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Let S°(G, X), S°(G', X') be connected Shimura varieties as-
sociated to semisimple algebraic groups G, G' defined over Q
and Hermitian symmetric domains X, X'. Let p: G —» G’ be
a homomorphism of algebraic groups over Q that induces a
holomorphic map w : X - X' mapping special points of X
to special points of X'. Given equivariant vector bundles 7,
J' on the compact duals X, X' of the symmetric domains
X, X', we can construct a mixed automorphic vector bundle
M(T, T, p), on S°(G, X) whose sections can be interpreted as
mixed automorphic forms. We prove that the space of sections
of a certain mixed automorphic vector bundles is isomorphic
to the space of holomorpic forms of the highest degree on the
fiber product of a finite number of Kuga fiber varieties. We
also prove that for each automorphism 7 of C the conjugate
TM(T,TJ’, p) of a mixed automorphic vector bundle M(7,.7’, p)
on a connected Shimura variety S°(G,X) can be canonically
realized as a mixed automorphic vector bundle M(7,J/, )
on another connected Shimura variety S°(G;, X;) associated to
a semisimple algebraic group (G; and a Hermitian symmetric
domain X;.

1. Introduction.

Mixed automorphic forms generalize automorphic forms, and certain types of
mixed automorphic forms occur naturally as holomorphic differential forms
of the highest degree on certain fiber varieties over arithmetic varieties whose
fibers are abelian varieties (see e.g. [8], [14], [16] [17], [18], [19]). Holomor-
phic automorphic forms can be interpreted as the sections of automorphic
vector bundles on a Shimura variety (see [6], [7], [21], [22]) just as automor-
phic functions can be considered as sections of the sheaf of germs of functions
on a Shimura variety. In this paper, we introduce mixed automorphic vector
bundles on connected Shimura varieties whose sections can be interpreted
as mixed automorphic forms.

Let E be an elliptic surface and let 7 : E — X be an elliptic fibration in the
sense of Kodaira (cf. [11]). Thus F is a compact smooth surface over C, X
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is a compact Riemann surface, and the generic fiber of 7 is an elliptic curve.
We assume that 7 has a global section and that there are no exceptional
curves of the first kind in the fibers of 7. Let E; be the union of the regular
fibers of 7 and let Xy = w(E,). We identify the universal covering space of
X, with the Poincaré upper half plane #, and the fundamental group m (X,)
with a subgroup I' of PSL(2,R). Thus we have X, = T'\H, where I' acts on
Hy by linear fractional transformations. Given a point z € X, we choose a
holomorphic 1-form on E, = n7'(z) and a basis {«., 3.} of H,(E.,Z) that
depends on z € X in a continuous manner. Then the many-valued function

e ®
J5. ®

on X, can be lifted to a holomorphic function w : H — H satisfying w(yz) =
x(v)w(z) for all y € I" and z € H, where x : I' > SL(2, R) is the monodromy
representation of I' = 7, (X)) for the elliptic fibration = : £ — X. Hunt and
Meyer [8] defined mixed cusp forms using the automorphy factor

w(z)

3y, 2) = (cz + d)Q(ch(z) + dx)a

where

_fabd _[ay by
v = (c d> el and x(v) = < ) dx) € SL(2,R).
They proved that the space S, (I, w, x) of mixed cusp forms of type (2,1)
associated to I', w and y is canonically isomorphic to the space H°(E,Q?) of
holomorphic 2-forms on E. In [14] mixed automorphic forms of type (2,n)
for n > 1 were defined using the automorphy factor

Iy, 2) = (cz + d)2(cxw(z) +d\)",

and it was proved that the space S ,(I',w, x) of mixed cusp forms of type
(2,m) associated to I', w and x is canonically isomorphic to the space
H°(E™, Q™) of holomorphic (n+ 1)-forms on the elliptic variety E™, where
E™ is obtained by resolving the singularities of the compactification of the n-
fold fiber product of Ey over Xy. Assuming that I' C SL(2,R) with —1 ¢ T
and that x is an inclusion I' < SL(2,R), the above result of Hunt and
Meyer was proved by Shioda [31] and the higher weight case was proved by
Sokurov [32] (see also [33], [34]).

More general definition of mixed automorphic forms were given in [18],
and mixed Siegel modular forms were treated in [19]. In this paper, we
generalize the notion of mixed automorphic forms further by considering
mixed automorphic vector bundles on connected Shimura varieties. Then
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the mixed automorphic forms are sections of mixed automorphic vector bun-
dles of special type. A Kuga fiber variety is a fiber variety over a Shimura
variety whose fibers are isomorphic to a polarized abelian variety (see [12],
[30, Chapter IV]). One of the goals of this paper is to prove Theorem 4.2
which states that the space of sections of a certain type of mixed automor-
phic vector bundle is canonically isomorphic to the space of holomorphic
forms of the highest degree on the fiber product of a finite number of Kuga
fiber varieties.

Another goal of this paper is to study the conjugates of mixed automorphic
vector bundles. One of the main theorems for automorphic vector bundles
proved by Milne ([21], [22]) is about their conjugation by an automorphism
7 of C. More precisely, given a Shimura variety S(G, X) associated to a
semisimple algebraic group G over Q and a Hermitian symmetric domain X,
the conjugate 7V(J) of every automorphic vector bundle V(J) on S(G, X)
determined by a G(C)-vector bundle 7 on the compact dual X of X by
an automorphism 7of C is an automorphic vector bundle of the form V("7)
determined by the conjugate 7 J for some explicitly determined automorphic
vector bundle of J. In other words, this means that to each automorphic
form f on the symmetric domain X, a special point z of X (see §4 for the
definition of a special point) and an automorphism 7 of C, we can associate
another automorphic form ™ f on another symmetric domain *X in such a
way that the association f — ™% f commutes with the Hecke operators and
7(f(z)) is equal to ™* f(y) for some explicitly defined special point y of "* X.
A similar problem for automorphic functions instead of forms was conjec-
tured by Langlands [13] and was later proved by Milne [20] and Borovoi [1]
(see also [9], [10], [15]).

