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Here we study the singular radial solutions of the pre-
scribed mean curvature equation

Du
V14 |Dul?

where f is increasing and has the sign of v near infinity. We
prove the local existence of a generalized singular solution
under slight growth assumptions on f. In the physical case
N = 2 we prove that the curve is asymptotic to the curve
r|f(u)| = 1. We also study the global behaviour of the solutions.

+ f(u) =0, in RY/{0},

div

0. Introduction.

In this paper we consider the question of existence and behaviour of radial
singular solutions of the prescribed mean curvature in RN (N = 2) :

i Du = in RY
with
(0.2) u(z) - —oo as ||z|| — 0,

where the function f € C°(R) N C?(R/{0}) will be assumed throughout to
satisfy the following assumptions:

(0.3) There is a real a < 0 such that f is negative and increasing on
(—o00, a), with lim f(u) = —o0.
u—y—00

(0.4) lim & / F(u

For radial solutions r = ||z|| — u(r), the equation in RY / {0} reduces to an
ordinary differential equation in (0, 400) :

(0.5) PN (PN VT ) () ) =0,

29



30 MARIE-FRANCOISE BIDAUT-VERON

du
where u' = o obviously equivalent to

u' N -1 u'

(14 u'2)3/2 (r) + " Tra? (r) + f(u(r))

The linear case f(u) = (N — 1)u is well-known problem of the pendent
liquid drop. Using fixed point methods, Concus and Finn proved in [CF1]
the local existence of a singular solution U under the form
1 N +3
T
Recall that U has an asymptotic expansion in powers of r but the formal
Taylor series is divergent.

Using the same way we prove in Appendix A the local existence of a
singular solution u of (0.6) when f is a power:

(0.6) = 0.

r3+rdo(r).

(0.7) U(r) = —

(0.8) f(u) = Aul* 'y, with ¢, A > 0;

these rather tedious calculus lead to a solution U given by
N -1\

(0.9) Ulr) = — ( - ) +exr? /11 4 o(r)),

where ¢, = (A\/(N —1))9(q(N + 1) + 2)/2(N —1). Notice that r|f(U(r))]
converges to (N — 1) when r goes to 0, which could be foreseen from (0.6).

Another way for finding singular solutions is to consider the regular prob-
lem: let (uopn)nen be any sequence of reals smaller than a, with lim,, | o uo
= —o0; if u, is a solution of (0.6) near the origin such that

(0.10) 6n(0) = g, 01,(0) =0,

one has to find the limit behaviour of (u,),en. This method was first inves-
tigated in the linear case when N = 2 by Concus and Finn [CF3] and more
recently by Finn [F5]. The main difficulty is that the size of the existence
domain of u,, shrinks to 0 as n goes to infinity, because of the occurence of
vertical points near the origin. In fact from the geometrical point of view, we
can extend the notion of (regular or singular) solution of equation (0.6): we
ask more generally for a C?-embedded hypersurface in RV x R, rotationally
symmetric, whose mean curvature at each point (z,u) is given by — f(u)/N.
As in [CF3] we are led to the parametrical system

Y o fw) ~ (N~ 1rsine,
(0.11) X _ siny,
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where s is the arc-length of a vertical section of the hypersurface, and v is the
angle between a tangent to the section and the r axis. When ¢ € (0, 7) the
hypersurface can be represented by a function r of u, and (0.11) is equivalent
to

(0.12) — f(w) =0,

7(u) _N-1 1
(1+72)*?  r(w) V1I+72()

d
where 7 = —T, see [CF3], [APS]. The regular solutions are now represented
by the solutions r(u) of (0.12) on (ug,,,a) such that

(0.13) ukumw r(u) =0, ul}%n 7(u) = +o0.

When N = 2 and f(u) = u, Concus and Finn proved in [CF3] that some
sequences of regular solutions converge uniformly on any compact of R~ to a
singular solution of (0.12). They used very accurate local comparison meth-
ods with Delaunay surfaces, also called unduloids, which are rotationally
symmetric surfaces with constant mean curvature. A shorter proof in [F5]
shows that moreover the singular solution is locally a function u of r; and it
is asymptotic to the curve u = —1/r, see Fig. 3.

In Section 1 we give the essential tools for our study, which are energy
functions of the problem. One of them is the energy function for the equation
satisfied by u'/v1+ u'2, used in the linear case in [B2] and also in [W2].
Two other energy functions are of Pohozaev type. In fact they can be de-
fined in the nonradial case. By integration they lead to Pohozaev relations,
extending the Green’s identity given in the linear case and dimension 2 in
[F5].

In Section 2, our main result concerns the existence of singular solutions
for a large class of functions f. We prove the following:

When u + |u|~Y/N=1 f(u) is nondecreasing for large |u|, there exists a
singular local generalized solution of (0.1),(0.2) under the form u — r(u).

To prove this result we use one of the Pohozaev functions and some proper-
ties of unduloids in dimension N; we study those hypersurfaces in Appendix
B, extending some results of [HY].

In Section 3 we study the local behaviour of any singular local solution
of the form w — r(u). In the physical case N = 2 we prove (under suitable
assumptions on f) that r|f(u)| converges to 1 when u goes to —oo. Our
proof differs from the proof of [F5] when f(u) = u, since it does not use
unduloids. In the case (0.8) of a power, we give also some estimates on the
angle ¢ and the difference |f(u)| —1/r. They allow us to prove that, if ¢ < 1,
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any singular solution is a function r — u(r) (as long as u < 0), which means
that it has no vertical point. In dimension N, we extend a part of those
results, generalizing the estimates of [CF2], [B2] and simplifying the first
proofs.

In Section 4 we suppose that f is increasing from R to R with f(0) = 0,
and give some global properties of the regular solutions, such as: global
existence, estimate on the incidence angle if the curve crosses the axis u = 0,
estimates on the maximal diameter of the regular drops. This extends among
others the previous results of [CF3], (B2], [F3], [F6].

Acknowledgement. I am very grateful to S. SALAMEH for his contribu-
tion in numerical studies and drawings.

1. Energy functions for regular or singular solutions.

We call regular solution of the parametrical system (0.11) any solution such
that r > 0 for small s > 0, with initial conditions

(1.1) ll_r)réz/)(s) =0, zl_r)réu(s) = < @, gl_lgéfr(s) =0.

From [CF3], [APS] we have local existence and uniqueness of such a solution
expressed in terms of 7 — u(r). Its satisfies locally sint > 0, hence it is also
given by a function u — 7(u).

Now we call singular solution of (0.11) any solution such that » > 0, ¢ €
(0, 7) for small s > 0, with initial conditions
(1.2) El_l’)% u(s) = —oo, £gzg r(s) =0;
in other words we look for a local positive solution v — r(u) of (0.12) such
that lim,_, ., 7(u) = 0.

Several questions follow naturally: does there exist such a solution? What
is its maximal extension? Do we have lim,_,%(s) = 57 Does the solution
define a function r — u(r)?

To deal about it, we shall use energy functions linked to the system. Some
of them, used for the regular problem, are classical, see [CF3| in the linear
case, and [APS] in the general case. The first one comes from integration

of d—¢ sin1) : Set
ds
(1.3) E(s) = F(u) — cos 1,
where F(u) = [ f(t) dt; then E is nonincreasing, since

(1.4) Z—f(s) = —(N — 1)r " sin® 9.
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The second one comes from integration of ! 1/ (,OSZ/J let us define
(1.5) J(s) =V sinep + N f(u)/N
then
N
(1.6) *‘( )~ f(u) sine,

therefore J is increasing as long as 1 € (0,7). In fact it is also positive,
which gives an essential estimate for singular solutions as well as for regular
ones:

Proposition 1.1. Any singular (resp. regular) solution r(u) is defined at
least on (—oo,a) (resp. (ug,a)) and satisfies the relation

(L.7) 0 <r|f(u)] < Nsin.

