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Let v and p be finite positive measures on the open unit disk
D. We say that v and p satisfy the (v, u)-Carleson inequality,
if there is a constant C' > 0 such that

/D fPav<c [ 15

for all analytic polynomials f. In this paper, we study the
necessary and sufficient condition for the (v, u)-Carleson in-
equality. We establish it when v or p is an absolutely con-
tinuous measure with respect to the Lebesgue area mesure
which satisfy the (A4;)-condition. Moreover, many concrete
examples of such measures are given.

§1. Introduction.

Let D denote the open unit disk in the complex plane. For 1 < p < oo, let
L? denote the Lebesgue space on D with respect to the normalized Lebesgue
area measure m, and || - ||, represents the usual LP-norm. For 1 < p < oo,
let L? be the collection of analytic functions f on D such that || f||, is finite,
which are so called the Bergman spaces. For any z in D, let ¢, be the Mobius
function on D, that is

and put,
Blz,w) = 1/2 log(1 + |4, (w)))(1 — |g(w)) ™" (2,w € D).
For 0 < r < oo and z in D, set
D, (z) ={w € D; B(z,w) <r}

be the Bergman disk with “center” z and “radius” r, and we define an
average of a finite positive measure p on D, (a) by

N .
,u'r(a’) —m(Dr(a)) /Dr(a)d’u ( ED)?
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and if there exists a non-negative function u in L' such that d pu = ud m,
then we may write it 4., instead of f,.

Let v and u be finite positive measures on D, and let P be the set of
all analytic polynomials. We say that v and u satisfy the (v, u)-Carleson
inequality, if there is a constant C' > 0 such that

[israv<c [ |fdn

for all f in P. Our purpose of this paper is to study conditions on v and
u so that the (v, u)-Carleson inequality is satisfied. If v < Cp on D, then
the (v, u)-Carleson inequality is true. However it is clear that this sufficient
condition for the (v, u)-Carleson inequality is too strong. A reasonable and
natural condition is the following: there exist » > 0 and 7y > 0 such that

(%) 7.(a) < ¥ji(a)  (a € D).

The average ji,(a) are sometimes computable. If y = m, then fi.(a) =1 on
D. Ifd p = (1—|2|?)*d m for a > —1, then [i,(a) is equivalent to (1 — |a|*)*
on D.

When d p = (1 — |2|?)®d m for @« > —1, Oleinik-Pavlov [7], Hastings
[2], or Sitegenga [8] showed that v and p satisfy the Carleson inequality if
and only if they satisfy ( * ). In §3 of this paper, when d y = ud m and
u satisfies the (A;)s-condition (the definition is in §3), we obtain that the
(v, u)-Carleson inequality is satisfied if and only if they satisfy ( * ). We
show that if both » and u™' are in B M O, ( see [9, p. 127] ), then u
satisfies the (A;)s-condition. We give some concrete examples which satisfy
the (A;)s-condition.

When v = m and d u = xgd m, where x¢ is a characteristic function of
a measurable subset G of D, Luecking [4] showed the equivalence between
the (v, u)-Carleson inequality and the condition ( * ). If we do not put any
hypotheses on p, the problem is very difficult. The equivalence between the
(v, p)-Carleson inequality and the condition ( * ) is not known even if v = m.
Luecking [5] showed the following:

(1) If there exists v > 0 such that 7, (a) < vfi,(a) for all 7 > 0 and a in
D, then the (m, u)-Carleson inequality is satisfied.

(2) Suppose the (u, m)-Carleson inequality is valid (equivalently f, is
bounded on D). Then the (m, u)-Carleson inequality implies the condition
(*).

In §2 of this paper, we give a sufficient condition (close to that of (1))
for the (v, p)-Carleson inequality when v is not necessarily m. Moreover,
using the idea of Luecking’s proof of (2), a generalization of (2) is given. In
84, when d v = vd m and v satisfies the (A,)-condition (the definition is in
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§3), we establish a more natural extension of (2) under some condition of a
quantity €,(v) (the definition is in §2), that is €,(v) — 0 as 7 — oco. The
(A;)-condition is weaker than the (A,)s -condition. We give some concrete
examples which satisfy the (A,)-condition or the above condition of ¢, (v).

§2. (v,u)-Carleson inequality.

Let G be a measurable subset of D and u be a non-negative function in L!,

and put
1

0G)N = e /D L xedm

Particular, when G = D, we will omit the letter D in the above notation.
The following Proposition 1 gives a general sufficient condition on v and p
which satisfy the (v, u)-Carleson inequality. In order to prove it we use ideas
in [5] and [9, p. 109]. Since (v™') (a)™! < 4, (a) for all @ in D, Proposition 1
is also related with (1) of §1 (cf. [5, Theorem 4.2]).