Let S°(G,X), S°(G',X") be connected Shimura varieties associated to
semisimple algebraic groups G, G’ defined over QQ and Hermitian symmetric
domains X, X'. Let p : G — G' be a homomorphism of algebraic groups
over Q that induces a holomorphic map w : X — X' mapping special points
of X to special points of X’'. Given equivariant vector bundles 7, J' on the
compact duals X, X' of the symmetric domains X, X', we can construct a
mixed automorphic vector bundle M(7, J’, p), on S°(G, X) (see §3). In this
paper, we prove Theorem 5.5 which states that the conjugate 7 M of a mixed
automorphic vector bundle M on a connected Shimura variety S°(G, X) can
be canonically realized as a mixed automorphic vector bundle M(J,, J7, p1)
on another connected Shimura variety S°(G, X;) associated to a semisimple
algebraic group GG; and a Hermitian symmetric domain X;. In classical
terms, this theorem implies that to each mixed automorphic form f on X, a
special point z of X and an automorphism 7 of C, we can associate another
mixed automorphic form ™7 f on the domain X, in such a way that 7(f(z))
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is related to ™ f(z;) for some explicitly defined special point z; of X; and
the association f ~ ™*f commutes with Hecke operators.

This paper is organized as follows. In §2 we review connected Shimura
varieties, Serre groups and the conjugation of Shimura varieties. In §3 we
describe the Borel embedding of a symmetric domain into its compact dual,
and construct mixed automorphic vector bundles on connected Shimura va-
rieties. In §4 we discuss the connection of mixed automorphic vector bundles
and mixed automorphic forms, and prove the theorem about the realization
of mixed automorphic vector bundles as holomorphic forms on fiber prod-
ucts of Kuga fiber varieties. The theorem concerning conjugates of mixed
automorphic vector bundles is stated and proved in §5.

2. Connected Shimura varieties.

In this section we review the definition of connected Shimura varieties and
Serre groups, and describe the theorem about conjugates of Shimura varieties
(see [2], [3], [20], [21], [22], [23], [27] for details). Let G be a semisimple
algebraic group defined over Q, let G2¢ be the associated adjoint group, and
let G*4(R)* be the identity component of G®4(R). Let S be a real algebraic
group Resc/r Gy, where Res is the Weil’s restriction map, and let X be a
G*(R)*-conjugacy class of homomorphisms h : S — G& that satisfy the
following conditions:

(i) When composed with G — GL(g), each h in X defines a Hodge
structure of type {(0,0),(—1,1),(1,—1)} on the Lie algebra g of G&.

(ii) For each h in X, ad (h(7)) is a Cartan involution of Gg.

(iii) G*! possesses no nontrivial factor defined over Q whose real points
form a compact group.

If z is a point of X regarded as a symmetric domain, we shall denote by
h, the corresponding homomorphism from S to G&%; thus we have h,, =
ad(g) o h, for ¢ € G¥(R)* and z € X. Fix a point zo in X and let
he, : S = G& be the homomorphism corresponding to z,. Let G(R)*
be the identity component of G(R) and let K, be the subgroup of G(R)*
that fixes zy. Since K is fixed by h,,(z), axiom (ii) above implies that it is
compact. The Lie algebra g of G(R)™ has the Cartan decomposition g = &+p
with € = Lie K, where € and p are +1 and —1 eigenspaces for ad h(7) acting
on g. The action of G(R)* on X determines a bijection of G(R)* /K, with
X. If we use this bijection to provide X with a real analytic structure, then
p can be identified with the tangent space T, (X) of X at z,. There is a
unique homogeneous complex structure on X such that the action of 7 on
T,,(X) corresponds to the action of h(e™/*) on p. Relative to this structure,
X becomes a Hermitian symmetric domain.
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A congruence subgroup of G(Q) is a subgroup of the form I' = K N
G(Q) with K a compact open subgroup of G(Af). Consider a topology
on G*(Q) in which the images of the congruence subgroups in G(Q) form
a fundamental system of neighborhoods of the identity element, and let
G*(Q)*" be the completion of G24(Q)* relative to this topology. Let £(G)
be the set of torsion-free arithmetic subgroups of G®4(Q)* that contains
the image of a congruence subgroup of G(Q). For each I' € (@), the
quotient T'\ X is a locally symmetric algebraic variety. The group G*¢(Q)*
acts on the projective system (I'\X)res(q) as follows: for each I' € X(G)
and g € G*4(Q)*, g defines a map

N\X = g7'Tg\X, [z]~ [g7z].

This map is holomorphic and therefore algebraic. The action of G*(Q)* on
(T\X)rex(c) extends by continuity to G*4(Q)*". The connected Shimura
variety S°(G, X) is defined to be the projective system (I'\X)rex(q), or its
limit, together with the continuous right action of G*4(Q)*™".

