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In this paper we define the covers of a module and describe
some of their applications.

1. Introduction.

Let R be a commutative ring and A an R-module. A cover of A is defined to
be a subset T" of Max(R) satisfying that forany z € A, = # 0, thereis M € T
such that 0 :p z C M. If we denote by J the intersection of all the maximal
ideals belonging to T" and suppose that A # 0 is finitely generated, then we
have JA # A. This generalises the Nakayama’s lemma; if, in addition, R is
Noetherian, then ﬂlJ "A = 0. This is a generalization of a well-known result.

A key observation for the covers is that, in the case that R is Noetherian
and A is finitely generated, there is a cover T of A which is itself a finite
set. From this we have the following result: Let R be a Noetherian ring.
Then there is a finite number of maximal ideals M;,... ,M,, of R such
that ﬂ J* =0, where J = ﬂ M;. This generalises the Krull’s theorem for

Jacobson radicals. Using t thls result we can embed the Noetherian ring R
in the J-adic completion R of R, which is a complete semi-local Noetherian
ring; besides, if R is a Cohen-Macaulay (C-M for short) ring, then Risa
C-M ring. We also use the covers to deal with the maximal component of a
finitely generated module over a Noetherian ring, which was introduced by
Matlis in [3].

Throughout the paper, R will denote a (non-trivial) commutative ring
with identity. Also, if T" is a subset of Max(R) we denote by NT' (resp. UT)
the intersection (resp. union) of all the maximal ideals belonging to T

2. The covers.

In this section we define the covers of a module and generalise some known
results.

Definition. Let A be an R-module. A subset T of Max(R) is called a
cover of A if for any z € A, x # 0, there is M € T such that 0:g 2 C M.

Clearly, if T is a cover of A and B is a submodule of A, then T is a cover
of B. If T is a cover of A and T'C T" C Max(R), then 7" is a cover of A. We
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say that T is a finite cover of A, or A has a finite cover T, if T is a cover of
A and T is itself a finite set. If T is a cover of A, we also say that T covers
A.

Lemma 2.1. Let T be a cover of A. Then each r € R — UT is A-regular.
Indeed ifa € A — {0} and ra =0, thenr € (0:5r a) C M for some M €T,
a contradiction.

Proposition 2.2. Let A # 0 be a finitely generated R-module and T a
cover of A. Then JA # A, where J =NT.

Proof. Suppose that JA = A, then there is r € J such that (1 +r)A = 0,
which contadicts Lemma, 2.1. O

Proposition 2.3. Let A be an R-module, T a cover of A, and I € 0:5 A
an ideal of R. Set J = NT. If AJ0:4 I is finitely generated, then JA+ (0 :4
I) # A.

Proof. Since I € 0 :g A, AJ0 :4# 0. Let T € A/0 :4 I and Z # 0. Then
0:rZ=0:41):gzC0:gIz. Sincexz ¢0:4 I, Iz # 0. Take r € I such
that rz # 0, then 0 :g Z C 0 :5 rz. it follows that T is a cover of A/0 :4 I. By
Proposition 2.2, J(A/0:4 I) # A/0:4 I, hence JA+ (0:4 I) # A. |

Proposition 2.4. Let R be o Noetherian ring, A o finitely generated R-
module, T a cover of A, and I CNT an ideal of R. Then °rjll"A = 0.

Proof. Set °rj’1["A = B. By Krull’s theorem, there is 7 € I such that (1 +
r)B = 0. From Lemma 2.1, B = 0. 0

Proposition 2.5. Let T be a finite subset of Max(R) and A an R-module.
Set J =nNT. If °r_<1’1J"A =0, then T is a cover of A.

