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ON QUADRATIC RECIPROCITY OVER FUNCTION FIELDS

KATHY D. MERRILL AND LYNNE H. WALLING

A proof of quadratic reciprocity over function fields is given
using the inversion formula of the theta function.

Over the years, many authors have produced proofs of the law of quadratic
reciprocity. In 1857, Dedekind [2] stated that quadratic reciprocity holds
over function fields; this was later proved by Artin [1]. One of the sim-
plest proofs over the rational numbers relies on the functional equation of
the classical theta function (see, for example, [3]); this technique was later
generalized by Hecke [4] to number fields. In this note we use an analogous
technique to give a simple and direct proof of quadratic reciprocity over ra-
tional function fields. We thank David Grant for suggesting this application
of Theorem 2.3 of [6].

The reader is referred to [5] for a more complete discussion of the history
of the Law of Quadratic Reciprocity.

Let F = F p be a finite field with p elements; for the sake of clarity we
assume p is an odd prime. Let T be an indeterminate, and set A = F[T].
Then for α, /3 E A with a irreducible, let

{1 if β is a (nonzero) quadratic residue modulo α,

— 1 if β is a (nonzero) quadratic nonresidue modulo α,

0 if a divides β.
We will show that for α, β G A distinct monic irreducible polynomials,

if deg α, deg β are both odd,

a ' ( — j otherwise.

We require the following definitions.
Let K = F(T); let Koo denote the completion of K with respect to the

"infinite" valuation | ^ given by \a/β\oo = pάe&a-άez0 where α,/3 G A.
(We adopt the convention that degO = —oo, and hence |0|oo = 0.) One
easily sees that K ^ = F ((ψ)) , formal Laurent series in ^ for x G K^,
we write x = Σ?=_oo £jT^- The "unit ball" or "ring of integers" in K ^ is
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Coo = {x E Koo : l̂ loo < 1} = F [[£]] , formal Taylor series in ±. Set
G = PSL2(Koo); then the maximal compact subgroup of G (with respect to
the standard topology induced on G by | |oo) is PSL2{000). Thus we set

H = PSL2(KOO)/PSL2(OOO).

We can view PSL2(*) as a subgroup of PGL2(*); so we consider a matrix
of PSL2{*) equivalent to every nonzero scalar multiple of the matrix. Then
as shown in [6],

(1/ 3y 1
I G H, set

θ{z) =
δeA

where e{η} = e \Σj>NΊjT3 \ = exp(2π«7i/p) and Xo^ is the characteristic

function for O^.
As in the classical setting, we will connect this theta series to quadratic

reciprocity through Gauss sums. Accordingly, for α, β 6 A with a irre-
ducible and a not dividing /?, define the Gauss sum Ga(β) to be Ga(β) =

Lemma 1. For α,/3 G A tintt α irreducible and α/ /?, ί — 1 = α , . .
\Oί/ (jrayL)

Proof. We have

(5€A/αA

and for /?' E A such that ^/3; = 1 (mod a)

= Σ (^

D

Lemma 2. For α, β relatively prime irreducible polynomials, Ga(β)Gβ(a) =
Ga0{\).

Proof. Notice that the map (ί+α/?A, 7+α/3A) \-^ 5+7+α/3A is an injective
homomorphism from (βA/aβA) x (aA/aβA) into A/aβA; since the cardi-
nalities of the domain and the codomain are finite and equal, the map is an
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i s o m o r p h i s m . Also n o t i c e t h a t for δ € βA a n d 7 G α A , e{(δ + j)2T2/aβ} =
e {δ2T2/aβ} e {γT2/aβ} . Thus

Gaβ(l)= Σ e{(βδ)2T2/aβ} ]Γ e {{aδ)2T2/aβ} = Ga(β)Gβ(a).

D

Combining these two lemmata, we have that for a,β relatively prime

irreducible polynomials, ( — ) ( — ) = °f^ . Thus for formulate the
\βj \aj Ga{l)Gβ[l)

law of Quadratic Reciprocity, we need only evaluate GΊ(1) for a G A. This
is the content of our final lemma.

/ \ α / / - j \ α

Lemma 3. For any 7 G A, G>(1) = pi [ — ) \ I — ) where d = deg7
\P J y \ P J

and j d denotes the coefficient of Td in 7.

Proof. First notice that by the Euclidean Algorithm, {δ G A : deg 5 < d} is
a complete set of representatives for A/7 A. Thus

GΊ(l) = Txo«, {{Tδ)2T-2d)e{{Tδfh}.

frp-2d

0 1
Letting z = ( π ^ ) , we see that GΊ(1) = θ(z) where 6>(z) is as in [6]. By

= n*(lL\\l(=±V-' X
) \ f ) ( — ) where

P J V V p ) \ zj
the Inversion Formula, we have θ(z) = p* I

— = I . ~ Z Ξ . Since the only δ G A
z \ 1 U / \U 1 /

1 is δ = 0, θ(-\) = 1. D

These Lemmata easily imply the following

Theorem. Let a, β be relatively prime irreducible polynomials of degrees d

and d! respectively. Then

(°)=J?!*Y (bL)d(P
\βj \P J \ p J \a

where

1\
— if d, d! are both odd,

e= < V p )
1 otherwise.
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In particular, when a and β are distinct monic irreducible polynomials,

otherwise.
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