When G is simply connected, G(R) is connected and G(Q) - K = G(A7).
For any congruence subgroup I' = G(Q) N K of G(Q), the map

NX - GQ\X x GA)/K, [z]w— [z,1]
is an isomorphism. Taking the limit, we have
5°(G,X)(C) = lmT\X = G(Q\X x G(A).
The semi-direct product G(Af) x G*(Q)* acts on this scheme by

[z,a](g,9) = [¢7'z,ad (¢"*)(ag)]

for z € X, a,9g € G(Af) and ¢ € G*(Q)*. The homomorphism g ~
(¢!, ad q) identifies G(Q) with a normal subgroup of G(Af) x G*(Q)*, and
the quotient group G(AS) xg @) G**(Q)™ continues to act on S°(G,X). In
this case, we have

G(AT) xai G*(Q" = G*(Q™,

and the action just described agrees with that defined in the preceding para-
graph.
A real Hodge structure is a real vector space V with a decomposition

VeC=QV", with VP =Vrd

The category of real Hodge structures has a Tannakian structure, and the
affine group scheme attached to the category and the forgetful functor is
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S = Resc/r G, (see [4], [28], [29]). If V has a real Hodge structure with
decomposition V®C = @ V¢, then an element z € S(R) = C* acts on VP4
as multiplication by 277z7¢. Thus we can consider a real Hodge structure
as a pair (V,h) consisting of a real vector space V and a homomorphism
h:S— GL(V).

If W is a vector space over k C C, a homomorphism v : G,, - GL(W)
defines a decomposition W = @ W' with

Wi={weW|v(z)=zv forall z¢€k*}

and a decreasing filtration F** of W with FP*W = @,,, W*. Given a real
Hodge structure, let py, : G,, = GL(V¢) be the map defined by ux(z) =
hc(z,1), where we identified S¢ with C* x C* in such a way that the em-
bedding S(R) < S(C) becomes z — (z,Z). Then the Hodge filtration on
V is simply the decreasing filtration defined by uy : G,, — GL(V¢), and
the weight grading wy, : G,, = GL(V) is defined by wy(r) = h(r=!) for all
r € R*. A Hodge structure is a vector space V over QQ together with a real
Hodge structure on V ®q R such that the weight grading is defined over Q.

The Mumford-Tate group MT(V,h) of a Hodge structure (V,h) is the
smallest QFrational algebraic subgroup of GL(V') x G,,, such that MT(V, h)c
contains the image of (us, 1) : G,, =& GL(V) xG,, (see [4], [26]). The Hodge
structure (V, h) of weight n is said to be polarizable if there is a morphism
of Hodge structures ¢ : V(R) ® V(R) — R(—n) such that the real-valued
form (z,y) — (2mi)™p(z, h(2)y) is symmetric and positive definite.

A Hodge structure is said to be of CM-type if it is polarizable and its
Mumford-Tate group is commutative. The category of Hodge structures of
CM-type is a Tannakian category. The Serre group & is the affine group
scheme attached to this Tannakian category and the forgetful fiber functor.
The functor sending a Hodge structure (V,h) to the real Hodge structure
(V ® R, h) defines a homomorphism Ac,, : S — Gg. The Serre group & and
the homomorphism h.,, have the following universal property: For any torus
T over Q and homomorphism h : S — T whose cocharacter is defined over
a CM-field and whose weight is defined over Q@ there is a unique Q-rational
homomorphism p : & — T such that pg 0 hean = h (see [25]).

The category of CM-motives over Q is a Q-linear Tannakian category
(see [22], [24] for the definition of CM-motives). The affine group scheme
T attached to this category and the Betti fiber functor Hg is called the
Taniyama group (see [5]). The fully faithful tensor functor from the cat-
egory of Artin motives over Q to the category of CM-motives determines
a surjective homomorphism 7 : T — Gal(Q/Q). The Betti functor Hp is
an essentially surjective functor from the category of C'M-motives to the
category of Hodge structures of CM-type; hence it determines an injective
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homomorphism i : & — %. Each 7 € Gal(Q/Q) determines an automor-
phism sp(7) of the fiber functor Hp ® (; whose image in Gal(Q/Q) is .
The map sp is a homomorphism from Gal(Q/Q) to T(Q,) that is continu-
ous with respect to the Krull and £-adic topologies, and the product of the
homomorphisms sp, defines a homomorphism sp : Gal(Q/Q) — T(AS) (see
[22] for details). Then there is an exact sequence

1565793 Gal(Q/Q) — 1

of affine group schemes (see [5]).

Let S°(G, X) be a connected Shimura variety, and let z be a special point
of X. This means that there is a maximal Q-rational torus 7" in GG such that
h, factors through (T'/Z)(R), where Z is the center of G. By the universal
property of & there is a unique Q-rational homomorphism p, : & — T/Z
such that h, = (p;)g © Fcan- The map p, : & — G*? defines an action of
S on G. For each 7 € Gal(Q/Q), the association M — H, (M) = Hg(7M)
is a fiber functor from the category of C'’M-motives over Q to the category
of vector spaces over Q; hence Isom(Hpg, H,) is a torsor for &, and it is
represented by 76 = w7 !(7). Using the G-torsor "G to twist G, we obtain
an algebraic group "G =76 Xg ,, G over (Q such that

"G(Q) ={s-g]s€76(Q), g€ GQ)}/6(Q)
on which G(Q) acts by

(s-g)o = so-ad(p.(c7"))g

for o € 6(Q) and (s-g) € "G(Q). Then ™*G is a semisimple group
that contains "6 xg,, T = T as a subtorus. The point sp(7) in "G(A7)
defines a canonical isomorphism of G(A/) onto ™*G(A’) that maps g to
" = [sp(7) - g].