Proof. Let us recall the proof of [APS] in the regular case and extend it
to the singular one. Near the origin, J is increasing; let ¢ = lim, ,o J(s) €
[—00, +00). Obviously £ = 0 in the regular case. In the singular case ¢ is
nonpositive, since f(u) £ 0. Suppose £ < 0; then lim,_, _o.(cos ) (u)/f(u) =
1, since (cos®p) = (N —1)r~!siney + f(u); and costp — F(u)/2 is decreasing
for large |u|, which is impossible. Then ¢ = 0 and J(s) is positive near 0,
which means that (1.7) is satisfied near 0. Let (—oo,@) (resp. [—uq,a)) its

maximal existence set. If @ < a, then r and — cannot vanish, from (1.5),
s

(1.6); hence liminf,_,; r(u) > 0, and |7| is bounded by N/r|f(u)|; then @ is

not maximal. Hence @ = a and (1.7) is true up to a. 1

The function F gives also useful properties of the vertical points. The
proofs of [APS] are similar in the singular case:

Proposition 1.2.  The ezxtremal points of any singular (resp. regular)
solution r(u) are isolated in (—oo,a] (resplug,al). There is an Uy < O such
that any regular solution has more than one extremal point when uy < WUy,
one exactly when u = Uy and no extremal point when ug > Tg, if a > Tp.
Denoting by (u,) the decreasing sequence of the extremal points, finite or
infinite, we have

7(ugn) | f(Ugn)| > N — 1> 7(ugnia)|f (Uania)l,
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for any mazimal point us,(n 2 0 or 1) and any minimal point ug,1(n 2 0).
And the sequences (r(usyn)) and (r(usny1)) are decreasing with n.

Remark 1.1. Between two consecutive extremal points the curve crosses
the “basic curve” r = —(N — 1)/f(u) exactly one time. It has no inflection
point on the set of u where r|f(u)| > N — 1, from (1.9).

The third energy function was used in the linear case in [B2] to prove the
global existence of singular solutions, and in [W2] to study the stability of
the regular caes. It is new in the nonlinear case. In fact it is the energy
function for the equation obtained by derivation of (0.6) by respect to r (or
(0.12) by respect to u); let us denote

(1.8) fzcosz/;:f"/\/l-i—f”?;

then (0.11), (0.12) imply

(1.9) ré€ = rit(1 +72)%? = —r@ =rf(u)+ (N —-1)v/1 &2

ds
Let us define, for any u < a, the function
2 . — .
(1.10) G) = T&+ 21— ()t
then
&€ &

(1.11)  G(u) = —(N —=2)r

\/1—_? —27"f(’u,)\/_1____§§ - f(’u’)f

Notice that G is nonincreasing when ¢ = 0 and f(u) = 0.
The last functions we shall use in our study are PohoZaev type functions:
for any ¢ > 0 and d = 0 we define, for any u < a,

)

then

(1'13) ¢5,q(u) = -

PN-1
(g+1)siny ((

+(N = 1)g — 1+ (¢f (w) — uf (w))rsiny) ;
then ¢s , is nonincreasing when ¢ 2 1/(N —1), u — |u|~?f(u) is nondecreas-
ing, and 0 £ § < d,, where

(1.14)

N +q+1)cos®tp — N6(q + 1) cos 9

1, if g2 (N+2)/(N-2),

0, = (N +q+1)((N-1)g-1)"2 <1, if not.

2
N(g+1)
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This function is very close to the function

u

(1.15) Ps.q(u) = rV ((5 —cos®y + F(u) + qjil Si2¢) ,

which gives by differentiation,

,rN—l

(g + 1) siney
+ (N -1)g—1+ Ncosy(uf(u) — (¢ + 1)F(u))).

(1.16) s q(u) = — (N +q+1)cos®*p — N6(q + 1) cos )

The function 1 (n42)/(v—2) Was used for the study of ground states r — u(r)
of (0.6) in [NiS1]; and ¢y (n+2)/(v—2) for ground states v — r(u) of (0.12) in
[APS], because cos 1 does not keep a constant sign.

Remark 1.2. Consider more generally the nonradial case of an orientable
C? hypersurface S in R¥*! given by X(zy,... ,Zn,ZTn11), governed by the
equation

(117) AsX = f(iL'N_H)ﬁ,

where 7 is the unit exterior normal to S, and Ag is the Laplace-Beltrami
operator. Suppose that for any u in an interval I C (—o0,a) the hyperplane
H, : 2y, = u cuts S in an hypersurface ¥, of R¥Y~!, enclosing a domain
2, of RV, regular enough. Let n be the unit exterior normal to ¥, in H,,
and 1) be the angle between S and H, on %,. For any ¢ > 0 and § 2 0, let
us define the function

— uf(u)) usin¢)
.1 = - — . — ] dX,.
(1.18) &5, (u) /)3((5 costp+ 2L ) X + NE2LS
Then we prove in [B3] that, for any u € I,
(1.19)
- 1
¢)6,q(u) =

1)

g+
/>: (siiw (N +q+1)cossh — N(g+1)dcostp + (N — 1)g — 1)

+ (qf(u) — uf(u)) X.n) dX,;

hence ®;, is nondecreasing when ¢ 2 1/(N — 1), u — |u|~%f(u) is nonde-
creasing and § < §,.
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In particular if § has a finite minimum wu, € I, we get by integration
between uy and u € I the following Pohozaev relation:

(1.20)

((q + 1)8 +uf (u) 2] — L

=T
:—%/s (N +q+1)cos®p — N(g+ 1)dcosyp + (N —1)g — 1) dS,

/X.ncoswd2u+u/ siny d¥,,
Zu Eu

- (2w~ ufw) v,

where S, is the part of S under H,, and V, is the domain of R¥*! with
boundary S, U 2,,.

When § = 0, N = 2 and f(u) = u we find again the Green’s identity of
Finn, see [F5].
Remark 1.3. It is interessant to notice that, when (and only when) N =2
and f(u) = u, then, up to a constant, the function G coincides with the
Pohozaev function ¢ ; :

— r2 cos 1.

1 1 2
(1.21)  G(u) = ¢o1(u) + 3= i(ru + sin)? + c052 v
Hence in this case the use of G, or ¢y 1, is equivalent to the use of Green’s
identity of [F5].
Remark 1.4. Let us mention at least an energy function used in [FLS]:
it is
['(s) = r*™=Y (sin o + 2F (u) cos ¢ — F*(u)),

which is nondecreasing when F(u) < 2, since

dr

P (5) = 2(N — 1)r*N 3 F(u)(cos? 1 — F(u) cosyp + 1).

2. Existence results.

First we consider the case where f is a power, given by (0.8), where A
is a positive parameter. The change of variables u(r) = a~'v(ar), where
a = (A\/(N — 1))=Y reduces the problem to the case where A = N — 1.
Using the fixed point method of [CF2] we get the following, see Appendix
A:

Theorem 2.1. For any q > 0, there exists a local solution m — U(r) of the
equation
u” N -1 u’

(14 u'2)3/2 (r) + r m(r) + (N = 1)Ju(r)|* u(r) = 0,

(2.1)
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such that
N+1)+2
(2:2) U(r) = -7+ %’”% + o(r)).
Remark 2.1. As in [CF2] one can obtain an asymptotic expansion

for U(r) in powers of r near 0, which only contains powers of the form
r2+1/a+2p(14+1/9) (p € N). Notice that U is asymptotic to the curve r — —r~1/4
and more precisely 1/r + f(U)/(N —1) = 1/r — |U|? = 0(r'*?/9). A last U is
locally concave. The question of uniqueness is open. In [B2] we proved the
uniqueness among locally concave functions when ¢ = 1.

The fixed point method gives accurate results but we could not extend it
to more general functions f. Now, following the idea of [F5] we start from
the regular solutions.

Theorem 2.2. Suppose that
(2.3) u— |u|"YWNDf(u) s nondecreasing on (—00,a);

then there exist b < a and a sequence of reqular solutions of (0.12) converg-
ing uniformly on any compact set of (—oo,b] to a singular solution of the
equation.