Proof. 1f it were not true, there would be a non- zero element z of A such
that for any M € T, 0 :g z € M. Thus for any integer n > 0 we have
(0:rz)+ M™ = R, so M"z = Rz. It then follows that J"z = Rz, and thus

cﬁolJ "A # 0, a contradiction. M|
n=

Let R be a Noetherian ring and A a finitely generated R-module. We
know that Ass(A) is a finite set. Let Ass(A) = {P,, ..., P,}. Choose a finite
subset T' of Max(R) in such a way that for any P;, there is M; € T such that
P, C M;. Since for any z € A, z # 0, there is P, such that 0 :5 z C F;, it
follows that T is a finite cover of A. Hence finite covers exist for any finitely
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generated module over a Noetherian ring. In particular, any Noetherian ring
(as a module over itself) has finite covers.

As a consequence of the above remarks and Proposition 2.4 we have the
following theorem.

Theorem 2.6. Let R be a Noetherian ring and A a finitely generated R-
module. Then there is a finite subset T' of Max(R) such that O(SIJ”A =0,

where J = NT. In particular, if A =R, Orle" =0.

It is clear that if R is a Noetherian ring and A is a finitely generated
R-module, then for any cover T of A we have T' D Ass(A) N Max(R).

In general, if T is a cover of the module A and B is a submodule of
A, T is not a cover of A/B. For example, if T is a cover of the ring R and
T # Max(R), then for any M € Max(R) — T, T is not a cover of R/M.

Proposition 2.7. Let R be a Noetherian ring, A a finitely generated R-
module, B a submodule of A, and T a finite cover of A. Then T is a cover
of A/B if and only if B is a closed submodule of A in the J-adic topology,
where J = NT.

Proof. Suppose first that B is closed, then we have norjl(J”A + B) = B,
e :rle”(A/B) = 0. By Proposition 2.5, T is a cover of A/B. Conversely,
if T is a cover of A/B, then nFle”(A/B) = 0, by Proposition 2.4. So
A (J"A+ B) = B, and hence B is closed. U

n=1

Proposition 2.8. Let R be a Noetherian ring, A a finitely generated R-
module, B a submodule of A, and I an ideal of R. Then it is possible to
choose a finite subset T' of Max(R) such that :61(‘]”/4 +I*B) = I*B, for all
s > 0, where J =NT.

Proof. By [5, Theorem 5.5(1)], the sequence Ass(A/I®B) is constant for large
s, thus the set E_JOO Ass(A/I°B) is finite. Hence it is possible to choose a finite

subset T' of Max(R) in such a way that T covers all A/I°B. By Proposition
2.4, the Proposition follows. 0l

3. The maximal component of a Noetherian module.

Throughout this section and the next section the ring R will be Noetherian
and the modules will be finitely generated.
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Let A be an R-module and define X(A4) = {z € A| every prime ideal
containing 0 :p = is maximal }. Then X (A) is a submodule of A. Matlis [3]
called X (A) the maximal component of A. By [3, Corollary (3)], X(A) is
the sum of all Artinian submodules of A, and hence is the largest Artinian
submodule of A, since A is Noetherian. Further, X(A/X(A)) = 0.

Chatters [4] gave a similar discussion for Noetherian rings (not necessary

to be commutative).
From [3, Corollary (1)] and the fact that X (A) has finite length we have
the following result.

Theorem 3.1. Let T be a finite cover of A. Set J = NT. Then X(A) =
EI(O 4 JM).

The following result is standard.

Lemma 3.2. Let I be an ideal of R and A # 0 an R-module. Then
dep;(A) > 0 if and only if0:4 I = 0.

Theorem 3.3. Let A be an R-module, not Artinian. Let T be a finite cover
of A and set J = NT. Then X (A) is the least element of the set

S ={B|B is a proper submodule of A and dep,;(A/B) > 0}.

Proof. Since A is not Artinian, X (A) is a proper submodule of A. By Theo-
rem 3.1, we may assume that X(A4) =0:4 JV. Now

0:a/x(a) J = (X(A):a J)/X(A) =0:4 JVT/0:4 IV = 0.

From Lemma 3.2, dep;(A4/X(A)) > 0. Hence we have X(A) € S. If B is
a proper submodule of A satisfying that dep;(A/B) > 0, again by Lemma
32,0:4J =(B:4aJ)/B=0,ie, B:4J = B. Hence for any integer
n >0, B:y J" = B. Thus we get that B= B :, JY D 0:, JV = X(4),
i.e., X(A) is the least element of S. |

Corollary 3.4. Let A be a non-zero R-module and T a finite cover of A.
Set J =NT. Then dep;(A) > 0 if and only if X(A) =0.

