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Let ¢ : D — R be a subharmonic function and let ALZ(D)
denote the closed subspace of L?(D, e 2°dA) consisting of ana-
lytic functions in the unit disk D. For a certain class of subhar-
monic ¢, the necessary and sufficient conditions are obtained
for the Toeplitz operator T, on AL?O (D) and the Hankel oper-
ator H;, on ALi (D) in order that they belong to the Schatten
ideal S,.

1. Introduction.

Let dA denote the area measure for the unit disk D in the complex plane C.
Let L?*(D) denote L*(D, dA) and let L>(D) denote L>*(D, dA). Let ¢ : D —
R be a subharmonic function. Let L (D) be the space of all measurable func-
tions f on D such that e=*f € L>°(D) and let H°(D) denote the subspace
of L (D) consisting of analytic functions. Let L2 (D) be the Hilbert space
of all measurable functions f on D such that || fl|lz2 =: (Jp |f|?e™>* dA)Y? <
co. The inner product of L (D) is given by (f, g)r2 = J, fge > dA for
fy g € L2(D). Let ALZ(DD) denote the closed subspace of L? (D) consisting
of analytic functions. Let P be the orthogonal projection from L2 (D) onto
AL%(D), which is given by Pf(z) = [, K(z,w)f(w)e **™) dA(w), where
K(z,w) is the reproducing kernel of AL? (D). For b € L*(D), the Hankel
operator H, on AL?(D) is defined on the dense set H>*(D) of AL (D) (for
certain class of subharmonic ¢) by

Hyf =bf — P(bf).

For a finite positive Borel measure p on D, the Toeplitz operator 7, on
ALZ(D) is defined by

T,f(2) = [ K(u)f e duw).

The purpose of this paper is for a certain class of subharmonic ¢ to prove
necessary and sufficient conditions on b (respectively on ) in order that
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the Hankel operator H, (respectively the Toepolitz operator T,,) on AL2 (D)
belongs to a Schatten ideal S,.

In [Lul], Luecking obtained the trace ideal criteria for the Toplitz oper-
ators on the (standard) weighted Bergman spaces. In [Lu2], he considered
the boundedness, compactness and the Schatten class properties of the Han-
kel operators on the Bergman spaces of the unit disk D with the symbol
functions in L*(D).

In [LR], we studied the boundedness and compactness of the Hankel op-
erator Hy on the weighted space AL2(D) with b € L?(D) for a certain class
of subharmonic ¢.

In the present paper, we will continue to study the Hankel operator H,
on AL?(D) and we will also consider the Toepolitz operator 7, on AL (D).
We will still concentrate on the same class of subharmonic ¢ as in [LR].
The typical examples of our weight 2% are (1 — |z|2)4, A > 0 (which cor-
responds to the weights for the standard weighted Bergman spaces A%>* for
a>0) and (1 —|z[*)4exp{-B/(1 —-|2[?>)*}, A >0, B> 0, o > 0. For the
Toeplitz operator T, on ALZ (D), we will give conditions on the finite posi-
tive Borel measure p on ID in order that T, be bounded, compact and in S,
respectively. For the Hankel operator H, on ALZ (D), we will give conditions
on the function b € L?*(D) in order that H, belong to S,.

The paper is arranged as follows. In Section 2 we recall some results about
the Carleson measures on AL? (D). In Section 3, we consider the Toeplitz
operator T, on AL2 (D) for finite positive Borel measure x on D. In Section
4, by using the results obtained in Section 3, we prove the trace ideal criteria
for the Hankel operator H, on ALZ(D) for a certain class of subharmonic ¢.

Throughout this paper, we will use the letter C' to denote constants and
they may change from line to line.

2. Carleson measures on AL (D).

Let u be a locally finite nonnegative Borel measure on the unit disk D, dA
be the area measure on D and ¢ : @ — R be subharmonic function. Let
L? (D) be the space of all measurable functions f on I such that

1153, = ([ 1rpe d/u)m <o

Let L2(D) denote L? ,,(D) and AL%(D) be the closed subspace of LZ(D)
consisting of analytic functions.