Proof. For any uy < a, denote by r(.,ug) the regular solution starting from
uo. Let b < a — 1 such that |f(b+1)| > 1/2\/§ and let d < b. We are going
to prove as in [F5] that

(2.4) There exist € >0 and A < d such that inf  r(u,uy) 2 €.

[d,b] x (—o00,A]

Suppose it is false. Then for any sequence e, — 0 there are 4,, € [d, b], ug, —
—00, such that 7, = r (U, Uo,n) = ming, b] r(u, upn) £ €, From (0.4)we can
take d large enough such that f(u)/f?(u) < 1/(1 + \/_> on (—o00,d) and
|f(d)| > 2, and take ¢y < min (1/2,( —1)/3V2|f(d — )]) . Then we claim
that
(2.5)

There is a u, € [d — 1,b + 1] such that 7, = r(u,, wn) < €, and 7,

is a minimal point of the curve (., ug).
Indeed either 7, is a minimal point, or %, = b and 7(b,uo ) < 0, or 4, =d

and 7(d,ug,) > 0. When @, = b (resp. @, = d) there exists a u,, € [b,b+¢€,]
with 7, = r(Un,uon) < T, and 7, = 7(up,uo,) € (—1,0] (resp. wu, €
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[d,d — €,] with r, < 7, and 7, € [0,1)), since r remains positive. When
i, = b, we get 7,/ (1+72)%/2 = 2|f(un)| > 0, from (0.12). Then for u—u,, > 0
small enough, we get again 7/(1+72)%/2 2 2| f(u,)|, and this is true as long as
7 is negative, since |f(u)| < |f(u,)| and 7? is decreasing. By integration we
deduce that 7/v/1 + 724+1//2 = 2|f(b+1)|(u—u,), hence there is a minimal
point in [b,b + 1]. When %, = d we get again 7, > 0, and for u —u,, <0
small enough we have 7/(1 + 72)%2 > 3|f(u,)| — |f(u)|; and this is true as
long as 7 is positive and |f(u)| £ 3|f(u,)|. By integration we deduce that

(26)  1/V2—7/VI+7 2 F(un) = F(u) + 3| £ (un)| (un — )
2 (3[f (un)| = |f (W)]) (tn — w).

Then there is a minimal point in [d—1, d] : if not, taking v = u, —1/|f(u,)| in
(2.6), we would have 1/v/Z 2 3| (u)|/| (un)]; but 1/]£(w)] = 1/ (un)|(1-
(f/£2)(&,)) with &, € (u,u,), hence 1/4/2 = 2 — 1/4/2, which is false. Then
(2.5) is proved.

Now we use for 7(.,uo,,) the Pohozaev function ¢ = ¢ 1/(n_1) defined in
(1.12) by

—Luf(w) + (N = 1

(2.7) d(u) = (——cosz/) + N Si2¢) ;

from (2.3) ¢ is decreasing with v and
_ -1 cos’ 3 r ( fl(u) ;
(2.8) bu) = —rV (N S (N Y- uf(u)>) .

By integration we get

(29) N[ )] = 06X).

since u, remains in [d — 1,b + 1]. On the other hand we can also choose &g
such that e, < (N —1)/|f(d — 1 — NM+/2)|, where M is defined in App.
B, Lemma B.2. From Lemma B.2, there is an unduloid €2, with extremal
points (4, 7y), (Vn,0n), With v, < u,,0, > r, and curvature |f(v,)|/N. As

in [F5] it lies below the curve 7(.,up,) with an angle 6 € (%,%) for any
r € (Tp,0y); then

|¢(u7z)|/NZ/u N lcscii“;)/)d >/a" rN =1 cos 9| dr

> / rN=1| cos 0| dr.

n
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But the last integral is bounded below by a positive constant; indeed from
Lemma B.1, the sequence (v,) is bounded, hence we can extract a sub-
sequence (v,) of limit v. From Lemma B.2, we have limk, = 1, limo, =
N/|f(v)] > 0; then the curves §2;, tend to a lower quarter circle with center
(0,v) and radius N/|f(v)|. Hence we get (2.4) by contradiction.

Now from (1.7) we have, for any (u,uq) € [d,b] x (—o0, A],

(2.10) V1+72 < N/rlf(u)] < N/e|f(b)],

hence

(2.11) sup |7 (u, uo)| < +oo.
[d,b] X (—o0,A]

From equation (0.12) it is the same for the higher derivatives. Then for any
sequence of regular solutions of (0.12), with initial data ug, — —oo, there
is a subsequence converging uniformly on any compact set of (—o0,b] to a
positive function u — r(u), solution of (0.12) on (—o0,b]. Morcover, going
to the limit in (1.7) for regular solutions, we get 0 < r(u)|f(u)] < N sinp,
hence lim,,_, ., r(u) = 0 and u — r(u) is singular solution of (0.11). From
Proposition 1.1, it can be extended to (—oo,a) and satisfies (1.7) on the
whole interval. O

Remark 2.2. The assumption (2.3) is linked to the Pohozaev function
¢; it means that f does not increase too slowly at infinity. It is satisfied in
particular by any function f such that z — |f(—z)| is convex for large z > 0.
When f(u) = |u|?" u, it reduces to the condition ¢ 2 1/(N —1). Comparing
with the result of Theorem 2.1, we conjecture that (2.3) is not needed.
Remark 2.3. The method of comparison with an unduloid such Q ,,
defined implicitely, was used in [F5] and also in [I] to study the bounds of
the radius r(0) when N = 2 and f(u) = |u|? 'u with ¢ > 1.

3. Local behaviour of the singular solutions.

Here we look at the behaviour near —oo of any singular solution u — r(u).
Either it is decreasing near —oo, hence it defines a function r — wu(r). Or
the sequence of extremal points is infinite, and r(u) crosses the basic curve
r = —(N —1)/f(u) infinitely many times.

Our best results concern the case N = 2. At first, under simple assump-
tions on f, we prove that the curve is asymptotic to the basis curve:

Theorem 3.1. Suppose that N =2, and f satisfies

(3.1) f/f2 e L' (~c0,a) and  lim (f'/ff) (u) = 0.

uU——00
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Then any singular solution satisfies

62 lm ) = -1
(3.3) dim_i(u) =0 <that i lim_ (u) = g)

Proof. Here we use the energy function defined in (1.10) for any singular
solution r(u) : let

(3.4) G(u) =r*>= + %2- —r2f(u)¢,

>
2
where ¢ = cos; then, since N = 2,

§2
e
From Proposition 1.1 and assumption (3.1) the function u — r2f(u) is
integrable on (—o0,a). Set

~r*f(u).

(3.5) Glu) = —2rf(u)

(3.6) W (u) = / 2 w)e dw;

—00

then the function H = G + W is nonincreasing; it is bounded near —oo;
indeed from (1.7), (1.9) we have

(3.7) [ré(w)| = |rfw) + V=] <3
moreover |r2f(u)| < 2f(u)/f*(u), hence from (0.4)
(3.8) lim 72 f(u) =0.

