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ON THE COHOMOLOGY OF THE LIE ALGEBRA L,

ALICE FIALOWSKI

We compute the 0-, 1-, and 2-dimensional homology of the
vector field Lie algebra L, with coefficients in the modules
Fiu, and conjecture that the higher dimensional homology
for any A and p is zero. We completely compute the 0- and
1-dimensional homology with coefficients in the more compli-
cated modules F) ,. We also give a conjecture on this homol-
ogy in any dimension for generic A and pu.

Introduction.

Let us consider the infinite dimensional Lie algebra WP°' of polynomial vector
fields f(z)d/dz on C. It is a dense subalgebra of W;, the Lie algebra of
formal vector fields on C. We will compute the homology of the polynomial
Lie algebra, and will use the notation WP° = W;. The Lie algebra W, has
an additive algebraic basis consisting of the vector fields e, = z**'d/dz,
k > —1, in which the bracket is described by

lex, €] = (I — k)erq-

Consider the subalgebras L;, & > 0 of Wy, consisting of the fields such
that they and their first k£ derivatives vanish at the origin. The Lie algebra
L, is generated by the basis elements {ey,€xy1,-.. } . The algebras W; and
L, are naturally graded by dege; = ¢. Obviously the infinite dimensional
subalgebras L, of W, are nilpotent for & > 1.

The cohomology rings H* (L), k > 0 with trivial coefficients are known,
there exist several different methods for the computation (see [G, GFF,
FF2, FR, V]). The result is the following;:

smir(e) = (115 + (T1E57) g okzn

Not much is known about the cohomology with nontrivial coefficients for the
Lie algebra Ly, k > 1. Among the known results, we mention the results on
Ly, k > 1 on the cohomology H* (Ly; L,) with any s > 1, see [F], and on Ly,
k < 3 on the cohomology with coefficients in highest weight modules over
the Virasoro algebra, see [FF2] and [FF3].
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Let F denote the W;-module of the tensor fields of the form f(z)dz?,
where f(z) is a polynomial in z and X is a complex number; the action of
W, on F), is given by the formula

(9d/dz) fdz™ = (gf' — Afg')dz>.

The module F) has an additive basis {f;; 7 =0,1,...} where f; = z7dz™*
and the action on the basis elements is

eifi = (5 — (1 +1)A) fir;-

Denote by Fy the Wj-module which is defined in the same way, except
that the index j runs over all integers. The Wj;-modules F), with A # 0
are irreducible, but as Ly-modules, they are reducible. For getting an L,-
submodule of F), it is enough to take its subspace, generated by f;, j > p,
where p is a positive integer. Denote the obtained Ly-module by F) ,.

More general, let us define the Lo-module F) , for arbitrary complex num-
ber p, as the space, generated — like F — by the elements f;, 7 =0,1,...,
on which L, acts by

ef; = (G +p—(GE+1)A)fiy;.

Finally define the modules F, , over W; as F), above, without requiring
the positivity of j.

The homology of the Lie algebra L; with coefficients in ), , and F) , are
computed in [FF1]. We consider everywhere homology rather than coho-
mology, but the calculations are more or less equivalent. In the case of F) ,
one can use the equality

(-7'-/\,;4), =F_1-x-u
which implies that
H (Li; Fap) = Hy (L Fo1-a-p) -
In the case of F), , one can use the equality
(Fou) = (Foion—p) [F-1-x-u

(see [FF1] for details).

Let us recall the results of [FF1]. Set e(t) = (3t*> + t)/2 and define the
k-th parabola (k = 0,1,2,...) as a curve on the complex plane with the
parametric equation

A=e(t)—1
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m—k=ce(t)+e(t+k)—1
For k., k, € Z we set
P (ki ky) = (e(ky) — 1, e(ky) +e(ky) — 1)
and let P = {P (ky,k2) : ki, ko € Z}. For a point P of P let us introduce
k(P) = |ky — ky|
and

K(P) = k| + |ks|.