Definition 2.1. p is called a Carleson measure on AL’ (D) if the imbedding
operator J : AL2(D) — L2 (D) is bounded.
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Definition 2.2. 4 is called a vanishing Carleson measure on AL?(D) if
the imbedding operator J : AL? (D) — L2 ,(D) is compact.

Definition 2.3. For real valued function ¢ € C*([D) with Ap > 0, let
7(z) = (Ap(z))"*/2. We say that ¢ € D if the following conditions are
satisfied.

(1) There exists a constant C; > 0 such that |7(z) — 7(§)| < C1|z — €| for

z, £ €D.
(2) There exists a constant Cy > 0 such that 7(z) < Cy(1 — |2|) for z € D.

(3) There exist constants 0 < ¢ < 1 and a > 0 such that 7(z) < 7(§) +
tlz = ¢| for |z — ¢| > a(§).
Some typical examples of functions in class D are as follows:
(i) ¢1(2) = —41og(1 —|2]*), A > 0. The corresponding weight e~ is
the standard weight (1 — |2|?)# for A > 0.
(i) a(z) = (—Alog(1—|2|*)+B/(1—|2[*)*), A>0, B>0, a>0. The
corresponding weight e=2¢2 is the exponential weight

(1—1|2/*)*exp{-B/(1 - |2|*)*}, A>0,B>0,a>0.

(iii) 1 + h and @, + h, where ¢; and ¢, are as in (i) and (ii) respectively,
and h € C?*(D) can be any harmonic function on D.
The following notation will be frequently used:

: Cr—l C—l
m, = min( 14 , C57)
where C; and C, are the constants of ¢ in Definition 2.3.

For ¢ € D, we have the following theorem about the Carleson measure on
ALL(D).

Theorem 2.4. Let ¢ € D. Then p is a Carleson measure on AL2(D) if
and only if there ezists a constant o € (0, m,) such that

1
(2.1) iup @ ——pu{leD: [ -2 < ar(z)} < oco.
Proof. The sufficiency was proved by Oleinik [O] under the condition (1) and
(2) of Definition 2.3 for any a € (0, m,,). For the necessity, see [LR]. O

The following theorem is about the vanishing Carleson measures on AL (D).
Theorem 2.5. Let ¢ € D. Then u is a vanishing Carleson measure on

AL?(D) if and only if there exists a constant a € (0, m,,) such that

lim sup 1)2,u{£ eED: |€-z|<ar(z)} =0.

1<z« T(Z
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Proof. For the sufficiency, see [O]. For the necessity, see [LR]. O

In this paper, we will use the equivalent discrete form of condition (2.1)
in Theorem 2.4. In order to get the equivalent condition of (2.1) in discrete
form, we need some notations and a covering lemma.

Throughout this paper, we will always use the following notations: 7(z) =
(Ap(z))~Y/2, for any constant a > 0, D(a7(z)) = D(z, ar(z)) denotes the
Euclidean disk in C with center z and radius a7(z).

Lemma 2.6 ([O]). Let ¢ € D and let o € (0, m,). Then there exists a
sequence of points {z;} C D, such that the following conditions are satisfied:

(1) 2z ¢ D(ar(z)), J # k.
(2) U; D(ar(z)) =D.
(3) l:?(aT(zj)) C D(3ar(z;)), where
D(a7(z)) = U.ep(ar(s,) Plat(2)), J=142....
(4) {D(Bar(z;))} is a covering of D of finite multiplicity N.

Definition 2.7. A covering {D(a7(z;))} of D is called a 7-covering of D if
it satisfies all the conditions in Lemma 2.6.