Then H has a finite limit £/2 at —oo, and from (3.6), (3.8), we get

: 242 | ¢#2) _p>
(3.9) uHI_noo(’r‘f +§)_e=o.
Suppose first that £ is positive. Let b < a and
v dw
3.10 vuz/ <0 forany wu<b;
(3.10) =] y

then, from (1.7), N|v(u)| 2 F(u) — F(b), and lim,_, o, v(u) = —oco. Taking
v as a new variable, (3.9) becomes

(3.11) Jim ((%)2+§2> =4.
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If € keeps a constant sign, then lim,_,_. £ = +v/?2 and lim, , ;i—g = 0;
v

since 7 = £/4/1 — &7 then there is a ¢ > 0 such that |7(u)| > ¢ for large
|u|; this is impossible since lim,_, o, 7 = 0. Then £ is necessarily oscillating
near infinity and it least period in v goes to 27. Let (u,) be the decreasing
sequence of the zeros of ¢ less than b : we can suppose that 7o, = 7(uy,) is
a maximal point, hence 75,|f (u2,)| > 1 and ry,,; is a minimal point with

Tant1|f(Uznir)] < 1.
From (1.7), (3.10) we have

(3.12)
0(thn) = V(tpgs) = /

Un  dw

41 T’( )

25 [ )l 51 - )

this implies the estimate
o5
Uy — U <
" (un)]

Since 1/ f (tnr1)=1/f (n) = (Uns1—tn)f(An)/F2(An) for some A € [tni1, Unl,
we get, from (0.4) and (3.13),

(3.14) lim  f(uni1)/f(un) =1

r—+400

(3.13)

for large n.

hence for large n,

(3.15) )] S f ()] € 20 (un)]-
Now the function

Hw) .« &
(3.16) U= = =rf(u) =

isin L'(—o00, a), since H decreases to a finite limit. Let us look at its integral
between us,;; and ugy; let w, € (Uani1,us2,) be the unique intersection
point with the basis curve: r(w,)|f(w,)| = 1. From (1.9), £ is decreasing on
[wn,u2n] and from (3.7), (3.9), lim&*(w,) = £(1 — £/4) € [3£/4,3/4]. Then
&, = (\/_/2 \/—> for large n. Now 7|f(u)] 2 1 on [way,, us,]; then

an) [ i)z [ ) s i
2/“%f’(u) ﬁ‘mz/“fm) & dt
e T VI8 Z Je o @] VT8 |
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From (3.9) we have on [¢,/2,&,]
&/ (w) S S 11e/16 - € <,
for large n; hence there is an 7, € [Uugp41, Usy,] such that

(3.18)

f(na)
|f ()]

divergent: let 7, (resp. 0,) be a maximal (resp. minimal) point of f on
[U2n+2, Uan]. Then there is a (, € [7,,0,] such that

from (3.13), (3.15). Let us prove that the series (ugn — Ugnaz) is

flon) = f(1a) = (00 — ) F(Ca)s
then from (3.13), (3.15),
|f(on) = f(r)| [ £(¢a) S 107 (£ ] ££) ()

from (3.1) we get | (o) = f(7a)] £ f(Ca)/2 £ £(70)/2, then f(n,) = f(7.)/2,
and

7

f (1) Lo f(u)
(Uon — Uznt2) 2 7

P 4 s ()]

Hence the series is divergent, since f/|f| is not integrable at —oo. By con-

tradiction we deduce that

(3.19)

(3.20)
uli)gloo G(u) = uli)r_noo (r2£2 + {2) = uEEIlw ((rf(u) + sine)® + cos® 1) = 0.
Then we get (3.2) and (3.3). O

Remark 3.1. Assumptions (0.4), (3.1) are satisfied in particular by f(u) =
—elvl* for any positive k, by the powers f(u) = |u|?"'u for any ¢ > 0, by
f(u) = —log(1 + |u|), etc ... ; similar assumptions were introduced in [A].
When f satisfies (0.3), (0.4) and is convex or concave, then the assumption
f/f% € L'(—00,a) is equivalent to: f2/f3 € L'(—o0,a), since

G2y [ ()@= (f1r) w2 [ (715) @

u
—00
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and then (f/fQ) = f/f2—2f%/f% € L}'(~00,q).

Remark 3.2. Under the assumptions of Theorem 3.1, we have obtained
(3.20). By integration we get from (3.4), (3.5) the following relation on
(—00,a) :

(3.22)
r2§'2+(§— r2f(u)) +4/

dt = rif —2/ (t)€ dt

2u)+2/ 7’2

1—8

Hence with (3.2) we deduce the estimates

(3.23)
|f|=|cos¢1§<z(f/f2)<>+f(/ (/1) ) d )/)(Ho(m,
(3.24)
1/2
irf(u)—1|§((f/f2)<u>+f ([ (7)) war) )<1+o<1>>.

When f is convex for large |u| (which means that z — |f(—z)| is concave
for large > 0) we deduce from (3.22) that

(3.25) max (J¢], Irf (u) — 1)) £ V2 (f /£*) () (1 + o(1)).

When f is a power we can give more accurate estimates and prove that, in
case of convexity, the singular curves u — r(u) cannot admit a vertical point
on (—oo,a); in the linear case we find again the result of [F5] by another
method.

Theorem 3.2. Suppose N =2 and f(u) = |u|?" u for any real u. Then:
(i) If 0 < ¢ < 1, any singular curve can be expressed as a function
r — u(r) as long as u < 0.
(ii) For any q > 0, the singular curves u — r(u) satisfies the following

estimates near —oo, with ¢ = |q¢ — 1|3/q/8(¢ + 1) :

c 29+ c
< <
gL eD) £ eosyp < T

(3.27) Hul? —1/7] < (g +¢)r'/9(1 + o(1)).

(3.26) (1 +o(1)),

Proof. When ¢ = 1, then W = 0, G is nonincreasing from 0, hence non-
positive. From (3.4) we have &(u) 2 0 for any u € (—o0,a). If £(7) =
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for some u < 0, then £(@) = 0, G(@) = 0 and G = 0 on (—o0,m); that
means that 7 = 0 and 7f(u) +1 = 0 on (—o0, %), which is impossible. Hence
&(u) = 7(u) > 0 and the curve can be represented as a function r — u(r) as
long as u < 0.

Now consider any ¢ > 0. Let € > 0; from (3.2), (3.22) we have for large
|ul

(28) (- gl o [ S

- v g
< (gri|ulT)? 4 2qlq — 1](1 + 6)/_ lt||'14|rz dt

From Hoélder inequality we deduce that, for any a > 0,

_4q
1+e¢

52
—oo |2l

< 20,.19—1\2 Q|q_ 1|(1 €) 1 .

@m)ﬁ§+@—wmmﬂy+( —ﬂmﬁmu+a) dt

taking « 1 ( > 0 if 1) we get
i = —+——— (or any o fg=1)w
S ! &
2
242 20 1a-1\2 < 21 19—1\2 q(qg—1) 3 1 .

hence the estimate (3.26); and

Irél = [rlul’ - VI=€7| < (q+|q /56 ),u,q+11+ o(1)),

but /T — &2 — 1 = 0(1/|u|?@+), hence (3.27).
_ Suppose now that ¢ < 1. From (3. 5), if there is any u < 0 such that
G(u) = 0, then at this point

(3.30) g/\/l —&2=—(1-gq)r /21u| <0,

and if |u| is large enough, & = — (1 + o(1)). This is impossible from

2|9+t
the estimate (3.26), since ¢ < (1 —'q)|/2. Then for large |u|, G is decreasing,
negative, and £ is positive from (3.4). In fact G is decreasing and negative
on (—00,a), since it is decreasing as long as £ > 0 and nonnegative when
& = 0. Then £ is also positive on (—o0, a) and the curve can be expressed in
terms of a function of r on this interval. O
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We cannot extend our previous results to the case N > 2, because the
derivative of the function G defined in (1.10) contains the new term
— (N - 2)7"5{2/ V1 — &% which has the sign of £ and is not necessarily inte-
grable. However, we can give precisely the behaviour of those of the singular
solutions which have no vertical point near —oo; we prove also that when f
is convex (for example f is a power less than one), such a solution has no
vertical point whenever u < a :

Theorem 3.3. Suppose that N 2 2 and f satisfies

(3.31) (f')_/f2 € I} (=00, a).
Then:
(i) Any radial local solution r — u(r) of (0.1),(0.2) satisfies
(3.32) limrf (u) = —(N — 1),
(3.33) lim u/ (r) = +00.

(i) When f(u) = 0 on (—o0,a), u can be extended as a function of r on
whole (0,7(a)), and satisfies on this interval the estimates

(3.34) 0<é=costp < 2rif(u)/(N —1),
N+1 . N -1 rf(u)
(3.35) —mrf(u)<(f(u)|— — < T

(iii) When f(u) = (N — 1)|ul"'u (¢ > 0), then u satisfies near the origin
the estimates

(3.36) 0 <& (2g+ch)ra/e(1 +0(1)),
(3.37 ult = 1/r] £ TEEoro(1 4 o(1),

where ¢t = (g —1)"/q/8(q + 1).