Let T = {Mi,...,M,} be a finite cover of the R-module A. We want
to find the relations between X (A) and X (Au,), 1 < i < n. For any P €
Spec(R), if K is an Rp-submodule of Ap, denote by K¢ the contradiction
of K to A. We have (K¢)p = K. If B is a submodule of A, then (Bp)°¢ =

e}L{J_P(B :a 7). It is also easily checked that if B is a submodule of A and



THE COVERS OF A NOETHERIAN MODULE 73

K is an Rp-submodule of Bp, then (K°N B)p = K. It follows that if B is
an Artinian submodule of A, then Bp is an Artinian submodule of Ap. In
particular, we have X(A)p C X(Ap).

Theorem 3.5. Let A be an R-module and T = {M,,... ,M,} be a finite
cover of A. Set J =NT. Then

X(4) = ﬁlx (An )"
Proof. Since X(A) C (X(A)um,)" € X (Ap,)¢ for all i, we have X (A4) C
_ﬂX (An.)°. On the other hand, from Theorem 3.1 we can take a fixed
integer s > 0 such that X (Au,) = 0:4, MRy, for all i. Hence

X (Aar)" = (0iay, MiRas,) = (004 M)y ) = U (04 M) ia).

rcR—M;

Ifze Ar_Qth (Aur,), then for each i there is r; € R— M, such that r;Mfz = 0.
Since r, R + M; = R, we have M; "'z = M?z. Thus
MMt e = MEP Mz = MMt e = M3 MPx = M Mix.

Similarly we have M- .. M**ty = M?--- M3z. So J**'z = J*z, and hence
J°z = 0 by Proposition 2.2. Thus z € 0 :4 J* C X(A), and the proof is
complete. O

In the remainder of this section we consider modules over local rings.

Lemma 3.6. Let (R, M) be a local ring (M is the unique mazimal ideal of
R) and A an R-module. If A is not Artinian, then dim(A) = dim(A/X (A)).

Proof. By the definitions of dim(A) and dim(A/X(A)) we need to show that
rad(0 :g A) = rad(0 :g (A/X(A))). Clearly, we need only to show that
0:5 (A/X(A)) Crad(0:5 A). This follows from the fact that if » € R such
that rA C X (A), then rM*A C M*X(A) = 0 for some integer s > 0, hence
st e :p A. O

Lemma 3.7. [6, p. 105]. Let R be a local ring and A an R-module. If
T1,...,T, 48 an A-sequence, then

dim(A/(ry,... ,rn)A) = dim(A4) — n.

Theorem 3.8. Let (R, M) be a local ring and A # 0 an R-module. Then
there is a strictly ascending chain Ay C --- C A, of submodules of A such
that

i: dep(A/A,) = dim(A).
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Proof. We use induction on d = dim(A). If d = 0, then R/(0 :x A) is
Artinian. It follows that 0 :p A is M-primary, and hence M"™ C 0 :p A for
some integer r > 0. It is clear that dep(A) = 0, and we can take s = 1 and
A; =0 in this case. If d > 0, then 0 :p A is not M-primary, and thus M™ ¢
0 :g A for any integer n > 0. It then follows that A # X (A), by Theorem
3.1. Since X(A/X(A)) =0, dep(A/X(A)) > 0, by Corollary 3.4. Take a
maximal A/X (A)-sequence z,,...,z, and set B = (z;,... ,2,)A + X(A4).
Further, set A’ = A/X(A). From Lemma 3.7 and Lemma 3.6, dim(A/B) =
dim(A4'/(zy,... ,z,)A") = dim(A')—n = dim(A)—n < dim(A). By induction
there is a strictly ascending chain A,/B C --- C A,;/B of submodules of
A/B such that >!_,dep(A/A;) = dim(A/B). Set A, = X(A), then the
submodules A,... , A, satisfy the required conditions. O

4. The completions and embeddings.

Proposition 4.1. Let T be a finite cover of the Noetherian ring R, I an
ideal of R. If we consider R with the I-adic topology, the following conditions
are equivalent:

(1) ICnT;

(2)  the zero ideal and every prime ideal contained in UT is closed;

3) ft (M}A?,) = M for all M € T, where R is the I-adic completion of

Rand f: R— R is the natural map.