Theorem 2.8. Let ¢ € D. Then p is a Carleson measure on ALZ(D) if
and only if there ezists a constant a € (0, my,) such that for every T-covering

{D(ar(z;))} of D,
pD(r(z)) _
| =

P D(ar(z))

Proof. The necessity follows from Theorem 2.4 immediately. The sufficiency
follows from the proof of the sufficiency of Theorem 2.4 (see [O]). |

3. Toeplitz operators on AL? (D).

Let p be a finite positive Borel measure on D and let K (z,w) be the repro-
ducing kernel of ALZ(D). The Toeplitz operator T, on AL?(D) is defined
by

2= [ K(zu)f @) dufw).

Recall that J : ALZ(D) — L? ,(D) is the imbedding operator. By direct
computation one can check that for g, h € ALZ(D),

(Jga Jh)Li,“ = <Tug5 h)Li
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Thus T, = J*J. Then the next two theorems about the Toeplitz operator
T, on AL} (D) follow immediately from Theorem 2.4 and Theorem 2.5.

Theorem 3.1. Let ¢ € D. Then the Toeplitz operator T, is bounded on
ALZ(D) if and only if there exists a constant o € (0, m,,) such that

ap ML)

veb |D(ar(2))]

Theorem 3.2. Let ¢ € D. Then the Toeplitz operator T, is a compact
operator from AL (D) to L7 (D) if and only if there exists a constant a €
(0, my,) such that

lim sup “P27E)) _ o

=gz [D(ar(2))]

From Theorem 2.8 we also have

Theorem 3.3. Let ¢ € D. Then the Toeplitz operator T, is bounded on
AL? (D) if and only if there exists a constant a € (0, m,,) such that for every
T-covering {D(at(z;))} of D,

p(D(ar(z) _
|

P D)~

In the rest of this section, we will characterize those finite positive Borel
measure p for which the Toeplitz operator T, on ALZ(D) belongs to the
Schatten ideal S,.

The Schatten ideal S, consists of all the operators T" on Hilbert space
for which the singular numbers s,(7") form a sequence belonging to [?. The
singular numbers of the operator T" are defined by

Sp = $x(T) = inf {||T — K| : rank K <n}.

We denote |T'|, = (X2, s2)'/?P. For p > 1 the quantity |T|, is a norm, while
for 0 < p < 1 we have the following inequality

T + S|p < |T|5 + |S[5.

We refer to [GK] and [S] for more information about S,,.
First we consider the case 1 < p < o0.
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Theorem 3.4. Let1l < p < oo andlet ¢ € D. Then T, belongs to S, if and
only if there exists a constant o € (0, m,,) such that for every 7-covering

{D(ar())} of D, s
p(D(at(z; .
Z( D) <

We will prove the sufficiency first. We need a lemma.
Lemma 3.5. Let ¢ € D. Then we have
K(z,2)e”%®) ~ (1(2)) "2 = Ap(z), z €D.

By the relation ~ we mean that the ratio of the two expressions is bounded
above and below by absolute positive constants.

Proof. For any z € D, let L. f = f(2) be the point evaluation on AL? (D). It
is well known that

K(z,2) = | L|*
The point evaluation L, can be regarded as an imbedding operator from
AL(D) to L2 .25 (D), where 4, is the Dirac measure at the point z. Then
by Theorem 2.4 and the estimate of the norm of the imbedding operator
(obtained in the proof of Theorem 2.4, see [O] and [LR]), we have

1
L,|I> ~ su ——————/ e2?@§,(¢), for some «€ (0, m
I ~sup i [ s (g (0, m,)
1

2¢(z)
e
7(2)?

where we use the fact that 7(w) ~ 7(z) whenever |z — w| < m,7(w), which
follows easily from condition (1) of Definition 2.3. Thus

K(z,2)e”2®) ~ (1(2)) 72 = Ap(z), zeD.
This finishes the proof of Lemma 3.5. Ol

Proof of the Sufficiency of Theorem 3.4. Let {e,} be any orthonormal set in
ALZ(D). For any n > 1,

Tuens endry = [ lenl2)'e™) du(2).