Proposition 1. Suppose that d p = ud m. Put E, = {z € D; there is a
w € suppv such that B(z,w) < r/2}. If there exist r > 0 and v > 0 such
that u > 0 a.e. on E = E,, and D(a) x (uz')(a) < for all a in D, then
there is a constant C > 0 such that

[iravse [ i5pdp
for all f in P.

Proof. Suppose that i, (a) x (ug')s.(a) < yforalla in D, and put E = {z €
D; there is a w € suppv such that 8(z,w) < r}. By an elementary theory
for Bergman disks, there is a positive integer N = N, such that there exists
{\.} C D satisfying that D = UD,.(},) and any z in D belongs to at most
N of the sets Dy, (\,) (cf. [9, p. 62] therefore

/suppu lf‘ dv S Z/Dr(A,,)ﬁsuppu lfi dv
< ZV(DT()\,I)) x sup{|f(2){*>; z € D.(\,) Nsuppv}.

By Proposition 4.3.8 in [9, p. 62], there is a constant C' = C,. > 0 such that

C

[f(2)] < m

[ i)l mw)
D.(z)

for all f analytic, z in D. If z in D,(\,) Nsuppv, then D,(z) is contained in
Dy, (A,)NE, and there exists a constant K = K, > 0 such that m(D,,(\,)) <
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Km(D,(z)) for all n > 1 (cf. [9, p. 61]). Hence the Cauchy-Schwarz’s
inequality implies that

, KC ’
/D IfPd v <3 v(D(An)) X (m /Dzr(xn)ms'fld m)
<D v(Dr(M) x K2C?

1 , .
x (mT) [, o WPwsd )

1 -
8 (m(Dzr()\n)) /Dzr(xn)u xed m>
<K?*C*) " Dap(An) X (ugh)pn(An)

X (/ |f[Pud m) .
Dzr()\n)mE

By the hypothesis and a choice of disks, it follows that
[ 1Pav < 2N [ |fPd p.
D E
This completes the proof. (|
Let 4 be a finite nonzero positive measure on D. For any a in D, put
ka(z) = (1—laf*)/(1 —a@z)*  (z€ D),

and a function fi on D is defined by
ila) = [ Ihafd g
D

Moreover, for any fixed r < oo, put

erlu) = sup ( [, Vel u) < ([ e ) -

If there exists a non-negative function » in L' such that d u = ud m, then
making a change of variable, it is easy to see that

er(k) = ach </D\Dw(0) 4O fad m) 8 (/D %0 fud m) ) '

In general 0 < €,(u) < 1. In this section and §4, this quantity ¢, is important.
The following Proposition 2 gives two general necessary conditions on v
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and g which satisfy the (v, u)-Carleson inequality. In order to prove (2)
of Proposition 2 we use ideas in [5, Theorem 4.3]. Since ¢,(m) < 1 and
g-(m) = 0 (r — 00), (2) of Proposition 2 is related with (2) of §1.

Lemma 1. Let pu be a finite positive measure on D and 0 < r < oo, then
the following (1) ~ (3) are equivalent.

(1) &r(p) <1.
(2) There is a § = 4, < oo such that

/ lkal*d p < 5/ |ka|*d 1
D\D: (a) D.(a)

for all a in D.
(3) There is a p = p, < 0o such that

fi(a) < pfi-(a)
for all a in D

Proof. The implication (1) = (2) is trivial. (2) = (3) and (3) = (1) follow
from Lemma 4.3.3 in [9, p. 60]. In fact, by Lemma 4.3.3, there exist L =
L, > 0and M = M, > 0 such that

L < m(D,(a)) x inf{|k,(2)|*; 2 € D,(a)}

and
m(D,, (a)) x sup{|k,(2)|*;z € D,(a)} < M

for all @ in D. Thus remainder implications are obtained. O

Proposition 2. Suppose that v and u satisfy the (v, u)-Carleson inequality,
then the following are true.

(1) If there ezists r < oo such that €,(u) < 1, then there exists v > 0 such
that 0,(a) < yiir(a) for all a in D.

(2) Ifdv=vdm, v>0a.e onD,ce(v) >0 (t— o0), and there are
[ >0 and ¥ > 0 such that ji;(a) X (v"1)a) <+ for all a in D, then there
are v >0 and v = 7, > 0 such that ¥,(a) < yfi-(a) for all a in D.