There is a canonical isomorphism

Q™ B G QT, g g

that is compatible with the preceding isomorphism. Define "h to be the
homomorphism § — T"“Gid associated to the cocharacter "u, of T/Z C
7eG* and let "*X be the "*G*(R)"-conjugacy class of maps S — "*G&’
containing "h. Then the pair ("*G,"* X) defines a Shimura variety.

Proposition 2.1. If z and y are special points of X, then there is a canonical
1somorphism

P (riy,2) 877G, X) —+ §°(VG, TV X)
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such that
¢°(139,2) 0 ("*g) = ("¥g) 0 ¢°(73 9, )
for all g € G*(Q)™".
Proof. See [21, Proposition 1.3]. O

The following is the main theorem about the conjugates of Shimura vari-
eties which was conjectured by Langlands in [13].

Theorem 2.2. For each 7 € Aut(C), there is a unique isomorphism
v :TS%G, X) = S°("*G,* X)

satisfying the following conditions:

(i) The point T[z] is mapped to ["z], where "z € ™*X 1s the point corre-
sponding to "h.

(i) 42, 0 7(9) = ("29) 0 4%, for all g € GH(Q)*".
Furthermore, if y is another special point of X, then

P (m5y,2) 0 97, =42 .
Proof. See [20, Theorem 1.1] (see also [1]). a

3. Mixed automorphic vector bundles.

In this section, we construct automorphic vector bundles on connected Shimura
varieties. We first describe the Borel embedding of a Hermitian symmetric
space into its compact dual space (see [21], [22] for details). Let G be a
reductive group over a field k, and let  : G — GL(V) be a representation
of G. Then a homomorphism p : G, — G defines a decomposition

V:@V", Vi={weV|roulz)v==2v foral zek*}

and a decreasing filtration F* of V with FPV = @,,,V*. These filtra-
tions are compatible with the formation of tensor products and duals. Con-
versely, any functor (r, V) — (F*,V) from representations of G to filtrations
compatible with tensor products and duals arises from a homomorphism
p : G, — G. Such a functor is called a filtration of Rep(G), and the
filtration determined by p is denoted by Filt(x). When k is C and p is
a cocharacter po of G, we define the compact dual X of X to be the set
of filtrations of Repc(G) that are G(C)-conjugate to Filt(ug). Then the
action of G(C) on X given by g - u = Filt(ad(g) o ) defines a bijection



MIXED AUTOMORPHIC VECTOR BUNDLES 113

between G(C)/P,(C) and X, where P, is the parabolic subgroup F°G of
G (see [21, Proposition 2.2]); hence the bijection induces the structure of a
smooth projective variety over C on X.

Let (G,X) be a pair defining a connected Shimura variety and let ug
be the cocharacter corresponding to a point 0 € X. We apply the above
construction of X for G*!. Thus X is the set of filtrations of Rep¢(G?29) that
are conjugate to Filt(uo) under G*4(C). Such X is in fact the compact dual
Hermitian symmetric space of X in the usual sense. The Borel embedding
B: X — X is the map that sends a point z € X to the filtration Filt(u,) of
Repc(G2) determined by p,. It is indeed an embedding of X onto an open
complex submanifold of X.

Proposition 3.1. The map f : X — X sending a point z € X to the
filtration of Repc(G2) defined by p, embeds X onto an open complex sub-
manifold of X. For o € X, let K, be the isotropy group at o in G(R)*,
and let Py be the isotropy group at o € X in G(C); then the inclusion of K,
into Py identifies (Ky)c with a Levi subgroup of Py; there is an equivariant
commutative diagram

G*(R)* /Ky —— G*4(C)/Py(C)

l !

X — X,

where the vertical maps are isomorphisms and the horizontal maps are em-
beddings.

Proof. See [21, Proposition 2.6]. O

Since X is an algebraic variety over C, for each 7 € Aut(C) we can consider
the conjugate variety 7.X.

Proposition 3.2. Let "*X be the dual Hermitian symmetric space associ-
ated to the pair (7*G,™*X). For each special point x € X, there is a unique
isomorphism ¢, : 7X = 7*X such that

(1) the point Tz is mapped to "%, and

(i) @Y, 0 7(9) = ("*g) 0 ¢7, for all g € G*!(C).

Proof. See [21, Proposition 2.7]. O

Let S°(G, X) be a connected Shimura variety associated to an algebraic Q-
group G and a symmetric domain X. If 8: X — X is the Borel embedding
of X, the action of G(R) on X extends to a transitive action of G(C) on
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X. Let (J,p) be a Ge-vector bundle on X with a Ge-action satisfying the
following conditions:

(i) p(g-w) =g - p(w) for all g € G(C) and w € J.

(ii) The maps g : J, —+ J,, are linear for all g € G(C) and z € X.

Let G(R), be the inverse image of G*(R)* in G(R) and let G(Q), =
G(Q) NG(R);. A Gc-vector bundle (J,p) satisfying (i), (ii) restricts to a
G(R),.-vector bundle V = 8*J on X, and, for each congruence subgroup I'
of G(Q), Vr =T'\V is a vector bundle on T\ X = S%(G, X)(C). We set

VYV = {Vr | T is a congruence subgroup of G(Q)}.