Since p is a finite positive Borel measure on D, it follows that
S (Tuen, en)szl = [ 3 lea(@) e du(2)

< / K(z,2)e7* du(2).
D
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Let {D(a7(z,))} be a T-covering of D with « € (0, m,,). Then
S (T, enizl < [ K206 du(z)

< Z/ —2¢(2) dp(2)

D(at(z;))

<CZ/ “2du(z)

D(ar(z;))

where the last inequality is by Lemma 3.5. As we pointed out before, 7(2) ~
7(w) whenever |z — w| < m,7(w). Thus we have

€n, en)r2| < C 7(z;)) 2 z
ST, en)sz] < Z(( ) /D(Wﬂ)d””
D(ar zg>>>
CZ D(ar(z))]

Therefore

On the other hand, by Theorem 3.3 we have

p(D(a7(z)))
!

TIL € S if SUPW

Q.

It then follows by interpolation that

res s (ALY

art(z,))

This completes the proof of the sufficiency. [l

To prove the necessity, we need two more lemmas.
Lemma 3.6. Let ¢ € D and let
ko(2) = K(z,w)(K (w, w))" /2.
Then there exists a small constant oy € (0, m,,) such that

|kw(2)]? ~ K(2,2) whenever |z —w| < apr(w).
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Proof. For any fixed wy € D, consider the subspace ALZ(D,w,) which is
defined by
AL(D,wo) = {f € ALZ(D) : f(wo) =0} .

Note that we have the decomposition

(3.1) AL (D) = ALL(D,wo) @ Ly,

where L, is the one-dimensional subspace spanned by the function
Fuo () = K (2, w0) (K (wo, wo)) 2.

We denote by K,,(z,w) the reproducing kernel of AL? (D, w,). From (3.1)
we obtain

(3.2) K(z,2) = Kyy(2,2) + |ku, (2)]>.
Hence we always have
(3.3) |kw, (2))° < K(2,2).

Now we need to prove the reverse inequality. By (3.2) we only need to show
that there exist constants 0 < op < m, and 0 < Jp < 1 such that

(3.4) Ky, (2,2) < 00K (2,2) whenever |z —wq| < ao7(wp).
Let us consider the operator
(Swof)(2) = f(2)(z —wo) ™.

It is easy to check that S, maps ALZ(D,w,) into ALZ(D). Let V2 : C —C
be defined by V2 ({) = (2 — wp)¢. Then the point evaluation U] f = f(z)
on AL?(ID,wo) can be represented as

Ui, = Vo LSy,
where L, is the point evaluation on AL? (D). Hence
(3.5) 1Tzl S MV HIL= N S II-

When |z — wy| < apT(wp), where ap € (0, m,,) will be chosen later, it is
obvious that

(3.6) Vil < 007 (wo).
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To estimate the norm of S,,, let us take a small oy € (0, m,). The choice
of ay will be made precise later. For any f € ALfg (D, wy), let

9(2) = f(2)(z —wo) " = (Sue /) (2).

Then g € ALZ(D) since S, maps AL’ (D, w) into AL? (D). For this g we
have

61 Nl = | 9(2) e~ dA(2)
® D(ay7(wo))

+ [ l9(2) e dA(2)
D\D(e1 7(wo))

By the reproducing property we have
9(2) = [ K(z,w)glw)e ) dAw).
D

It then follows

[ lg)pe 9 dag)

D(a17(wo))

(3.8) < 1K (2, )3 gl e dA(2)
D(ay7(wo))

= [ K(2)e ) dAG) - gl
D(oa7(wo)) ”
By using Lemma 3.5, we obtain

/ K(z,2)e”2®) dA(z) < C/ (1(2)) 2 dA(2)
Do 7(wo))

D(o17(wo))
< C(r(wp)) ™ / dA(2)
D(aym(wo))

