \varepsilon \\ & \leq \varepsilon (2 + \tau) + \tau (\varepsilon + \delta (w + 2r)) + \varepsilon + 4\omega \varepsilon + \varepsilon \\ & \leq \varepsilon (4 + 2\tau + \tau (w + 2r) + 4\omega). \end{aligned}$$

In the case when $\vec{v} = \int \varphi = \eta(1,0)$ for some real number η , we need to argue differently. We may assume $\eta > 0$. We construct φ' which is cohomologous to φ as follows. Let $\varphi' = (\varphi'_1, \varphi'_2)$.

- (i) φ'_1 takes the values $[\eta] 1$, $[\eta]$ and $[\eta] + 1$ φ'_2 takes the values -1, 0, 1.
- (ii) In an orbit of a point, φ'_2 value, 1 or -1, follows its value 0.
- (iii) We use the ergodic theorem to construct φ'_2 so that it takes the value 0 for all z's except a set of small measure.

Hence we may assume that φ satisfies these properties.

We let $\beta_m = \bigvee_{i=0}^{[n]} \bigvee_{j=-m}^m P_{i,j}$. Recall that r denote the size of the block map.

As in the previous case, we choose m_o so that if $m \geq m_o$, then

- (i) $m_o \ge 10r$,
- (ii) $|h(\vec{v}) H^m(\vec{v})| < \varepsilon$,
- (iii) $\mu \left\{ z : \left| \sup_{\beta} \int h_z \left(\widehat{T}, \beta \right) h_z \left(\widehat{T}, \beta_m \right) \right| < \varepsilon \right\} > 1 \varepsilon.$ We fix $m \ge m_o$. We choose n_o so that if $n \ge n_o$, then

(iv)
$$\mu\left\{z:\left|\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)-h_{z}\left(\widehat{T},\beta_{m}\right)\right|<\varepsilon\right\}>1-\varepsilon,$$

(v)
$$\mu \left\{ z : \left| \frac{1}{n} \sum_{i=0}^{n-1} \varphi \left(T^i(z) \right) - \int \varphi \ d\mu \right| < \varepsilon \right\} > 1 - \varepsilon,$$

$$\text{(vi)} \quad \mu\left\{z: \left|\frac{1}{n} \sum_{i=0}^k \varphi_2\left(T^i(z)\right)\right| < \varepsilon \text{ for all } 0 \leq k < n\right\} > 1 - \varepsilon.$$

Let E denote the set satisfying the above conditions, (iii), (iv), (v) and

(vi). We have $\mu E > 1 - 4\varepsilon$. Let $z \in E$. Let

$$u = \max \left\{ \sum_{i=0}^k \varphi_2\left(T^i(z)\right): k = 0, 1, \dots, n-1 \right\}$$

and

$$v=\min\left\{\sum_{i=0}^{k}arphi_{2}\left(T^{i}(z)
ight):\,k=0,1,\ldots,n-1
ight\}.$$

Since $\eta > 0$, there exists $i_o = \max\{k : \varphi_1^k(z) \le i\}$ for a.e. $z \in X_1$. We denote by $\Psi_2^i(z)$

$$\max \left\{ \sum_{\zeta=0}^k \varphi_2\left(T^\zeta(z)\right): \ 0 \leq k \leq i_o, \ i-[\eta] \leq \varphi_1^k(z) \leq i \right\}.$$

Now we compute

$$\begin{split} &\frac{1}{n}H\left(\bigvee_{j=-m}^{m}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)\\ &=\frac{1}{n}H\left(\bigvee_{j=-m+u}^{m+u}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)\\ &\leq\frac{1}{n}H\left(\bigvee_{i=0}^{\varphi_{1}^{n}(z)}\bigvee_{j=-m+\Psi_{2}^{i}(z)}P_{i,j}\right)\\ &\leq\frac{1}{n}\left(H\left(\bigvee_{i=0}^{\varphi_{1}^{n}(z)}\bigvee_{j=-m+\Psi_{2}^{i}(z)}P_{i,j}\right)+2\cdot2(\varepsilon n)\cdot\tau\cdot r\right)\\ &\leq\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)+4\varepsilon r\tau. \end{split}$$

The second to the last inequality is clear because by the condition (i) on m_o , we have

$$H\left(\bigvee_{i=0}^{\varphi_{1}^{n}(z)}\bigvee_{j=-m+\psi_{2}^{i}(z)}P_{i,j}\middle|\bigvee_{i=0}^{\varphi_{1}^{n}(z)}\bigvee_{j=-m+\psi_{2}^{i}(z)}P_{i,j}\right)$$

$$\leq H\left(\bigvee_{j=m}^{u+m}\bigvee_{i=0}^{r-1}\bigvee_{j=v+m}^{u+m}\bigvee_{i=\varphi_{1}^{n}(z)-r+1}P_{i,j}\right)$$

$$\leq u \cdot r \cdot \tau + (u - v) \cdot r \cdot \tau$$
.