If P € P, then K(P) > k(P),K(P) = k(P) mod 2 and P lies in the k(P)-
th parabola. For k£ # 0 all the points of the k-th parabola with integer
coefficients belong to P. On the O-th parabola there is one point from P
with K = 0, and two points with K = 2, two points with K = 4, and
in general, two points with every even number K. For & > 0 on the k-th
parabola lie 2k +2 points from P with K = k and four points with K = k+2,
four with £ + 4, and in general, four with K = &k + 2z.

Theorem [FF1, Theorem 4.1].
2 if Mp+m)ePand K(A\,p+m)<gq
dim H™ (Ly; Fa,) =41 if (A p+m) €Pand K(\p+m)=gq

0 otherwise.

Corollary. If X is not of the form e(k) — 1 with k € Z and if p € Z, then

H,(L; Fx,)=0.

The homology H,(Ly; F) ,) is also computed in [FF1]. We will not for-
mulate the result in details, only some important for us facts.

Theorem (Modification of Theorem 4.2, [FF1]).
1) If (A p) is a generic point so that (A, +m) does not lie on any of the
parabolas for any integer m, then

H*(Ll;F)\,,u) = H*(LZ)

2) If (A\,p+7) lies on the parabola for some j, then H,(L1; F) ) is bigger
than H,(L,) at least for some q.
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3) In all cases
H/(Ly) =2q+1<dimH,(L; Fy,) <4q+1
and the boundaries are reached.

The next problem is to compute homology of L, with coeflicients in the
modules F, , and F) ,. That is the aim of this paper. The results are the
following.

Theorem 1.

C if A==1Im+pu=-1

HY™ (Lo; Fr) =
o (L2iFau) {0 otherwise.

Theorem 2.

(2 if A=m4p=-1

1 if A==-1,m+p=1,2,3
dimHl(m) (La; Fap) = { orA=0andm+pu=0
ori=1landm+pu=1

L0 otherwise.

These results are analogous to the ones in [FF1] and one can expect that
the picture will be similar for higher homology as well. With this in mind,
the following result is a surprise.

Theorem 3.

1 of A==1Im+p=-1,1,2,3
A=0and =0

dim H{™ (L3 F,) = ora = tandmry

orA=landm+p=1

0 otherwise.

That means that the singular values of the parameters for the two-dimen-
sional homology are the same, as the ones for the one-dimensional homology,
which is not the case for the homology of L,. Moreover, some partial com-
putational results make the following conjecture plausible.

Conjecture 1. H,(Ly; F, ,) = 0 for every A, u for g > 2.

Let us try to explain the behavior of this homology. The main difference
of the L, case from the L, case is that H, (L; F, ,) = 0 for generic A and p,
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while H, (L2; Fy,,) = 0 for all X and p (if ¢ > 2). This might have the follow-
ing explanation. By the Shapiro Lemma (see [CE, Ch. XIII/4, Prop. 4.2]),

Hq (Ly; F) = Hy (L nd} 7 )

and Indﬁi}},# may be regarded as a limit case of the tensor product of
modules of the type Fy , ® F, ,. Namely, Indf’;]-},“ = F®F,, where Fis
the L;-module spanned by g;,7 > 0, with the L,-action e;g; = gj11, €;9; =0
for ¢ > 1; the isomorphism is defined by the formula

k
k —m
o 3 (F) e
m=0

(on the left hand side eff; means the action of €; in Indf; Fau, on the

right hand side ef~™ f; means the action of e; in .7-')‘,”). On the other hand,
F =1limy_, o F) 4 for any a # 2: put

g AN =(@=2)A(a —=2)A+1)...((e = 2)A+ 7 —1)f; € Frax;

then . .
o) = (@ =i= DA+ gy
= (a—2A+3)...((a=DA+j+i—1)
which tends to the action of L; in F when A\ — oo.
Perhaps the homology

H,(Ly; Fy e @ Fap)

depending not on two but on four parameters, has singular values for some
A, pi, X', ' for each q. The problem of computing the cohomology H,(Lz; F ,.)
is the two-parameter limit version of the previous problem, and it is not sur-
prising that the singular solutions of the first problem have effect on the
second problem only for small ¢ values.