Proof. 1st step. By hypothesis the singular solution is a function r — u(r)
near 0, which means that £(u) > 0 near —oo. Consider the function G defined
in (1.10) by

r2.. N-1
G(u):?fz—f-——?z——

from (1.11) we get

(3.38) Gw) €77 (F) (e
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From (3.31) we can define the function

(3.39) V(u) = /_ oo r (F)” (W) du;

and the function K = G — V is nonincreasing, and bounded near —oo :
from (1.7) (1.9) we have [ré(u)| £ 2N — 1 and lim,_,_., r2f(u) = 0, since
r2f(u) £ Nf(u)/f?(u). Then K has a finite limit £/2 at —oco; hence defining
v by (3 10), we get, as in (3.11),

(3.40) UEIPOO (r2£2 + (N - 1)52) = lim ((%)2 + (N — 1)§2> =/

V——0Q

Since £ > 0 near —oo, we have lim, , o, & = /£/(N — 1) and lim,_, o, %é =
v

0; if £ # 0 then u'(r) = /T —£2/¢ has a finite limit, which is impossible
since u is singular. Hence £ = 0 and we get (3.33), (3.34) from (1.9).

2nd step. Suppose f(u) < 0 on (—00,a). From Proposition 1.1 the curve
can be extended as a function r of u on (—00,a). Here the function G is
decreasing near —oo, with lim, , o G(u) = 0. It remains decreasing and
negative and ¢ remains positive on (—o00,a), as at the end of the proof of
Theorem 3.2. We get (3.34) from (1.11), and also

et N -1(5_ r* f(u )> <27"(4f2(u);

2 —1 N-1)
hence ()
= _E =) rf(u

¢ = lrwl - T=vime| < 2

: d
now & = —d—y—_\/l — &2, then, from the convexity of f,

= "pfule)dp _ g\ T

hence (3.35).
3rd step. Suppose f(u) = (N —1)|u|"*u (¢ > 0). Let ¢ > 0. From (1.10),
(1.11) and (3.22) we extend (3.28) under the form

(3.41)
"'252 2(,,19—1)2 N-2 7'65.2 4q v
N_1+(§—qr|u| )+2N_1 i ____1_£2du+1+6 _mmdt

<l + 2000+ [ i
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hence we get (3.36) (3.37) as in Theorem 3.2. O

Remark 3.3. As in the linear case the estimates (3.36), (3.37) have to be
compared to the very accurate estimates concerning the singular solution U
constructed in Theorem 2.1: from (2.1) it satisfies

(3.42)
€= cosyp= (1+072()) " = grl®/e(1 = mr Vo1 4 o(1)),

and

(3.43) |U|® = 1/r = —prittD/1(1 4 0(1)),

where m = ((3N +1)¢*> + (N +5)g +2)/2(N — 1) and p = g(¢(N + 1) +
2)/2(N —1).

4. Some global properties.

Here we give a global existence result extending those of [CF3], [B2], [APS]:
we shall suppose that a = 0 in (0.3), more precisely that

(4.1) f is increasing on R from —oo to +o00, with f(0) = 0.
The assumption (2.3) can be written under the form

(4.2) fw) = (N = Duf(u), for any u <0,

a slightly weaker assumption on f (whenever f(0) = 0) is

(4.3) (N —1uf(u) 2 NF(u), forany u <O0.

Theorem 4.1. (i) Under the assumptions (0.4),(4.1), each regular or sin-
gular solution of the parametrical system (0.11) can be uniquely extended as
a function u — r(u) up to a real w 2 0.

(ii) If w = 0, then lim,_,o7(u) = +00 and lim, o 7(u) = +o00.

(iii) If w > 0, then F(@) < 2, 7 = lim,_,z7r(u) s finite and lim,_,o 7(u) =
+00.

Let ry = r(0) be the intersection point with the r azis, and 1, = 1(0) be
the incidental angle. When 1, € [7/2,7), the curve has a unique minimal
point @ € (0,w). When, € (0,7/2), the curve can be expressed as a function
r = u(r) on [ry,+00), with lim, o u(r) = lim,, o u'(r) = 0.

(iv) Assumption (4.3) implies ¢, < 7/2.
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(v) Moreover, when f satisfies
(4.4) qf (w) = uf(u), forany u<0, where ¢ >1/(N —1),
then 1, can be estimated by
(4.5) cosh > 2((N +q+ 1)((N - 1)qg — 1))?/N(q + 1).

Proof. (i) From Proposition 1.1 each solution is defined as a function r(u) at
least on (—o0,0); now (0.12), equivalent to (0.11) as long as sin% > 0, can
be written as a system

(4.6)
(#(w), p() = (s (N = 1)(A + p)/r + F(w) (1 + p7)*/?) = H(u, (r, p)),

where H is continuous in u and C* in (r,p) on R x ((0,+00) x R); then
the solution has a unique extension to a maximal interval with upperbound
7 2 0. From (1.3) (1.4), F(u) — cosv decreases to a finite limit when u goes
to @, hence F(u) is bounded and u is finite; then cos has a limit, 72 has a
limit A € [0, +o0]. In fact A is infinite, because of the maximality.

(ii) Suppose & = 0. When u € (-1,0), we know that J(u) > J(—1) >
0 from (1.5) to (1.7); hence ¥~ > J(-1)(1 + 7?) and lim, o7 = 400,

lim, o7 = 400, lim, ;o Zi; =1 and lim,_,3 s = +00.

(iii) Suppose now u > 0. For any u € [0,%) we have ¢ € (0,7), since
J(0) > J(~1) > 0. Then
(4.7) F(@) —e < F(0) —cos®y; < 1,
hence ¢ = 1, lim, ,z% = 0, F(%) < 2 and lim,_,z7 = +oo. If lim, ,57 =
+00, then lim,_,z (J/J) (v) = (f/f)(®@), and J is bounded, which is impos-
sible. Then 7 = lim,_,3r is finite. On [0,%) the curve u — r(u) can only
have one minimal point @, from (1.9); it is the case when ¢, € [7/2, 7).

Now consider the case ; < m/2. Then for any s 2 s; = s(0), the para-
metrical curve cannot have vertical points, since

(4.8) —costp < F(u) —cosyp S —costh; <0,

and the curve can be expressed as a function r — u(r) with » 2 r;, since

d

0 < costp; < d_r < 1. Now (0.6), equivalent to (0.11), can be written as-a
s

system

(4.9)

(w'(r), () = (w0, (¥ = D1 +w?)/r + Fu)(1+w?)*?) = K(r, (u,0),
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where K € C* ((0,+00) X (R* x R)). The solution has a unique extension
to a maximal interval [r;,r,) where u remains positive. First suppose that
Ty = +00; T is the unique extremum of u on [r;,+00), then u decreases
to a nonnegative limit A\, and F(u) — cost has also a finite limit; hence
lim, 4o cos® = lim, ,, o u'(r) = 0, im,_, " = —f(\) from (0.6), and
lim, , o u(r) = 0; at last lim, ,, ., 8 = +oo since as > 1, and the para-
metrical curve is completely described. Now supposerthat Ty is finite; then
u(rz) = 0 and 1, = (r2) satisfies 15| < 1, from (4.8); if ¥, = 0, then
there would be an r € (7,72) such that (TN_lu’/\/l + u'2)’ (r) = 0, which is
impossible from (0.5). Near this point, (0.11) is equivalent to (0.12); then
from (4.6) we have local existence and uniqueness, and the curve can locally
be expressed in terms of r — u(r), since u'(ry) # 0. As above, it has a unique
extension to a maximal interval [ry,r3;) where u remains negative. By in-
duction, either u has a unique extension to [r;,-+occ) with a finite number
of zeros r; < ry < -+ < 1y and lim, o, u(r) = lim,_,;, u'(r) = 0; or we
can construct an infinite increasing sequence (r,),>; such that u(r,) = 0,
sign u(r) = (=1)""! on (1, mnt1), and |thn| = [P(ra)l > |pga| > 0. If
limr, = +oo then the curve is completely described for s 2 s;, by the func-
tion » — u(r) on [ry, +00). If limr,, = R is finite, u has a finite limit, since v’
is bounded from (4.8); then lim, ,gu = 0, cos® has also a limit from (1.3)
(1.4); then lim,_,gpu' = 0, since u'(r,)u'(r,+1) < 0; and the function u = 0
is an extension of the solution on [R, +00); it is the unique extension from
(1.3) (1.4). The curve is again completely described on [s;, +00).