The second inequlity is because 7(z) ~ 7(w) whenever |z — w| < m,7(w).
Note that the constant C in (3.9) is independent of wy. Now we choose a
small a; € (0, m,) such that Ca; <1 in (3.9). Then from (3.7), (3.8) and
(3.9) we obtain

loliz; < [ 9 e dA ()
D\D(ai1 m(wo))
2
=C _f_(i)__ e~ 2¢(2) dA(z)
D\D(a17(wo)) | # — Wo

< C(r(wo)) * 1l
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It then follows that
(3.10) 1Swoll < C(7(wo))™*

where C' is independent of ws.
Now from (3.5), (3.6) and (3.10) we obtain, for |z — wo| < ap7(wp), that

U, Il < Coor(wo) (7 (wo)) | Lzl
(3.11) = Caol|L:||.

Choose o € (0, m,,) such that Cop < 1 in (3.11). Since ||UZ |I? = Ky, (2, 2)
and ||L,||*> = K(z,z), we have

K., (z,2) <0K(2,2) whenever |z —wp| < apT(wp)

where §y = (Cap)? < 1 is independent of wy. This completes the proof of
(3.4) and of Lemma 3.6. o

We will always let k,(z) = K(z,w)(K (w,w))"'/?, which is the normalized
reproducing kernel of AL? (D).

Lemma 3.7. Let ¢ € D and let {D(ar(z;))} be a T-covering of D with
0 < a < my,. Then for every orthonormal sequence {e;} in ALZ(D), the

operator A taking e; to k. (z) is bounded.
1/2
A (Z cjej) S C (Z |Cj|2> .
i L i
For any g € ALZ(ID), we have

(4(sem) o) |- < o >

L3

Proof. 1t is required to show




TOEPLITZ AND HANKEL OPERATORS 137

1/2 1/2
< <Z|Cj'2> (Z ]g(zj)lz(K(z]—,z]))‘1>

< (Z w) ) ([1oPeseans)

where 1y is the discrete measure defined by
O({ZJ}) = (K(Z]’ZJ))_lezw(zj)a .7:1727

For py we have

sup M = sup (K(Zj,zj))_leQLp(z])
i |D(ar(z;))] i D{ar ()]
7(z,)?

Thus by Theorem 2.8 we have

1/2
([ loPedu) " < Clglz.

This completes the proof of Lemma 3.7. il

Proof of the Necessity of Theorem 3.4. From p. 94 of [GK] a necessary condi-
tion for an operator T' on a Hilbert space to be in S, is that 3°, [(T'e;, e;)[P <
oo for any orthonormal set {e;}. If T is in S, then so is A*T'A for any
bounded operator A. If we choose A as in Lemma 3.7, then the necessary
condition 3, |(A*T,Ae;, e;)r2|P < oo becomes 3, (T,k.,, k) 2|7 < oo.
But

(b i = ([ e ()P du(a))

p
> ( [k peen du(Z))
D(co7(25))

where ¢ is chosen as in Lemma 3.6. By Lemma 3.6 and Lemma 3.5 we have
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(/ Ik, (2)[2€ 29 dp(z) ) c(/ K(z,72)| e—““)du(z))
D{ao7(25)) D(OtoT(Z;))

P
C (r(z 2du(z
(/D e D ))

v

v

P
C du(»%))
O‘OT(ZJ))

w(D(a(z5))) P
|D(ar(z))] z]

The last inequality is because 7(z) ~ 7(w) whenever |z — w| < m,7(w).

Therefore )
u(D(aT(Zj)))>
—_— < 0.
Z< [D(ar ()
This completes the proof of the necessity and of Theorem 3.4. O

For the case 0 < p < 1, we have a sufficient condition.

Theorem 3.8. Let 0 < p <1 and let ¢ € D. If there exists a constant
a € (0, my,) such that for every T-covering {D(at(z;))} of D,

u(D(ar(z)))’
Z( |D<m(z,->)|> = oo

then T, belongs to S,.

Proof. We only need to consider the case 0 < p < 1/2 because the results
for 1/2 < p < 1 can follow by interpolation.