Our calculation yields also some results for H,(L,; F) ,). We will formulate
them in Section 3, Theorem 4 and 5.

From Theorem 4 it follows that for generic A, p,

dim Hy (Ly; Fy ) = 2,

and for singular values of A, i, dim Hy (Ly; Fy ) > 2.
From Theorem 5 it follows that for generic A, u,

d1mH1 (LQ;F/\,/,L) = 87
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and for singular values of A, 1, dim H; (Ls; F) ) > 8.
Conjecture 2. For generic A, pu,

dim H, (Ly; Fy,) = 2(q + 1)*
or in more details,

H{™ (Ly; Fa,) = H™(Ls) @ H D (Ls).

This conjecture is motivated by the following observation. By the Shapiro

Lemma,
H{™(Ls) = H™ (Ly;Ind}2 C) .

The module IndIIj: C is spanned by h; (j > 0) with Ly-action eyh; = hjq,
e;h; = 0 for ¢ > 2; the grading in this module is degh; = 2j. Hence

H{™(Ls) = H™ (Ly; Ind}% C + S Indj? C)
where ¥ stands for the shift of grading by one. On other words,
H™(Ls) ® Hém_l)(Ls) = H{™(Ly; F)

where F' is spanned by g;, j > 0, with the L,-action e;g; = gj12, €ig; = 0
for 1 > 2. As above, F = limy_,o, F\ o» (now a # 3), which suggests that

H{™(Ly; F) = H{™ (Ly; Fy )

for generic A, p.
Similarly one can expect that for generic A, p

H{™(Ly; Frp) = H™ (L) @ H™ D (Lgyr) © -+ - @ HW 4 (L)
Remark, that if it is true that generically H,(L; F» ,) = 0 then generically

Hq(Lz;]:,\,u) = Hq—l(Lz; F—l—A,—u)

(HO(Ly; Fa) = Hy(L2; FY,,.) = Hy(L5; Fo1 s,/ F-1-x,,); and the homol-
ogy exact sequence associated with the short coefficient exact sequence

0— F—I—A,—u — .7:_1__)"_” — ]:—l—A,—p/F—l—A,-—u -0

provides the above isomorphism). In particular, if the L,-module L) =
F_, _3 is “generic”, then Conjecture 2 implies

dim H?(Ly; L) = dim H, (Ly; F—, _3) = 8.



COHOMOLOGY OF THE LIE ALGEBRA L 405

Similarly for L; we have the hypothetical result
H*(Ly; L) = k(k +2).

The paper by Yu. Kochetkov and G. Post [KP] contains the announce-
ment of the equality

dlmHz(LQ,Lz) = 8,
as well as some further computations, including explicit formulas for 8 gen-

erating cocycles, which imply the description of infinitesimal deformations
of the Lie algebra L,.

I. Spectral sequence.

Let us compute the homology Hém)(Lg;f)"u). Define a spectral sequence
with respect to the filtration in the cochain complex C{™(L;Fy ,). The
space C{™ (Ly; F,,) is generated by the chains

e,-ll\.../\eiq®fj

where 2 <4; < ... <1, j € Zand 4;+...1,+7 = m. Define the filtration by
i1+ ...+, = p. Denote by F,C{™ (Ly; Fy,,) the subspace of C{™ (Ly; Fa ),
generated by monomials of the above form with ¢; + ...+ ¢, < p. Obviously,
{F C{™ (Ly; Fi, u)} is an increasing filtration in the chain complex. The

differential acts by the rule

d(eil /\.../\eiq ®f])
q
-_—d(ei1 /\.../\eiq) ®f]’—‘2(—1)seil A"'é’is /\.../\...eiq ®ei,fj-
s=1
As m is fixed, the filtration in bounded.
Denote the spectral sequence, corresponding to this filtration by E (A, u, m).