(iv) Here we suppose (4.3) and prove that 9, < 7/2. If ¢, = /2 then
there is a unique maximal point @ < 0 on the curve such that 7(u) < 0 on
(,0) (if 4, = Z, then 0 is a minimal point). Let ¥ = r(@); integrating (0.6)
between any r € [r;,7] and 7, we get from (1.7)

(4.10) X
= sing = [ fw)dp < I£@)] (7Y - )/ N
< PN @) N,
which implies
(4.11) |f@)| < Nr~'siny, Vre€[r,7].
Then from (1.3) (1.4),
(412) — F(@) < F(0) — cosy, — F(a)

= —(N-1) /; Sir;d) du < —(N - 1)af(a@)/N,
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which gives a contradiction. Then ¢; < 7/2.

(v) Suppose that (4.4) holds. Consider the Pohozaev function ¢;, , defined
by (1.12) (1.13); it is nonincreasing whenever u < 0, and its derivative is
nonidentically zero. We have ¢;, ,(uo) = 0 for the regular solution starting
at uo; and, from (1.7), limsup,_, _, ¢s,,¢(u) < lim,,_o ™™ (6 — cosyp) = 0
for any singular solution. Then ¢s, ,(0) < 0, which means cos; > d,, that
is (4.5). O

Remark 4.1. As a consequence of Theorems 3.3 and 4.1, when f(u) =
|u|?"!u with ¢ £ 1, the singular solution » — U(r) constructed in Theorem
2.1 has a unique extension as a function of r on whole (0, +00), see Fig. 1,
2. The question is opened when g > 1.

Remark 4.2. When f satisfies (4.4) with a ¢ 2 (N + 2)/(N — 2), then
for any singular or regular solution we have @ = 0 : the curve cannot cross
the axis u = 0. Indeed, at it was proved in [APS] for the regular case,
considering ¢; (v42)/(nv—2) as above, we would get cosiy; > 1 when crossing
the axis, which is impossible; see also (B3] for nonradial solutions.

In the general case, the problem is to determine if u is oscillating or not
is still opened, even for a power. Let us recall what we know up to now:
Suppose f(u) = |u|"u (¢ 2 1/(N — 1)). From [PuS], either the solution
is oscillating, with an amplitude of the order of r—2(N=1/(¢+3) or keeps an
constant sign, and u = 0(r~2/(0=1)) o/ = O(r~(¢+t1/@=1)) at +o0. Since
lim,_, ;o u'(r) = 0, equation (0.1) appears as a small perturbation of the
equation

(4.13) Au + |u|" 'y = 0;

and in fact we can prove that the behaviour near infinity is the same for the
two equations: when u keeps a constant sign, either there is a ¢ > 0 such
that lim,_, ., 7V 2u(r) = ¢, or

Jim /0 Du(r) = - (2N - (N = 2)q)/(q - 1)?)""
(which implies ¢ > N/(N — 2), see [B3]).

When g £ N/(N-2) (or N = 2) the curve necessarily oscillates around the
axis u = 0, see [NiS1]. However from (4.5) when N 2 3 and ¢ = N/(N —2)
the incidental angle is quite small: 9; < 9.6° when N = 3,4, and less for
larger N.

When N/(N —2) < g < (N +2)/(N —2) the question is opened. Numeri-
cally it seems that all the curves cross the axis, see Fig. 6, 8. But if it is the
case, the angle 1, is very small from (4.5): ¢; < 3.9° when N = 3, ¢ = 4,



ROTATIONALLY SYMMETRIC HYPERSURFACES 51

Y < 1.8° when N = 3, ¢ = 4,5; and 4, goes to zero when ¢ increases to
(N +2)/(N -2).

Serrin [S2] noticed that regular solutions with |ug| small enough must
oscillate: indeed their slope is small and (0.1) is again a perturbation of
(4.10), which has no ground state in this range. We can give a more precise
result:

Proposition 4.1. Let f(u) = |u|? v with N/(N-2) < g < (N+2)/(N-2).
Then any regular solution of (0.11) is oscillating for large v, whenever

(4.14) ™™ = (g + 1)(N +2 = (N =2)q)/(N +q+1).

Proof. Consider the function ¢, , defined in (1.12):

|ufatt N Sin¢>
u
g+1 ¢g+1 r

I

h1.4(u) = rN <1 —cos1) +

then, from (1.13),

,rN—l

(q+1)sing

Now from (1.3)(1.4), for any u > ug, F(u) — cosy < F(ug) — 1. Then (4.14)
implies that cosy > ((N—1)g—1)/(N+g¢+1); and ¢, , is increasing whenever
u < 0. Suppose that u keeps a constant sign; then u(r) = 0 (r=2/(¢=1) and
sing = 0 (r—+/@=D) ai foo, hence ¢y (u) = 0 (r(N-2a=(N+2)/@-1))
Then lim,_,q ¢; ,(u) = 0, and ¢; 4(uo) = 0, which is impossible. O

(N—l)q—1>.

(N +g+1)(1 —cos) (Cow“ N+g+1

b1,4(u) =

Remark 4.3. The next question is to determine what happens when
f(u) = |u|tu, with 0 < ¢ < 1/(N —1). Since 1/(N — 1) < 1 the singular
solution U has no vertical point, hence ¥; < 7/2. On the contrary for regular
solutions we can see numerically that ¢, can be greater or lower than /2,
depending on the initial data wug, or on the value of ¢, see Fig. 1.

To end this paragraph we give some results about the maximal diameter
of the regular curves, and other related questions, which extend [CF3], [F3],
[F6]. From Proposition 1.2, the maximal diameter is twice the radius r, of
the first maximal point u, under the axis u = 0 (whenever it exists, that is
when uy < Up). For simplification we only consider the case of a power.

Proposition 4.2. Let f(u) = |u|?"'u, where ¢ > 0. Then
(i) There is a uniform bound for the diameter r, of all the reqular solu-
tions.
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)1/ g+1)

(it) On the interval (— ( -1)? /\/2N
lution can have at most one maximal point and one minimal point.
(iii) When ¢ > 1/(N — 1) then more precisely

, ) any regular so-

(4.15) ra < N/ (8,(q+ 1)(IV — 1))/,

where 8, is given in (1.14). Moreover, on the interval

(= @Gl + D@V = 1))V o),

any regqular solution can have at most one minimal point.

Proof. First suppose that ¢ > 1/(IN —1). Consider the function ¢, defined
n (1.12). It is negative and decreasing. Then at the point u, we have, from

(1.7),
8, 4 |ual™ /(g + 1) < Nlug|/(q + 1)re < N**Y9)(q + 1)ri+t/e,

hence r,, is uniformly bounded by N/(6,(q + 1))#/(¢+1), More precisely, there
is a unique inflexion point 7, = r(u,) on the curve, such that u, € [u,,0)
and cos ), < 0. At this point, we have r,|u,|? = (N — 1)sin¢, from (1.9)
and ¢s, 4(u,) < 0; then

b, + 1008 | + g7 /(g + 1) < Nlu,|siny /(g + D)rs
= Nlu, """ /(g + 1)(N — 1),

hence
(4.16) Sa(g + 1)V = 1) < Jug ™ £ Juq|™;

then above u, any regular solution can have at most a minimal point; more-
over 14 < N/|uy|?, hence we get (4.15).

Now consider the general case. Here we follow the proof of [CF3]. Since
To|f(ua)] > N — 1 and 7(uo)|f(uo)| = 0, there is a unique point 7, = 7(u,)
on the curve, such that u, € (uo,uq), rv|f(uy)] = N — 1, and sinyp > 0
on (u.,u,); then on this interval r|f(u)| > N — 1, and there is no inflexion
point, from (1.9), hence ¢ > 1,. Consider the positive increasing function J
defined in (1.5): we have J(u,) > 0, and consequently

(4.17) singh, > (N — 1)/N.