Since T, = J*J, where J : AL2(D) — L? ,(D) is the imbedding operator,
we have |T,[P = ]J[gﬁ. Let {D(ao(z;))} be a 7-covering of D where 0 <
ap < m, is chosen as in Lemma 3.6 and let {o;} be a partition of unity
subordinate to the covering {D(ao7(z;))}. Then for any f € AL (D) we

have
F=>Y0,f.
J
We introduce the following operators

J;: ATA(D) > I%,(Dlewr(2,));  J;f = 0,f
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and the natural imbeddings
I : Lg ,(D(aoT(%;))) = L, ,(D);  Lig=g.

We then have
J

Since 0 < 2p < 1, we have

|T152 < S LTl < > |18
i i

Now everything reduces to an estimate of the norm |J;|,,.
By (3.1) we have the orthogonal decomposition
AL (D) = ALL(D, z;) ® L.,
where AL (D, z;) = { feAL(D): f(z) = O} and L, is the one-dimensional
subspace spanned by the function k., (2) = K (z, z;)(K (2, 2;)) ~'/%. Set
I = Jilaramsy) © ALLD, z;) = L2, (D(07(2:))),
I = Jjle., o Lay = LY (D(aer(2:))).

z

It is clear that J; = J;l) + J]@. Hence for 0 < 2p <1,
(3.12) T3l < 13V + 177 35

. 2) .
Since JJ( ) is a rank one operator, we have

1/2
619 = ([ K]

To estimate |J](1) |2, we consider the division operator
Sj: ALG(D, z;) — ALy (D);  (Sif)(2) = f(2)(z — 2;) ™"
and the multiplication operator
T : L, ,(Daot(2)) = L, ,(D(ew7(2)));  (T;f)(2) = f(2)(2 = 2)-
The operator ij admits a decomposition J;l) =1T,J;S;. Hence

(3.14) 15 12p < ITS IS5 -
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Then as in the proof of Lemma 3.6, there exists a constant 0 < §;, < 1 such
that
IT5 1111551 < bo-

Thus from (3.12), (3.13) and (3.14) we obtain

p
|J;l52 < (1 —857)7" (/ K(z,z)e 2 du(z)) )
D(ao7(25))

Then by Lemma 3.5 and the fact that 7(z) ~ 7(w) whenever |z — w| <
m,7(w), we obtain

o ((D(ae(z;)))
58 5 (el )

Thus

T2 =713 < Zu 2 < CZ (TD(‘((E(—% -

ao7(25))

This completes the proof. [

4. Schatten class Hankel operators on ALZ(D).

In [LR] we studied the boundedness and compactness of the Hankel operator
H, on AL(D) with b € L?(D). We restate our main results in [LR] here for
convenient reference.

Theorem 4.1 ([LR]). Let ¢ € D and suppose that HX(D) is dense in
ALZ(D). Let b € L*(D) and let H, be defined on HX(D) by H,f = bf —
P(bf). Then the following are equivalent.

(1) Hy is bounded in the L2 norm.

(2) The function F,(z) defined by

1
2 _ — h|*dA : lytic in D
F,(z) 1nf{ D@ Joern |b—h|°dA: h analytic in (a’r(z))}

is bounded for some a € (0, m,,).
(3) b admits a decomposition b = b, + by where by € C*(D) and satisfies

Ob,

B © L=(D),
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while by satisfies the following condition: the function G,(z) defined by

2 _ _____1______ 2
Golo) = T oy 11 4

is bounded for some a € (0, m,).

Theorem 4.2 ([LR]). Let ¢ € D and suppose that H*(D) is dense in
ALZ(D). Let b € L*(D) and let Hy be defined on HX(D) by H,f = bf —
P(bf). Then the following are equivalent.

(1) Hy is (extends to) a compact operator from ALZ(D) to L7 (D) .