Then we have
B} = O (Ly; ©)

and dj is the differential 6, : C{P)(Ly;C) — C._;(L2;C). The first term of
the spectral sequence is
EP = H?)(L,; C).

The homology of L, with trivial coefficients is known (see [G]):
. 2 3(g+1)>—(g+1
C if < p< et (el

0 otherwise.

HP(L,) = {
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Hence the E; term of our spectral sequence looks as follows:

(0) Ry | g (T) ] 7B | g (9) [ (20)] fy (1)) (15)] £ (16)
H Hy"V\H™ | H Hy\H ™ |Hy™ |Hy | H Hg 2\H . . .

where all the spaces H, é") shown in this diagram are one dimensional.
The spaces E? do not depend on A and pu, but the differentials of the
spectral sequence do. Let us introduce the notation

+_3¢+gq
‘ 2

e

The differentials
dy_,: Ey_, —E;_, (e;lF <p<eg, e, <r< eq‘)

form a partial multi-valued mapping 6, : H,(L;) — H,_1(L;). We shall
define a usual linear operator 6, : H,(L:) — H,_1(L,) such that (1) if
b,(a) is defined for some o € H,(L,) then §,(a) € 6,(); (2) 6,_1 0, = 0.
(Certainly, the mapping ¢, will depend on A, #,m.) Then the limit term of
the spectral sequence E(),u,m), that is H{™ (Ly; Fy,) will coincide with
the homology of the complex

Hyo(L) & Hy(L,) & Ho(Ly) & ...

To define d;,0,,... we fix for any ¢ and any p, Ef < p < e;},, a cycle
b € C{P)(L,) which represents the generator of H{P)(L,).
It is evident that for each cf there exist chains

Bt e CO(Ly), u>1
93—1 € C;—)l (L2), v < e;_—l
such that
d (CZ ® fm—p - z bf;_u ® fm——p-{-u)
u>1

e, —1
= z aPch;—1®fm-—r+ Z g;’_1®fm_v
+

+

r=e v<<»:q_1

q—1

where «, , are complex numbers depending on A, i, m. These numbers com-
pose the matrix of some linear mapping H,(L2) — H,_1(L>), and this map-
ping is our d,.
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The chains 62" and g;_, may be chosen in the following way. Since
dch = 0, the differential d <ch’ ® fm_,,) has the form »°,  AY | ® frm_y With
hy | € C’éﬂ(Lz). Here the leading term h?~; is a cycle, dh?”; = 0. Since
HP7{(L,) = 0, we have h?"} = db?~! with b»~! € C»~V(L,). Now, the
leading term of d (Cg ® frn—p— 81 ® fm—p+1)' belongs to C’;’:l)(Lz) and it
is again a cycle. We apply to it the same procedure and do it until the lead-
ing term of d (cg ® frnp— LTI ® fm_,,+i) belongs to Csi‘i_l)(Lz). This is

still a cycle, but it is not necessarily a boundary, for H;E;l(Lg) # 0. Now

we choose by’ € (15"‘*7‘1) (L,) such that db* " is our leading term up to

(

some multiple of cZ‘_;_l_l. Then we do the same for quql_Z)(Lg), and so on
et -1
q—1

until we reach C,°7"  (L,).

The matrix |a, .| depends on the choice of the cycles c?. It depends also
on the particular choice of the chains =", but only up to a triangular
transformation. In particular, the kernels and the images of the mappings
d¢, and hence the homology Kerd,/Im d,,,, are determined by the cycles cb.