Then V is a projective system, and there is a natural action of G(Q); on
V that sends an element v € V modulo T to an element gv € V modulo
glg™!. This action extends by continuity to the closure G(Q); of G(Q)+
in G(A7). A G(Q)I-vector bundle V on S°(G, X) arising in this way from
a G(C)-vector bundle J on X is called an automorphic vector bundle (see
(6], [7], [21], [22]; see also [35]). When G is simply connected, V is the
G(A')-vector bundle
V=GQ\V x G(@&)

on S°(G, X) = G(Q)\X x G(A?), and the action of g € G(A') on V is given
by
g- [Uﬁa’] = [vaa'g_l]

for all v € V and a € G(Af). On the other hand, if the action of G(C) on
J factors through G*¢(C), then we can consider V as the projective system
{T\V | T € B(G)}, where X(Q) is the set of torsion-free arithmetic subgroups
of G*¢(Q)* that contains the image of a congruence subgroup of G(Q) as in
§2, and the action of G*(Q)™ on S°(G, X) lifts to J.

Now we consider another Shimura variety S°(G’, X') determined by an
algebraic Q-group G' and a symmetric domain X'. Let p: G — G’ be a
homomorphism of algebraic groups over {Q carrying the conjugacy class X
into X’. The map w: X — X' defined by w(h) = ad(p) o h for h € X sends
special points of X to special points of X’. As in the case of S°(G, X) we
construct a projective system

V' = {V}. | I is a congruence subgroup of G'(Q)}

of vector bundles V., = I"\V' on I"\X' = S%(G’,X"') determined by a
G'(C)-vector bundle associated to the Borel embedding ' : X' < X'.

Let {T';}, {T";} be projective systems of congruence subgroups of G(Q) and
G'(Q) respectively such that p(I';) C I'; for each ¢. Then V can be considered
as the projective system of vector bundles Vr, =TI';\3*(J) on S (G, X), and
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similarly V' is the projective system of vector bundles Vi, = I'}\#"*(J') on
Sp (G, X'). I w; + SR (G, X) = SE(G', X") denotes the map induced by
w: X — X', we define V ® w*V' to be the projective system of vector
bundles Vr, ® w;Vr, on S (G, X). Then the natural action of G(Q) on
VY ® w*V' induces an action of G(Q); .

Definition 3.3. The G(Q); -vector bundle V ® w*V’ described above is
called a mized automorphic vector bundle of type (J,J’,p), and the space
of mixed automorphic vector bundles of type (7, J’, p) will be denoted by
M(T, T p)-

4. Mixed automorphic forms.

In this section we define mixed automorphic forms, and discuss their rela-
tion with mixed automorphic vector bundles. We also review the construc-
tion of Kuga fiber varieties, and describe the relation between the mixed
automorphic vector bundles and holomorphic forms on fiber products of
Kuga fiber varieties. Let [' be a discrete subgroup of Aut(X), and let
J:T'x X — GL(V) be an automorphy factor for (I, X) with values in
a complex vector space V such that

(i) the map z +— J(v, ) is holomorphic on X for each v € T';

(ii) J(7ive,2) = J(71,722) - (72, 2) for all 4;,v, € T and z € X.
Let p : Aut(X) — Aut(X') be a homomorphism and let w : X — X' be a
holomorphic map such that w(pz) = p(g)w(z) for all g € Aut(X) and z € X
let J': T x X' = GL(V') be an automorphy factor for (I", X') with values
in V', where I is a discrete subgroup of Aut(X') containing p(I'). Then a
mized automorphic form of type (J,J', p,w) is defined to be a holomorphic
function f : X — V ® V' such that

() 7(72) = (J(1,2) ® T (plr), w())) (2) for all 7 € T and 2 € X;

(ii) f is holomorphic at infinity.
Various types of mixed automorphic forms have been investigated (see [8],
[14], [16], [17], [18], [19]), and certain types of mixed automorphic forms
occur naturally as holomorphic differential forms on certain fiber varieties
over arithmetic varieties whose fibers are abelian varieties ([8], [14], [19]).

Example 4.1. Let X be the Poincaré upper half plain H and let I be a
discrete subgroup of PSL(2,R). Let x : I' - SL(2,R) be a homomorphism
and let w : H — H be a holomorphic map such that w(yz) = x(vy)w(z) for
all y € T'and z € H. We set J(v,2) = (5(7,2))F and J'(6,w) = ((6,w))’,
where k,l are nonnegative integers with k even and j(v, z) = (cz + d) if

Y= (‘Z Z) € SL(2,R) or PSL(2,R).



116 MIN HO LEE

Then the mixed automorphic form of type (J, J', p,w) is the mixed automor-
phic form of type (k,!) for I associated to x,w considered in [8], [14], [16],
[17], and [18], and certain types of such mixed automorphic forms arise as
holomorphic differential forms of the highest order on elliptic varieties (see
[14]). A similar problem for Siegel modular forms was treated in [19].

Let p: G —- G andw : X — X' beasin§3, and let p: J — X be a
G(C)-vector bundle on X. Fix a point o € X and let V be the fiber TB(z0)
of J over A(z,) € X. The isomorphism of V with §~1(J),, extends to an
isomorphism of X x V with 37!(J) and we can transfer the action of G(R)*
on 371(J) to the one on X x V. We write

V(z,v) = (v2, J (7, 2)v)

for vy € G(R)T, z € X and v € V. Similarly, given a G-vector bundle
P J — X' on X', we define J' : G'(R)t x X — GL(V') by
,y/(xl,’ul) — (lel, JI(’_yI’mI),UI)

forv' € G'(R)*, 2’ € X' and v' € V'. Then the maps J and J' are automor-
phy factors, and a section of (V ® w*V)g on the connected Shimura variety
S2_(G, X) associated to J, J' and a compact open subgroup K of G(Af)
can be identified with a mixed automorphic form for I'y, = KNG(Q) of type
(J,J', p,w).