(2) The function F,(z) defined by

1

F,(2)" = inf{m Dar(o) |b—h|*dA : h analytic in D(O(T(Z))}

tends to zero as |z| — 1 for some o € (0, m,,).
(3) b admits a decomposition b = by + by with by € C*(D) so that
5[)2(2)
(Ap(z))1/?

and for some o € (0, m,), Go(2) = 0 as |z| — 1, where the function G,(z)
18 defined by

-0 aslz] =1,

1

Col2) = [Blar @] Jotarcor

by | dA.

Remark 4.3. If ¢ € D is a radial function, one can show that H°(DD)
is dense in ALZ(D). So, at least for radial function ¢ € D, the assumption
that H°(D) is dense in AL’ (D) is satisfied in Theorem 4.1 and Theorem
4.2.

Now we consider the membership of H, in the Schatten classes S,. We
have the following theorem.

Theorem 4.4. Let ¢ € D and suppose that H? (D) is dense in ALZ (D).
Let 1 < p < oo and let b € L*(D). Assume that H, is bounded in the L2
norm. Then the following are equivalent.

(1) Hy belongs to S,.

(2) F,(z) € LP(D, ApdA) for some o € (0, m,), where the function F,(z)
is defined by

1

Fa 2 _ s f _ — 2 : c i D -
(z)* =1in {lD(aT(z))l bar(o) |b—h|?dA: h analytic in (m’(z))}
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(3) b admits a decomposition b = by + b, where b, satisfies

1
Gal2) = (ID(aT(z))I Dlar(2)

for some a € (0, m,,), and 0by/(Ap)'/? satisfies the same condition as b;.

1/2
1,2 dA) € LP(D, ApdA)

By using a similar argument of [Lu2], one can show that Theorem 4.4 is
equivalent to the following theorem.

Theorem 4.4'. Let ¢ € D and suppose that HX (D) is dense in AL?(D).
Let 1 < p < oo and let b € L*(D). Assume that H, is bounded in the L2
norm. Then the following are equivalent.
(1') Hy belongs to S,.
(2') There ezists a constant o € (0, m,) such that for every T-covering
{D(ar())} of D,

ZFa(zj)p < oo.

J

(3') There ezist a constant o € (0, m,) and a decomposition b = by + b, such
that for every T-covering {D(ar(z;))} of D,

p/2
1 , o
2 (lD(aT(zj))l /D(ar(za)) i dA) =

J
and the same holds with 0b,/(Ap)*/? in place of b;.

So we only need to prove Theorem 4.4'.

Proof of Theorem 4.4'. First we prove (1') = (2'). Let {D(ao7(2;))} be a 7-
covering of I, where 0 < ag < m,, is chosen as in Lemma 3.6. Since H° (D)
is dense in ALZ (D) and convergence in AL’ (D) implies uniform convergence
on compactra, it is easy to see that for each z; (j = 1,2,---) there exists

k., (2) € HX(D) (j = 1,2,---) satisfying the following conditions:

~ 1
(4.1) “kz]- - ij”Li < 2%
and
(4.2) k., (2)|2e72) > C(7(2;))™* whenever |z — z;] < ao7(z;).

Let {e;} be an orthonormal sequence in AL? (D) and let A be the operator
taking e; to l~czj (). We have

Ae; = k., (2) = k,,(2) + (k;;(2) — k., (2)) = Ae; + Eej, (j=1,2,---)
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where Ae; = k,,(2) is a bounded operator by Lemma 3.7 and Ee; = k., (2)—
k.,(z). To prove A is bounded, we only need to show that E is bounded. By
using (4.1) we have

E (; cjej)

zj

L% Ls

S Z |le”];z,~ - ij”Li
J
1
<> |ij2—]
J

1/2 1/2
1
j j
1/2
=C (Z |Cj|2) -
J
Thus FE is bounded, so is A.