Since the following inequality is also true

$$\begin{split} &\frac{1}{n}H\left(\bigvee_{i=0}^{n-1}\widehat{T}^{i}\beta_{m}|I_{z}\right)\\ &\leq\frac{1}{n}H\left(\bigvee_{j=-m+v}^{m+u}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)\\ &=\frac{1}{n}H\left(\bigvee_{j=-m}^{m+u-v}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)\\ &\leq\frac{1}{n}H\left(\bigvee_{j=-m}^{m}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)+\frac{2}{n}(u-v)r\cdot\tau\\ &=\frac{1}{n}H\left(\bigvee_{j=-m+u}^{m+u}\bigvee_{i=0}^{\varphi_{1}^{n}(z)}P_{i,j}\right)+4\varepsilon r\tau, \end{split}$$

we have

$$\left| \frac{1}{n} H\left(\bigvee_{i=0}^{n-1} \widehat{T}^i \beta_m | I_z \right) - \frac{1}{n} H\left(\bigvee_{-m+u}^{m+u} \bigvee_{i=0}^{\varphi_1^n(z)} P_{i,j} \right) \right| < 4\varepsilon r\tau.$$

We note that

$$\frac{1}{n}H\left(\bigvee_{-m+u}^{m+u}\bigvee_{i=0}^{\varphi_1^n(z)}P_{i,j}\right) = \frac{\varphi_1^n(z)}{n}\frac{1}{\varphi_1^n(z)}H\left(\bigvee_{-m+u}^{m+u}\bigvee_{i=0}^{\varphi_1^n(z)}P_{i,j}\right)$$

converges to $h(\vec{v})$.

As in the case of $\vec{v} = \int \varphi \ d\mu = (x, y)$ where $y \neq 0$, it is now clear that

$$\left|\sup_{eta}\int h_{z}\left(\widehat{T},\,eta
ight)\,d\mu-h(ec{v})
ight|$$

can be made arbitraily small.

Similarly we can prove the following theorem.

Theorem 4. If
$$\sum_{m=0}^{\infty} H\left(P_{0,1} \middle| \bigvee_{-m \leq i \leq m} P_{i,0}\right)$$
 is finite, then we have $h(\widehat{T}) = h(T) + h(\vec{v})$ where $\vec{v} = \int \varphi \ d\mu = \left(\int \varphi_1 \ d\mu, \int \varphi_2 \ d\mu\right)$.

The following Corollaries are also almost immediate from the proof of Theorem 3.

Corollary 3. If $\sum_{m=0}^{\infty} H\left(P_{0,1} \middle| \bigvee_{-k \leq j \leq k} \bigvee_{-m \leq i \leq m} P_{i,j}\right)$ is finite for some k, then we have $h(\widehat{T}) = h(T) + h(\overrightarrow{v})$ where \overrightarrow{v} is given as above.

Corollary 4. If a fiber Z^2 -action, F, satisfies the condition of Corollary 3 after a linear transformation by a matrix A in SL(2,Z), that is, $A \circ F$ satisfies the condition, then we have the above formula in Corollary 3 for the entropy.

References

- Ab, Ro] L.M. Abramov and V.A. Rohlin, The entropy of a skew product of measure preserving transformations, AMS Translations, Ser. 2.
 - [Ad] R. Adler, A note on the entropy of skew product transformations, Am. Math. Soc., 4 (1963), 665-669.
 - [He] G.A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Syst. Theor., 3 (1969), 320-375.
 - [Li] D. Lind, personal communication.
- Ma, Ne] S.B. Marcus and S. Newhouse, Measure of maximal entropy for a class of skew products, Springer Lect. Notes Math., 729 (1979), 105-125.
 - [Mi1] J. Milnor, On the entropy geometry of cellular automata, Complex Systems, 2 (1988), 357-386.
 - [Mi2] _____, Directional entropies of cellular automation-maps, Nato ASI Series, vol. F20, (1986), 113-115.
 - [Pa1] K.K. Park, On the continuity of directional entropy, Osaka J. Math., 31 (1994), 613-628.
 - [Pa2] _____, A counter example of the entropy of the skew product, preprint.
 - [Pa3] _____, Continuity of directional entropy for a class of \mathbb{Z}^2 -actions, J. Korean Math. Soc., **32** (1995), 573-582.
 - [Si] Y. Sinai, An answer to a question by J. Milnor, Comment. Math. Helv., 60 (1985), 173-178.
 - [Th] J.P. Thouvenot, personal communication.

Received February 10, 1993 and revised June 24, 1993. This research has been supported in part by NSF DMS 8902080 and GARC-KOSEF.

AJOU UNIVERSITY SUWON, 441-749 KOREA

PACIFIC JOURNAL OF MATHEMATICS

Volume 172 No. 1 January 1996

A class of incomplete non-positively curved manifolds	1
Brian Bowditch	
The quasi-linearity problem for C^* -algebras	41
L. J. BUNCE and JOHN DAVID MAITLAND WRIGHT	
Distortion of boundary sets under inner functions. II	49
JOSE LUIS FERNANDEZ PEREZ, DOMINGO PESTANA and JOSÉ RODRÍGUEZ	
Irreducible non-dense $A_1^{(1)}$ -modules	83
VJACHESLAV M. FUTORNY	
<i>M</i> -hyperbolic real subsets of complex spaces	101
GIULIANA GIGANTE, GIUSEPPE TOMASSINI and SERGIO VENTURINI	
Values of Bernoulli polynomials	117
Andrew Granville and Zhi-Wei Sun	
The uniqueness of compact cores for 3-manifolds	139
LUKE HARRIS and PETER SCOTT	
Estimation of the number of periodic orbits	151
Boju Jiang	
Factorization of <i>p</i> -completely bounded multilinear maps	187
Christian Le Merdy	
Finitely generated cohomology Hopf algebras and torsion	215
James Peicheng Lin	
The positive-dimensional fibres of the Prym map	223
Juan-Carlos Naranjo	
Entropy of a skew product with a Z^2 -action	227
KYEWON KOH PARK	
Commuting co-commuting squares and finite-dimensional Kac algebras	243
Takashi Sano	
Second order ordinary differential equations with fully nonlinear two-point boundary conditions. I	255
H. BEVAN THOMPSON	
Second order ordinary differential equations with fully nonlinear two-point boundary	279
conditions. II	21)
H. BEVAN THOMPSON	
The flat part of non-flat orbifolds	299
Feng Xu	