Proof. (1) = (2). Since mol’ilm = 0 the zero ideal is closed. If P C UT is a
prime ideal, then P C M for some M € T. Since Assg(R/P) = {P}, we see
that T is a cover of R/P. By Proposition 2.4, m?i([m +P) =P ie, Pis
closed.

(2) = (3). Since {0} is closed, we can assume that R C R. Let M eT.
By [2, Theorem 21; p. 421}, MR is the closure of M in R, hence MRN R
consists of elements of R which are limits of elements contained in M. Since
M is closed we get that MRN R = M.

(3) = (1). Since MR is closed in R and since the map f : R — R is
continuous, M is closed in R for all M € T. If I € NT', then I ¢ M for some
M € T. But then we have I"™ + M = R for all integer m > 0, contradicting
the fact that M is closed. O

Let T be a finite cover of R and set J = NT and § = R — UT. It is
immediate from Lemma 2.1 that the map A — Ags is injective. Also, the
J-adic completion of R is the same as the JRg-adic completion of Rs. So
we have the following result.
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Theorem 4.2. Any Noetherian ring R can be embedded in a complete semi-
local Noetherian ring; moreover, if R is irreducible, then R can be embedded
m a complete local Noetherian ring.

If I is an ideal of R, we write dep(7) to stand for dep,;(R).

Theorem 4.3. Let T = {M,,... ,M,} be a finite cover of the Noetherian
ring R and set J =NT and S = R — UT. Then the J-adic completion R of
R is a C-M ring if and only if dep(M;) = ht(M,), i = 1,2,... ,n.

Proof. To prove the theorem, it suffices to show that ht(M;) = ht (MJ?)
and dep(M,) = dep (MJA%) ,1=1,2,...,n.
(1). The proof of ht(M,) = ht (Miﬁt). Let B = Rs, Q, = M,Rs,

and R, = Bg,. We now regard R as the JB-adic completion of B. From
[1, Theorem 8.15], R = Ry x --- X R,, where R, is the completion of the
local ring R;. By [2, Theorem 30; p. 433] we have

bt ((Q:R,) R,) = dim (R.) = bt (Q:) = ht (M,).
Thus
bt (M:R) = ht ((Q:R:) R:) = ht (M)

(2). The proof of dep (M;) = dep (MJ:E) We may view R as a sub-
ring of R. If A is an R-module, let A be the J-adic completion of A, z(A)
and 2 (ﬁ) the sets of annihilators of A and A respectively. First we have
that if z ¢ z(A), then z ¢ z(A). This is because tensoring R over R pre-

serves the monomorphism A %+ A, for R is R-flat. Let dep(M,) = s and
Zi,...,%s be a maximal regular sequence (on R) contained in M;. Since

zi & 2(R/(zy,... ,x;)) implies ;4 & 2 <}AE/(:17], ,ZE]-)E) , we have that
Zy...,%, 18 a regular sequence on R contained in MZR, so dep (MJA{) > s.

On the other hand, since M, C z(R/(z1,... ,z,)) and since M; is maximal,
there is z € R such that M; = (z1,... ,z,) :g . Thus we have M;R =

(z1,...,25)R ‘5z, by [2, Lemma 7; p. 424]. So M,RC z (]?Z/(xl, . ,xs)1§>
and hence dep (Mlﬁ) = s = dep(M;). The proof is complete. ll

Corollary 4.4. Let R be a semi-local Noetherian ring and J the Jacobson
radical of R. Then the J-adic completion R of R is a C-M ring if and only
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if R is a C-M ring.

Corollary 4.5. Any C-M ring can be embedded in a complete semi-local
C-M ring.
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