From p. 94 of [GK] a necessary condition for an operator T on a Hilbert
space to be in S, is that 3, |[(Te;, e])|” < oo for any orthonormal se-
quence {e;}. We apply this to B* H,A where A is as above and Be; =
A3 X D(aor(z;) Hb(kz,) with a; = (fD(aor(z_.,)) IHb( DPe ¢ dA)” /2. By the
finite multiplicity property of the 7-covering, it is easy to see that B is
bounded. Since H, € S,, we have B*H,A € Sp. Thus

p

2

J

<B*Hb1i6j, €j>L2
j
_ p/2

= Z (/ [Hy(k2;)|?e™2¢ dA)

D(aoT(25))

~ 2 p/2

— ( / [bF.,, — P(bk.)| e dA)

D(aor(z3))

; (/D(O‘OT(ZJ )

14

a; <Hbl~€z,-a XD(aoT(Zj))Hb]}Z;‘>L2

)P/2

.
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- |D (o7 (2;))| JD(aor(z5)) k.,

2

J

1 1 : i
>CY (— lb — =—P(bk,,)| e7% dA)

2 CZFao(zj)p
J

where the first inequality is by (4.2). Hence (1') implies (2').

Now we prove (2') = (3'). As we point out in the proof of (2) = (3)
of Theorem 4.1 in [LR], the functions b; and b, produced in the proof of
Theorem 3.1 in [LR] actually satisfy the following conditions:

1

(4.3) D@ Jowro |b1]> dA < Csup {F,(w)?: w € D(3ar(z))}
and
Oby(z) )
(4.4) I(—W < Csup{F,(w): w e DBar(z))}.
It is easy to verify from the definition of F,(w) that
(4.5) sup {F,(w) : w € D(3ar(z))} < CFi,(2).

If we replace a by /5, then from (4.3), (4.4) and (4.5) we obtain
1

(49 D57 Jotasrioy 1 4 < CFiessl?)
and

_Obs(2) .
(4.7) B2 < CFya5(2).

Let us consider the 7-covering {D(a/57(z;))} of D. From (4.6) and the fact
Fuoys(2) < CF,(z), we obtain

p/2
1 2 z.p
2 <|_Dm D(a/57(z,)) b1} dA) < C;Fw/s( )

J

< CZFa(zj)p < o0.
J

If z € D(a/57(2;)), then it is easy to verify from its definition that Fy, /s, .y <
CF,(z;). Therefore, from (4.7) we obtain

2 p/2
dA) < CZFQ(ZJ-)” < o0.
J

1 0by(2)
2 (ID(a/5T(Zj))' D(a/37(z,)) I(A%’(z))l/2

J
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Thus (2') implies (3').

Finally, let us show (3') = (1'). Let H, be a bounded Hankel operator
and let b = b; + by be as in part (3) of Theorem 4.1. The argument in the
proof of the boundedness theorem of H, in [LR] actually shows that for any
f e AL, (D),

[ Hp, flizz < Cl| My, fllzz
and  ||Hy, fllrz < Cl[Mab,jap)/2fllzz

where My, f = b, f and My, apy12f = Oby/(Ap)Y/? f are the multiplication
operators. By the following equivalent definition of the singular numbers of
the operator T,

sp = Inf {||T|w| : comdim W =n},

we know that the singular numbers for H,, and H,, are dominated by those
for MbllALg,(D) and Mébz/(Aw)WlALz,(D)- So, to prove H, € §, it suffices to
show that M, : ALZ(D) — L2%(D) belongs to S, for 1 = b, or dby/(Ap)'/?.
Observe that

(Mo, Myg)az = [ folgPe™ dA = (Tt o)sz.

Therefore M M,, = Tjy2. Thus M, € S, if and only if Tjy> € Sp/2. By The-
orem 3.4 (for p/2 > 1) and Theorem 3.8 (for 0 < p/2 < 1), the condition in
(3') is exactly what is needed to have both Tj,, > and T}, /(ae)1/22 belong to
Sp/2. Thus the corresponding multiplication operators M, and Mgy, /(ap)1/2
belong to S,. Hence H, belongs to .S,. This completes the proof.
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