In the rest of this section, we describe a relation between mixed auto-
morphic vector bundles and fiber products of Kuga fiber varieties. We first
review the construction of Kuga fiber varieties over connected Shimura va-

rieties (see [12], [30, Chapter IV]). Let W be a vector space over Q of
dimension 2m, and let 8 be an alternating bilinear form on W. We set

5p(B) = {9 € GL(W) | B(g=z,gy) = B(z,y) forall z,y e W}

and let H(3,R) be the set of all complex structures J on W(R) such that
the bilinear form $(z, Jy) on W(R) is symmetric and positive definite. Then
the group Sp(B3,R) of real points of Sp(83) acts on H(B,R) transitively by

(9,J) —> gJg~' for g€ Sp(B,R), JeH(BR).
Let {e1,... ,€m, f1,--- , fm} be a basis for W(R) such that
Bleise;) = B(fi, f;) =0, Bles, f;) = —0s

for 1 < 4,7 < m, where §;; is the Kronecker delta. Then we can identify
Sp(B,R) with

Sp(m,R) = {g € GL(2m,R) |‘gEg=E}, E=(97),
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and H(5,R) with the Siegel upper half space
H"={ze€M,(C)|z="2, Im2z>>0}

(see [30, §IL.8]).

Let G be a semisimple algebraic group as before, and let K, be a
maximal compact subgroup of G(R)*. We assume that the symmetric space
X = G(R)* /K, has a G(R)" -invariant complex structure. Let p : G(R)* —
Sp(6,R) be a homomorphism of Lie groups and let w : X — H(B,R) = H,,
be a holomorphic map such that

w(gz) = p(g)w(z)

for all ¢ € G(R)* and z € X. Then p determines the semidirect product
G(R)* x, W(R) in which the multiplication is given by

(g1,v1) - (92,v2) = (9192, p(g1)v2 + 1)

for all g;,9, € G(R)* and v;,v, € W(R). The group G(R)* x, W(R) acts
on X x W(R) by

(9,v) - (z,w) = (92, p(g)w + )
for (g,v) € G(R)™ x, W(R) and (z,w) € X x W(R).

Let u(z) = (ui(x),... ,ur(x)) be a global complex analytic coordinate
system of the bounded symmetric domain X. Define the map z : X X
W(R) — C™ by

z(z,w) = (w(z), 1) Ep(w),

where E = (9") € M,,,(R). This induces the map p : X x W(R) — C+*™
given by

() = (u(w), 2w, w)).
Thus p is a diffeomorphism of X x W(R) onto u(X) x C™. If J is the

natural complex structure on u(X)xC™, then J = p~'(J) defines a complex
structure on X x W(R) with global coordinates

Utye s yUE, 2] - -« 3 Zm

Let L be a lattice in W(R) and let I" be a torsion-free co-compact discrete
subgroup of G(R)* such that p(I')L C L. Then the semidirect product I'x , L
operates on X x W (R) properly discontinuously, and the complex structure J~
on X x W(R) determined by the holomorphic map w : X — #H (3, R) induces
a complex structure on the manifold I'x , L\X x W (R). We denote by A, the
complex manifold I" x , L\ X x W(R) obtained this way. Then the projection
map X x W(R) — X induces a fiber bundle 7 : 4, — S°(G, X)(C) known as
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a Kuga fiber variety over the complex manifold S°(G, X)(C) = I'\ X whose
fibers are complex tori of dimension m (see [12] and [30, Chapter IV] for
details; see also [15]). We denote by A7 the n-fold fiber product

Ay Xz Ay Xp oo X A,

of A, over S°(G, X)(C).
Let g = £+ p be the Cartan decomposition of the Lie algebra g of G(R)*
as in §2, and let Jy be the complex structure on X such that

[J0§777] = [67 JO'W] for all 5 € E? nep,
[‘]Oga Jo"l] = [5777] for all 6777 € p.

Let p,,p_ C pc be the eigenspaces of J, belonging to the eigenvalues 7, —4
respectively. Then we have

gc=p++tc+p, PbL=p-

and G(C) = P, Ky(C)P_, where P,, Ky(C), P_ are the Lie groups whose
Lie algebras are p, €, p_, respectively. The map J. : G(C) x p, — K,(C)
defined by

Je(g,2) = (9 - expz)o

for (g,z) € G(C) x p,, where ( ), denotes the Ky(C)-part in the decomposi-
tion G(C) = P, Ko(C)P_, is called the canonical automorphy factor of G(C)
(see [30, §I1.5]). Now we define the function jy : G(R)* x X — C by

jH(ga Z) = det[a‘dp+ (‘]H(gu z))]

for (g,2) € G(R)* x X, where Jy is the restriction of J, to G(R)* x X. Then
the map z — jg(g, ) is the Jacobian map for the transformation z — gz of
X.
We also consider another automorphy factor jy : Sp(m,R) x H™ — C
defined by
Jv(o,z) = det(cz + d)

for z € H™ and 0 = (2 %) € Sp(m, R).