Remark that dim H,(L;) = 2¢ + 1 and hence the matrix of ¢, is a (2¢ —
1) x (2¢ + 1)-matrix depending on A, 4, m. We get

(%) dimHém)(LQ; Frp) =2¢+1—rankd, —rankd, ;.
II. Computations of H{™ (Ly; F .)-

1. The space H{™ (Ly; Fy )
As the action of W; on F, , is
e ® fi = [J+p— A0+ )fir;

and the nontrivial cycles of H,(L,) are ¢> = e, ¢; = e3, ¢; = ey, the
differentials are the following:

ey ® frna = (M =2+ p—3X) fm,

€3 ® fm3 = (M =3+ p—4X) frm,

1 ® frn-a = (m =4+ p —5A) fm.
The coefficients in the right hand sides depend on A and m + pu, which is
natural, because the whole complex C{™ (Ly;F, ,) depends only on A and
m++p. On the other hand, there is an isomorphism F) , = Fy 41, f, = fi+1

with the shift of grading by 1. Therefore we may put m = 0 and the
differential matrix 6, : Hy(L,) = Ho(L2) has the form

(W—2-=3X|p—3—4\|p—4—5A).
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The rank of the matrix is 0 if A\ = m = —1 and 1 in all the other cases. From
this it follows

Theorem 1.

1 ifa=—1m+p=-—1

1m f1, (2 )"“) {0 otherwise.

2. The space H™ (Ly; Fi,)-

The nontrivial cycles of Cy(L4; C) are

cy=¢esNes —3es Aey
¢S = ey ANeg — 2e3 Aes
cg=3ez/\e7—5e3/\es
el =ey Aeg — ey A eg

cy' =be; Aeg — Tes A eg

of weight 7,8,9,10,11.
Let us put u — kXA — 1 = A(k,1). Direct calculation shows that

d((eaNes —3es Ney)® fr— A(3,7)es Nez ® f_s)
= —-3A(4,7)es ® f_4
+[3A(5,7) — A(3,7)A(3,5)]es ® f-3
+ [~ A(6,7) + A(3,7)A(4,5)]es ® f-2,

hence

8 (c1) = [~ A(6,7) + A(3,T) A4, 5)]c; 1
+[3A(5,7) — A(3,T)A(3,5)]c: — 3A(4,T)c!.

Thus we have
are = —A(6,7) + A(3,7)A(4,5)
Q73 = 3A(5, 7) - A(S, 7)A(3, 5)
Q74 = —3A(4, 7)

In the same way we calculate a,, for p = 8,9,10,11 and r = 2,3,4. We get
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the following 5 X 3-matrix:

A(3,T)A(4,5)
—A(6,7)

—A(3,7)A(3,5)
+3A(5,7)

409

—3A(4,7)

1/2A4(3,8)A(5, 6)
—2A(4,8)A(4,5)
—A(7,8)

2A(4,8)A(3, 5)
+2A(6,8)

—1/2A(3,8)A(3,6)

—5/2A(4,9)A(5,6)
—3A(8,9)

3A(3,9)A(5,7)
+5A(7,9)

—3A(3,9)A(4,7)
+5/2A(4,9)A(3, 6)

—1/2A(3,10)A(4,8)A(4,5)
—3/2A(5,10)A(5, 6)
—A(9,10)

1/2A(3,10)A(4, 8) A(3, 5)
+1/2A(3,10)A(6,8)

3/2A(5,10)A(3, 6)
+3A(7,10)

7/2A(4,11)A(4, 8)A(4, 5)
+A(3,11)A(8,9)
~54(10,11)

~A(3,11)A(3,9)A(5,7)
~7/2A(4,11)A(4, 8)A(3, 5)
~7/2A(4,11) A(6, 8)

A(3,11)A(3,9)A(4,7)

+7A(9,11)

We have to compute the rank of the matrix (d,). It is clear that the rank
can not be bigger than 2. Direct computation shows that rk(d,) = 1 if and
only if A\ = -1, p=—-1,1,2)3; A= p = 0; A = g = 1. From this, using
formula (x), it follows
Theorem 2.

(2 if A=m+p=-1

1 if A==1,m+pup=1,23

dim H{™ (Lo; Frp) = orA=0andm+p=0
orA=landm+pu=1

0 otherwise.