But on (., u,) the curve lies under the “basis curve”, hence at the crossing
point, tg 1, < |u, ]! /g(N — 1). Then from (4.17),

(4.18) q(N — 1) /\/2N 1 < fu, |7,



ROTATIONALLY SYMMETRIC HYPERSURFACES 53

and (ii) follows. Moreover r, = (N —1)/|u,|?, then

(4.19) ry < By, =((N-1)"1aN -1/ q)q/ml) |

Moreover from (1.5)(1.6),

Ta N
Tua) = J(u,) + q/ Tl gy dr,
but J(ua) =7yt —rNuy|?/N < rV=1/N, and tg1) > tg1p, on (r,,r,); then
from (4.17),
N-1

. N-1 /
Ta = q*——_
V2N —1 /.,

on this interval, we have N — 1 < r|u|? < N, hence from (4.19)

eru[”_l dr;

(4.20) pN=1

1\

N+1 N+1/q
CN,q (Ta 17— RN,q ’

where cy, = q(N — 1)>"Y7/(N +1/¢)v2N —1 when ¢ = 1, and ¢y, =
q(N — 1)N'*"Y4/(N 4+ 1/q)v/2N —1 when ¢ < 1. And (4.20) implies an
uniform bound for r,. O

Remark 4.4. From (4.15) we establish that for large ¢, the maximal
diameter of the curves is small, which could be foreseen numerically, see Fig.
4,5, 7.

Appendix A. The fixed point theorem.

Proof of Theorem 2.1. Tt is the direct generalization of the proof of [CF1].
Let

(1) c=(¢(N+1)+2)/2(N —-1), and k=2+1/q.
We write equation (2.1) as a system of unknown (u, v, ag, ;) :

(2)
{u(r) = —r" Y4 (c+ ap(r))rk,
v(r) = ¢ r=@tD/e 4 ke + qy (r))rk!
(3)
{oq (r)= ao )+ k7 trag(r),
v'( = 1) (Ju(r) " u(r) (1 +0*(r)*? + r o (r) (1 +v*(r)) -
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We write it under the form

(4)
{011 (r) = ao(r) + rag(r)/k,
r=P (r*(rPao(r))) +7*r*ao(r) = F(r),

where we choose

(5) y=VN=1/q, B=N/2+2(k-1);

and F is given in function of oy, @; by

6) F(r)=(k—1)g " —k(k - Der* 2+ (8- 1)(B — k)ao(r)r*?
+ k(28 — k)ay (r)r* 2 + y2ao (r)r*
— (V= 1) (Ju()| u(r) (1 +0(r))2 + o(r) (1 + 02 (r)r ),

where u, v are defined by (2). Now introduce the kernel of equation (3): set
a = (ap, ;). Then the system takes the form

(7) a = T(a) = (To(a), T1(e)),

where

(8) To(a) =y~ 1r? /OT 7PF(7) sin : j 1(7—1"’c — %) dr,
(9)

Ty(a) = (1 — Bk ) To(a) + k7 r! Pk /T 7PF(7) cos (r'7F —r1=F) dr.

y
k-1
Let o € (0,2(k — 1)) be fixed. For any M > 0 and any R € (0, 1] we set

(10) Bs = {a= (a0, @) € C° ([0, R}, B?) ||

= 7 <M.
g5 a0+ g e )1 £ 0
We are going to prove that for any M > 0, there is an R = R(M) such that
T is a strict contraction of B gum)-

Notice first that for R(M) small enough, u(r) is negative for any o €
B, r(ary- Then let us compute

(11)
F(r)=(k—1)g 'r % —k(k — Derf 2 + (B = 1)(B — k)ap(r)r*2

+ k(28 — k)au (r)r* 2 + Yo (r)r ™ + r*~*H (a(r),rz(k_l)) ,
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where

(12)
H(o,t) = (N — 1)g 31 — pt)?(1 + mt + s*%)%? — (1 + st)(1 + mt + s*t?),

with
(13) p=c+ay, m=ql2kc+q+2key), s=qk(c+ ).
Then we develop H up to the order 3 in ¢ and obtain
(14)
H (a, 7"2('“’1)) = (N = 1)¢3*(m/2 — qp — s)r**k=1)

+ (N = 1)g7°(s* + 3m?/4 — 3mgp + q(q — 1)p* — 2ms)
i T4(k~1)/2 + 7'6(]“_1)62((1, 7'),

where, for R(M) small enough, for any o € By gy and r € [0, R(M)],

15 |Qa(r)r) + 99—<a<r>,r>}+ g%(amr)[ < o),

8@0

3
and C(M) depends only on M; (15) comes from suitable estimates of ——-

o’
0'H  0'H _
5ot B 08 When using (14) in (11), with our choice of parameters -y, ¢
—k k—2

and g, the coefficients of r=* aor =, a;7¥~2 vanish, so that we get

(16)
F(r) = M2 4+ P(a(r))r* =2 + Q(a(r), r)r**,

where
(17)
A= —k(k—1)c+ (N —1)(3q/4+ (k —3)c — 67 'kc* + (¢ — 1)g°c*) /2,
(18)
P(a) = pay — 3(N — 1)g ' kapey + (N — 1)(q — 1)g %3 /2,
(19)

p=(B-k)(B—-1)+(N-1)q*2(q — 1)c - 3(2kgc + ¢*)) /2.

Now we can estimate the right terms of (8) (9). For any function ¢ on
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(0, +00) we set

(20)
:/0 o(7) sink —

= /OT ¢(7) cos p

and get for any real p > —k the relations

(21)

(1% —r1=F) dr,

(2 W)=y p+E)S (P,
(23) S(r°) = '7—1(/) + k) — ’Y_?(p +2k—1)(p +k)S (,rp+2(k—1)) _

They imply the estimates

(24) S (Tp) = ,),—l,rp+k +0 (,,,p+3k—2) ,
(25) C (r*) = v~ 2(p + k)rP 261 4 0 (rPek=3)
Then

fy‘lr_ﬁS (/\rﬂ+k 2) _7-2)‘7, 2(k—1) +0< (k— 1))’
Llpl=B-kC ()\rﬁ+k 2) = 2% (B + 2k — 2))\,,,2(k~]) +0 (r4(k—1)) :

moreover from (10) and (15) we deduce the following estimates, with new
constants C(M) :

IS (P(a)r®*E2)| + |C (P(a)rPTF=2%)| < C(M)rPHE1te,
IS (Q(ar, r)r? P54 | + |C (Q(ov, 7)rP T3+ 4)| £ C(M)rPH3t=1),
Then for any o € B, r(m)s
(26 IT@l £ C(M) (R(M)* D=7 + R(M)*™* + R(M)") ,
hence T applies Bar,r(n) into itself for R(M) small enough. Then we esti-
mate ||T(a) — T(@)|| for any «, & € B r(m). From (10) and (15) we get
IS (@0 — @0)r"™*7%)| + |C (@0 — Go)r***7%)| £ CMOr* 7 |Ja — &,
;S ((a0a1 — Oloal) Atk=-2 | + ‘C Qoyp — aoal) Btk 2)|
< C(M)r" =1%o — all,
1S (0} — @g)r’** )| + |C (a5 — @)r’**=%)| £ C(M)r7H 712 |a — 4,
1S ((Q(a,7) — Q@ M)r*** )| +|C ((Qa, ) = Q(@, r))r"***)]
)r’

< C(M)rP+ED o~ af;
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hence

(27) IT(e) = T(&)|| = C(M) (R(M)*" + R(M)7) [Jee — &,

and T is a strict contraction of By p(a) for R(M) small enough. Conse-
quently it has a unique fixed point «. From (6) (8), ap = Ty(«) is in fact in
C>°([0, R(M)]), so that the function

(28) U(r) = —r~ 1 + (c+ ag(r))r*tH/e,

where ¢ is given by (1), is a solution in (0, R(M)] of equation (2.1), which
ends the proof. U

Remark. With (16) we get the third term in the expansion of U (and the
others, as in [CF1]):

(29) U(r) = —r /04 er™ 1 4 Ay 2p443/9(1 4 o(r)),
where 7, A are given by (5), (17).