Given a positive integer I, let J (resp. J/) be G(C)-vector (resp. Sp(m,C)-
vector) bundle on the compact dual X of X (resp. H™ of H™) that in-
duces a G(R)*-vector bundle J (resp. J;) on H™ that has a trivialization
n:X xC—J (resp. n' : H™ x C = J/) given by

g(n(z,v)) =n(z,julg,z)""'v) (resp. ¢'(n'(2',v)) =7'(¢,jv(q’,2")'v"))
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for g e G,z € X and v € C (resp. ¢' € Sp(m,R), 2/ € H™ and v' €
C). Then, for each positive integer [, the mixed automorphic vector bundle
M(T, T/, p) is the projective system

{n\Jewd},
where each discrete subgroup I' of G(R) is of the form 'y = G(Q) N K
for some compact open subgroup K Aof G(Af) as before. We denote by
Mg (T, T/, p) the vector bundle 'g\J ® w*J/ on S, (G, X)(C) = I'k\X,
and by Mg(J,J/,p) the sheaf of sections of Mg (T, T/, p)-

Theorem 4.2. Let 7 : A} — SP, (G, X)(C) be the fiber product of a Kuga
fiber variety determined by (p,w) described above. Then the cohomology space

H (S2,.(G, X)(©), M (T, T, p))

is canonically isomorphic to the cohomology space H°(Ay,QF ™), where
QFt™™ s the sheaf of holomorphic (k +mn)-forms on A7.

Proof. Since we are assuming that S2_(G,X)(C) = I'x\X is compact, we
do not need to consider the holomorphy condition at infinity. Let u =
(ug,... ,ug) be a global coordinates for the symmetric domain X, and let
20 = (29, ... z1)) be the canonical coordinates for C™ for 1 < j < n. If
% is a holomorphic (k + mn)-form on A7, then 1 can be considered as a
holomorphic (k + mn)-form on X x (C™)" that is invariant under the action
of g, L", where L is a lattice in C™. Then there is a holomorphic function
fu(u,z) on X x (C™)" such that

P = folu,2)du AdzV A Ndz™,

where u = (uy,...,u) € X, z = (zV,...,2™) € (C™)", and 29 =
(z¥,...,z0) e C" for 1 < j < n. Given z € X, 1 descends to a holomor-
phic mn-form on the fiber A}, over z. The fiber A7, is the n-fold product
of a complex torus of d1mens1on m, and hence the dimension of the space of
holomorphic mn-forms on A7 is one. Since any holomorphic function on
a compact complex manlfold is constant, the restriction of f,(u,z) to the
compact complex manifold A}, is constant. Thus f,(u,z) depends only on
u; and hence 1 can be written in the form

Y= fw(U) du AdzWA - /\dz("),

where f,, is a holomorphic function on X. To consider the invariance of 1/;'
under the group I'x x, L™, we first notice that the action of I'x x, L™ on
du = du; A --- A duy is given by

(v,v) - du = ju(vy,v)du
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for all (y,v) € T'gx, L™, because jg (7, *) is the Jacobian map of the transfor-
mation u + yu of X. On the other hand, from Equation (17) in [12, §IL.6],
the action of g X, L™ on dz® = dz) A--- A dz{d) is given by

(1,9) - d2P = d [(c,w(v) +d,) 2P + (w(yv), 1) Ev]
= det(c,w(v) +d,) " *dz")
= jv (p(7), w(v)) " dz?

for 1 < j <n, where

_(0-1 _[as b, .
E- (I ; ) € My(B) and ply) = ( d,,) & Splm, )
hence we obtain

(’Ya ’U) : 1/) = f¢(7”) jH(’Ya U)jV(p(’Y)aw(v))_ndu A dz(l) ARRENA dz(n)'

Thus we have

fo(vu) = ju(r,u) ™ gv (p(7), w(w)" fu (w)
for all y € T'x and u € X. On the other hand, each element

he H°(S2 (G, X)(C), Mk(T,T.,p))

is a Tg-invariant section of the vector bundle J ® w*J’ on Sp, (G, X)(C);
hence it is a function satisfying

h(vz) = jr (v, )" dv(p(7), w(w))"h(u)

for u € X and v € I'. Therefore the assignment ¢ — f,(u) determines an
isomorphism between the space H°(A7, Q2**™) of holomorphic (k + mn)-
forms on A7 and the space

H(S,. (G, X)(C), MK (T, Ty, p))
of sections of the automorphic vector bundle Mg (7, J., p)- Ol

Example 4.3. If G is SL,, then X is the Poincaré upper half plane
H, and ju(v,2) = (cz+d)"% for v = (2%) € SL(2,R) and z € H. If,
furthermore, I'k is a cocompact arithmetic subgroup of SL(2,Q), then A}
becomes the elliptic variety E™ considered in [14], and Theorem 4.2 above
reduces to Theorem 3.2 in [14] which states that the space H°(E™, Q1)
of holomorphic (n + 1)-forms on E™ is canonically isomorphic to the space
S2.n(Tk,w, p) of mixed cusp forms of type (2,n); it reduces to Theorem 1.2
in (8] for n=1.
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5. Conjugates of mixed automorphic vector bundles.

In this section we state and prove the theorem about the conjugates of mixed
automorphic vector bundles. Let (G,X) be a pair defining a connected
Shimura, variety S°(G,X) as in §1. Each I' € 3(G) defines a principal
G(C)-bundle P2(G,X) = T'\X x G(C) over SX(G, X). Such bundles form
a projective system P°(G, X) which can be considered as a principal G(C)-
bundle over S°(G, X). When G is simply connected, we have

P°(G,X) = G(Q\X x G(C) x G(Af)

with ¢ € G(Q) acting on (z,c¢,a) € X x G(C) x G(A7) by the rule g(z,c,a) =
(9, gc, ga).