3. The spaces Hé’")(Lg;]{\,u) for g > 2.

The next differential d; is a 5 x 7-matrix. Its rank can not be bigger than
3 for any A and p. On the other hand, computation shows that rk(d;) = 3
for every A, u; namely, the first three rows of the matrix are linearly inde-
pendent for every A, u. From this it follows that the dimension of the space
H{™ (L,; F) ) drops only if the rank of the previous matrix (d;) does. This
proves
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Theorem 3.
1 if A=-1,m+pu=-1,12,3
orA=0andm+p=0

dim H{™ (Ls; Fr,,) = orA=landm+p=1

0 otherwise.

By this theorem, for generic A, y, dim Hzm) (L2; Fru) =0.
It seems very likely that the next differential matrices (d;), k > 4, have
the same rank for every A and u (rk(éx) = ¢) which would imply our

Conjecture 1. H,(Ly;Fy,) =0 for every A, pu for g > 2.

III. Computations of H{™ (Ly; F) ).

Recall that the Lo-modules F) , differ from the Wi-modules F, , only in
requiring the non-negativity of j for the generators f;. Consequently the
spectral sequence is basically the same, only it is truncated as follows:

E*(A\ u,m)=0 if m—p<O.
The space C{™(Ly; F) ) is generated by the chains
€, /\.../\Ciq ®fJ

with2 <4, <... <4, 5 >0and % +...+1%, = m. This way, for computing
homology, we have to compute the rank of truncated matrices, consisting of
some of the upper rows of the previous matrices.

Let us compute the space Hy(Ls; Fy ). Obviously,

H(Ly; F\,) = HY (Ly; Fy,) = C.
For m = 2 the differential is the following:
e2 ® fo = (u— 3\ fo

which shows that if 4 = 3), then dim H{® = 1, otherwise H\” (L,; F,) = 0.
For m > 2

1 if A\ = —1and =-1
dimHém)(Lg;FA,u) = { 1 andm ey

0 otherwise.

So we get
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Theorem 4.
C ifm=20,1
=2 and p = 3\
Hém)(Lg; F,) = orm and
' orA=—-1landm+py=-—1
0 otherwise.
Corollary. For generic \,p  Ho(Ls; Fy ) = 2.
Direct computation proves the result for the space Hl(m)(Lg; Fy\ ).
Theorem 5.
1 f p =3\
dim H® (Ly; Py ) = fu=3
0 otherwise,
2 A=—-1l,p=-4
dim H® (Ly; Fy ) = forA=—Lp
1 otherwise,
dim H"(Ly; Fy ) = dim H (Ly; Fy ) = dim H (Ly; Fy )
_J3 forpy=—-4X1=-1
2 otherwise,
2 fp=—-8A=-1 =0,A=0
dim B (Ly; Fy ) = fu=-8 ok
1 otherwise,
(2 ifp=-9)=-1
1 for XA and p lying on the curve
dim H® (Ly; Fy ) = < ~36) + 147X — 2703 + 8u — T2 + 27\ %p
+9u? =2 +p* =0
L0 otherwise;

form>8, dimH{™ (Ly;F\,) = dim H™ (Ly; Fy,.) (see Theorem 2).
Corollary. For generic A\, u, dim Hy(L,; Fy ) = 8.
Conjecture 2. For generic A\, p,
dim H,(Ly; Fy ) = 2(g + 1)?,
or, in more details,

H™(Ly; Fy,) ~ H™(Ly; ©) ® H™ ™V (Ls; C).

411



412

[CE]
(F]
[FF1]
[FF2]
[FF3)
[FR]
[G]
[GFF]
[KP]

vl

ALICE FIALOWSKI

References

H. Cartan and S. Eilenberg, Homological Algebra, Ch. XII1/4, Prop. 4.2., Princeton
Univ. Press, 1956.

A. Fialowski, On the comology H*(Ly; Ls), Studia Sci Math. Hung., 27 (1992),
189-200.

B.L. Feigin and D.B. Fuchs, Homology of the Lie algebra of vector fields on the line,
Funct. Anal. & Appl., 14 (1980), No. 3, 201-212.