Appendix B. Unduloids in dimension N.

The unduloids are rotationally invariant surfaces of constant positive mean
curvature H, without any double points and periodic in u. Hence they are
given by the periodic solutions v — r(u) of the equation

T N -1 1
1 - =—-NH.
W 1oyt 7 Vi

By integration we get

74N~1

@ VTR

where necessarily 0 < A < (N — 1)V "1H=N /NN Set

HrN = A,

(N . 1)N—1 _
(3) A= HTV = BN,
where k£ € (0,1). Denote by 1 the angle between a tangent to the curve and
the r axis, hence cosy =7 /\/1 + 72. Then from (1) (2), it is easy to verify
that k is the maximal value of |cos | on a periodic loop, attained at the

point r = /1 — k*(N — 1)/NH.



58 MARIE-FRANCOISE BIDAUT-VERON

Let T = T'(H, k) be the smallest period of the unduloid Q;, with parameter
k.

u A u A
r T rars r\
b ’ = K
I I
| !
| 1
| |
! ua‘--“"l

ua..l ]
| ]
| |
|
| k near 1 k near O
|

u,

B

{
!

Then from (2) the curve is symmetric by respect to u = @+ T'/2 where &
is any extremal point, and 7 is given explicitely in terms of an hyperelliptic
integral:

—1/2

(4) T:2/rﬂ ((Hr+Ar1"N)_2—1) dr,

where r,, 75 are two extremal points, the two solutions of the equation Hr +
Ar'=N = 1. In order to study the period function 7" we use another way:
when N = 2 any unduloid is the curve traced by the focal point of an ellipse
when it is rolled on the u-axis. Hsiang and Yu extended this classical result
to the dimension N in [HY]: for any unduloid Q there exists unique polar
coordinate graph I', 8§ — p = f(6), such that Q is the trace of the origin by
rolling I' on the u-axis. Then I is a periodic curve of period 7, T is equal to
the arc length of I' between # = 0 and @ = 7, and the extremals of r and p
are the same. From [HY], Theorem 3, there is a 8 > N%(H/(N — 1))?~%/N
such that

do \? 2N _ 2
%> = B(w — H)* —w?, where w =1/r.
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Then we get

()

( ( )2)” &

— / -1 2/N 2( —Hp)_2/N>_l/2 dp.
P

But p, = 74, ps = 75 are the solutions of the equation p?>~2/N(1 — Hp)¥"N =
B, hence B = A~?/N and we get a second formula for T :

1/2

Tﬁ _
(6) T = 2/ (1 _ AZ/N,,-?/N—Z(l _ H,,,)~2/N) dr.

Now we can prove the following lemma, which extends the results of [F5] to
any dimension N :

Lemma B1. The period function of an unduloid 2, with curvature H and
parameter k is given by

(7) T(H,K)=1(k)/H,
where I is a continuous positive function on [0, 1].

Proof. For any k € (0,1), we make the change of variables r = (N — 1)(1 +
t)/NH in formula (6), and get (7), with

AN 1) e 12T
(8) 1)) = 25 /w) (1 R ) dt,
where
(9) K(t)= (148> 2/N(1 - (N - 1)t)*7,

and t,(k),t3(k) are the two solutions of the equation K(t) = 1 — k?, with
—1 <t,(k) <0<tg(k) <1/(N —1).

Now the two functions t,,ts are differentiable in (0, 1), and we can write,
as in [BB],

1—k2\ "
(10) 2( /d—ﬁ-t )(1-T:Z-Q-> dt
/ tﬁ—t )V1~k27’2 1dT o

-7
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Then I is a continuous function on (0, 1), obviously positive. We have to
prove that I has positive limits at 0 and 1. Let for any ¢ € (0, 1),

(11)

_ 4y A= = 11 —0

WD) = gglts ~ V= =2 (zc(ta(q)) ") V1
then W is nonnegative. When N =2, W(q) = 2\/1—_-7 and we find agaln
the result of [CF3], [F5]: I(k) = 2E(k), whereE 21— k2 sin’ w dw;
and I is decreasing from « to 2 on [0, 1]. Now look at the case N >
2 : we get easily lim,_,0 g 't5(q) = —lim,,0q *ta(q) = 1/ N — 1, hence
lim, ,o W(q) = 2/v/N — 1. Now we have lim,_,; t,(q) = —1, lim,_,; tg(q) =
1/(N —1), then lim,,;(1/K'(ts(q))) = 0 since N > 2. We get

lim 2(1 — ¢)7/2V"UW (q) = N/ /(N 1),
q—

hence lim,_,; W(g) = 0. The function W is bounded on (0, 1) and we can
apply the Lebesgue theorem, since (1 — 72)~%/2 is integrable. We obtain
limy_,; I(k) = 2 and limy_,o I (k) = n/V/N — 1. O

Remark. From (5), Hsiang and Yu had given in [H, Y] an upper bound

for T, which means that I(k) < 2(m + 1). Here we prove that I has also a

positive lower bound in (0, 1). Incidentally one could expect the form (7)
-1

77 GRAR I

reduces equation (1) into the equation of an unduloid of curvature N —1:

s dv? N-1 1

of function T, since the change of variables r(u) = U

L+ @s/a)y” 5 Jir @R ~(N - 1);
hence T'(H, k) = {VJ_V%I}T(N —1,k).

In the following lemma we construct an unduloid of comparison in dimen-
sion N, whose curvature is given implicitely, as in [F5], [I] when N = 2.

Lemma B2. Let b < a,v, < f and r, be small enough: such that

(12)

0<ry <(N—-1)/|f (va —NM/2|f(b)]), where M = Joax, I(k).
Then there ezists an unduloid Q) with consecutive extremal points (va,Ts),
(vg,7g), with vg < V4, Tg > o and curvature |f(vg)|/N. Its parameter k is
given by the relation

(13) k? =1~ K(=1+r|f(vg)l/(N = 1)),
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where K is defined in (9).
Proof. If £, exists, its period is given by
(14) T(k) = 2(va —vg) = NI(K)/|f(vs)]-

For any k € [0, 1] there is a unique v(k) < v, such that

(15) 2(va —v(k)) = NI(k)/|f(v(k))]-
Indeed the continuous function v — y(v) = 2(v, — v) + NI(k)/f(v) is de-
creasing from (0.3), and lim,, - y(v) = 4+oo and y(v,) < 0. Moreover

v(k) > v, —NI(k)/2|f(b)|; then from (12), t, = —1+7r,|f(v(k)|/(N—-1) < 0.
Consequently 7, is a minimal point of  if and only if K (t,) = 1 — k?. Let
us define for any k € [0, 1],

(16) O(k) = (1~ K(ralf (v(R)l/(N — 1) = 1))"/%.

Then from Lemma B1, O takes [0, 1] continuously into itself, and has a fixed
point &, and () satisfies Lemma B2. 0
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R=12.00

N = 2.00
a = 0.10
u¢o» = -16.0
L thick width = singular solution
normal width = non singular solution
—"1
Figure 1.
v

—
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N = 2.00
a = 0.30
wo = -8.00

thick width

nornal width

singular solution

non singular solution

Figure 2.
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R= 0.10

N = 2.00
a = 2.00
uc<o> = -5.00

thick width

normnal width

singular solution

non singular solution
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Figure 3.
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nornal width

Figure 4.

singular solution

non singular solution
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u
A= 1.00
I N = 3.00
a = 3.10
uo> = -3.00
thick width = singular solution
nornal width = non singular solution
Figure 5.
[ v

N = 3.00
qa 3.10
u¢o> = -3.00

thick width = singular solution

n

normnal width = non singular solution

Figure 6.
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thick width = singular solution
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Figure 7.
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Figure 8.
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