Proposition 5.1. The principal G(C)-bundle P°(G, X) is algebraic, and
there is a canonical G(C)-equivariant map v = v(G, X) : P°(G, X) — X.

Proof. See Propositions 3.2 and 3.5 in [21]. [l

Theorem 5.2. Let (G, X) be a pair defining a connected Shimura variety,
and let x be a special point of X. From each automorphism 1 of C, there
is a unique isomorphism ¢f  : TP°(G,X) — P°(""G,7"X) that lies over
@2, 78%G, X) = S°("*G,7* X) and satisfies the following conditions:

(i) The point Tw is mapped to "w.
(i) ¢f, o 7(g) = (7"g) 0 pf, for all g € (G(C) x G(Q)) *¢), G(Q7.

Proof. See [21, Theorem 3.10]. U

Proposition 5.3. If <pf’z 1s as in Theorem 5.2, then there is a commutative
diagram

v
. Crow .
X 1 D¢

mT T'y
FPYG, X) 2=, po(req T X)

! l

759G, X) SO(T* @G, T X)),

Pr=

Furthermore, the two maps ¢}, and <p£w in the upper square are compatible
with the map g — g form G(C) to "*G(C).

Proof. See [21, Corollary 3.11]. U
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Let p : G — G' be a homomorphism of algebraic groups over Q that
determines a mixed automorphic vector bundle M(J,J’,p) as described
in §3, where J (resp. J') is a G¢-vector (resp. Gg-vector) bundle on X
(resp X'). Thus p carries the conjugacy class X into X', and the map
w: X — X' defined by w(h) = ad(p) o h for h € X sends special points of
X to special points of X'. We fix a special point z in X, and denote the
special point w(z) in X' by z'. The homomorphism p induces a homomor-
phism ™%p : "*G — "*G’ and a map "*w : "*X — T*X'. The Gc-vector
(resp. Gp-vector) bundle 77 (resp. 7J') on 7X (resp. 7X') corresponds
under the isomorphism ¢,, : 7X — ™*X (resp. ¢, : 7X' — T“’X,)
to a "*G(C)-vector (resp. ™* G'(C)-vector) bundle *7 (resp. ™% J') on
72X (resp. * X'). The vector bundles *J, % J' define automorphic vec-
tor bundles *V, ™*'V’ on the connected Shimura varieties S°(™*G,™*X),
SO(7#' @', ™% X'} respectively, and they also determine the mixed automor-
phic vector bundle M(™*J,™* J' ™*p) on the connected Shimura variety
S%(G, X).

Proposition 5.4. Ify is another special point of X, then there is a canonical

isomorphism oM (1;y,x) : M(T2T, 7% T, 7%p) — M(TYT, 7V T, ™) lying
over ©°(1;y,z) and such that

oM(13y,2) 0 (77g) = ("g) 0 o™ (759, 2)
for all 7g € 7*G(AT).

Proof. By [21, Lemma 5.1] there is a canonical isomorphism ¢Y(7;y, 1) :
7)Y — VY’ lying over ¢°(7;y,z) and such that

¢¥(1iy,2) 0 ("7g) = ("'g) 0 V(73 y, 2)

for all g € T””G’(Af ). Thus the proposition follows easily from this and
the G(R), -equivariance of the map w : X — X' used in the construction of

M(T, T, p). O

Theorem 5.5. Let M(J,J',p) be the mized automorphic vector bundle
on a connected Shimura variety S°(G, X) associated to a homomorphism
p:G — G', a Ge-vector bundle J on X, and G-vector bundle J' on X'
Then there is a canonical isomorphism

oM T M(T, T p) = M(TT, T T )
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such that the diagram

TM(T, T\ p) s M(RT, T T, 7))

! !

0
02

78°(G, X) —= So(m*G, " X)

is commutative and e} o7(g) = (""g)op, for allg € G(Q)T. Furthermore,
if y is a second special point of X, then

M1y, ) 0 0y = 07y

Proof. From the construction of *J and ™% ' we obtain the commutative
diagrams
J — T

I l

and
le , T,Z’JI

! !

TX’ broal , r,z’Xt

Let @ : X — X' be the G(C)-equivariant extension of w : X — X', and
let %6 : "X — 7X be the map induced by 7w : 7X — 7X' and the
isomorphisms ¢, , : X — 7 X and Dra : X' — 7' X'. Then we have the
following commutative diagram:

T(j ® (D*jl) — s T ® (T,zaj)* T,m’jl

! !

7 Lb-r,z gt
7X — X,

Pulling back these vector bundles via the upward vertical maps 7y and + in
Proposition 5.3, and using the lower square in the commutative diagram in
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Proposition 5.3, we obtain
TN (T ®@&*T) —— v (T @ ("*w)* " J")

! !

TP°(G, X) —_ PO(m@G, ™" X)

l l

< Pr,z gt
X — X,

From the construction of mixed automorphic vector bundles it follows that
M(T, T, p) and M(7* T, ™% J' ™ p) are obtained by descent from the vec-
tor bundles v*(J ® ©*J') and v*(7*J ® ("*w)* ¥ J'), respectively. Thus
the commutativity of the diagram in the theorem follows from the above
commutative diagram. By Theorem 5.2(ii) the map ¢f, commutes with
the Hecke operators 7(g) and "*g, and the map ¢ (7;y, ) commutes with
operators ™*g and "Yg; hence, using the compatibility of ¢} and goﬁ - WE
have

M(

oM(75y,2) 0 o}, = oM,

where y is a second special point of X. O
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