, Verma modules over the Virasoro algebra, in Lect. Notes in Math., 1060
(1984), 230-245.

, Cohomology of some nilpotent subalgebras of the Virasoro and Kac-Moody
Lie algebras, J. Geom. and Phys., 5 (1988), No. 2.

B.L. Feigin and V.S. Retach, On the cohomology of some algebras and superalgebras
of vector fields, Uspechi Mat. Nauk, 37 (1982), No. 2, 233-234.

L. Goncharowa, The cohomologies of Lie algebras of formal vector fields on the line,
Funct. Anal. & Appl., 17 (1973), No. 2, 91-97.

I.M. Gelfand, B.L. Feigin and D.B. Fuchs, Cohomology of infinite dimensional Lie
algebras and the Laplace operator, Funct. Anal. & Appl., 12 (1978), No. 4, 1-5.

Yu.Yu. Kochetkov and G.F. Post, Deformations of the infinite dimensional nilpo-
tent Lie algebra Lo, Funct. Anal. & Appl., 126 (1992), No. 4, 90-92 (in Russian).

F.V. Veinstein, Filtering bases, cohomology of infinite-dimensional Lie algebras and
Laplace operator, Funct. Anal. & Appl., 119 (1985), No. 4, 11-22.

Received January 20, 1993 and revised May 22, 1993.

UNIVERSITY OF CALIFORNIA
Davis, CA 95616-8633
E-mail address: fialowsk@math.ucdavis.edu.



Rosa M. Miré-Roig, Singular moduli spaces of stable vector bundles on
P e

Hitoshi Moriyoshi and Toshikazu Natsume, The Godbillon-Vey Cyclic
Cocycle and Longitudinal Dirac Operators ...............cooiiiivninenanen.

J.C. Naranjo, The positive dimensional fibres of the Prym map ..........
Artur Nicolau and Arne Stray, Nevanlinna’s coefficients and Douglas al-
e2<Y 3 P
K.K. Park, Entropy of a skew product with a Z2-action ..................
Maria Cristina Pereyra, Sobolev spaces on Lipschitz curves .............
T. Sano, Commuting co-commuting squares and finite dimensional Kac al-
BEDTAS . . e

H.B. Thompson, Second order ordinary differential equations with fully
nonlinear two point boundary conditions ................... ...l

H.B. Thompson, Second order ordinary differential equations with fully
nonlinear two point boundary conditions IT .................... ... ... .. ..
F. Xu, The flat part of non-flat orbifolds ................... ... ... ...

Hidenobu Yoshida, A type of uniqueness for the Dirichlet problem on a
half-space with continuous data ........... .. .. ... . il

477

483
223

541
227
553

243

255

279
299

591



On the cohomology of the Lie algebra L,
ALICE FIALOWSKI
Generic differentiability of convex functions on the dual of a Banach space
JOHN R. GILES, P. S. KENDEROV, WARREN BRIAN MOORS and S. D.
SCIFFER
Moon hypersurfaces and some related existence results of capillary hypersurfaces
without gravity and of rotational symmetry
FEI-TSEN LIANG
Stable relations. II. Corona semiprojectivity and dimension-drop C*-algebras
TERRY ATHERTON LORING
Singular moduli spaces of stable vector bundles on P?
ROSA M. MIRO-ROIG
The Godbillon-Vey cyclic cocycle and longitudinal Dirac operators
HiTOSHI MORIYOSHI and TOSHIKAZU NATSUME
Nevanlinna’s coefficients and Douglas algebras
ARTUR NICOLAU and ARNE STRAY

Sobolev spaces on Lipschitz curves
MARIA CRISTINA PEREYRA

399

413

433

461

477

483

541

553

A type of uniqueness for the Dirichlet problem on a half-space with continuous data 591

HIDENOBU YOSHIDA



	
	
	