Proof. Since k,(z) is uniformly approximated by polynomials, the inequality
is valid for f = k,, that is

/ ko 2d v < o/ \ka2d 2.
D D

Firstly, we show that (1) is true. The above inequality and Lemma 1
imply that
v(a) < Ci(a) < Cpjir(a)
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for all @ in D. Moreover, by Lemma 4.3.3 in [9, p. 60], there exists a constant
L > 0 such that
?y(a) < L7 '5(a)

for all a in D. Hence we have that
vr(a) < CpL™" ji ().

Next, we prove that (2) is true. For any a in D and r > [, put
d por = (1 = XD.(a))d p. By the latter half of the hypothesis in (2), we
have that

(Ha,r)i' (X)X (V7)1 () <9
for all a,\ in D, and r > [l. Set E,,, = {z € D; there is a w in supp p,,,
such that S(z,w) < [/2}. By Proposition 1, there exists a constant C' > 0

such that
[ ffdusc [ irpdv
D\D,(a) Eq,r

forall @ in D, r > [ and f in P. Here we claim that E, ,, is contained in
D\D, 5(a). In fact, since D\ D, (a) contains supp p,,, and r > 1, if z belongs
to E, ., then there exists w in D such that S(w,a) > r and B(w,2) < r/2.
Therefore,

r < B(w,a) < B(w,2) + B(z,a) <r/2+ [(z,a),

thus we have that z is contained in D\D,/,(a). Particularly put f = k, in
the above inequality, then

/ Ik [2d p < c'/ ko [2d v
D\D,(a) D\D,/2(a)

for all @ in D and r > [. It follows that

[ WPdp= [ kPdp- [ kP
D,(a) D D\D,(a)

207 [ fdv-c | kal2d v.
D D\D,/2(a)

By the definition of €,(v), the above inequality implies that
[ kaPduz (€t =Cep() [ Ihaldv
D.(a) D

for all @ in D and r > [. Here let r be sufficiently large, then by the
hypothesis on ¢,(v), C~* — C'e,/2(v) > 0, and by Lemma 4.3.3 in [9, p. 60],
we conclude that

fir(a) > [M~Y(C7'C'e, 2 (v)) L]Dr(a)
for all a in D. O
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§3. (Az)-condition.

For a complex measure p on D, recall that a function i on D is defined by
jita) = [ kPd .
D

Particularly, if there exists a complex valued L!-function u such that d p =
ud m, then we denote the function by u instead of [, and say that @ is the
Berezin transform of the function u.

Let v and u be non-negative functions in L', put d v = vd m and d u =
ud m. Suppose that there is a constant v > 0 such that

¥(a) x (u™')"(a) <

for all @ in D, then Lemma 4.3.3 in [9, p. 60] implies that there exist r > 0
and 7' > 0 such that

b,(a) x (u™')(a) <o
for all @ in D, and hence by Proposition 1, we obtain that the (v, u)-Carleson
inequality is satisfied. In the above two inequalities, if we put u = v, then
such a function u is interesting for us.
A non-negative function u in L' is said to satisfy an (A;)s-condition, if
there exists a constant A > 0 such that
ifa) x (u™)"(a) < A

for all @ in D. If there exist r > 0 and A, > 0 such that
a,(a) x (u™')2(a) < A,

for all a in D, then we say that u satisfies an (A,)-condition. In [6], the
(Ay)-condition is called Condition C, . It is known that u satisfies the (A,)-
condition for some 0 < r < oo if and only if u satisfies the (A,)-condition
for all 0 < r < oo [6]. Hence it shows that the definition of the (A4,)-
condition is independent of r. In general, Lemma 4.3.3 in [9, p. 60] and
the familiar inequality between the harmonic and arithmetic means imply
that for any 0 < r < oo there exists a constant M = M, > 0 such that
M= (u )~ < (w2 7! < 4, < M. Therefore, if u satisfies the (A,)-
condition, then (u™!)~~! (u~!)2! 4,, and @ are equivalent. Similarly, if u
satisfies the (A,)-condition, then (v~*)2~! and 4,, are equivalent. When u
is in L*(0D)(L! is a usual Lebesgue space on the unit circle and k,(z) is a
normalized reproducing kernel of a Hardy space), the (A.)s-condition has
been studied in [3, (c) of Theorem 2].
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The following Theorem 3 gives a necessary and sufficient condition in order
to satisfy the (v, u)-Carleson inequality when d p = u d m and u satisfies
the (Az)s-condition.

Theorem 3. Suppose that u satisfies the (Az)s-condition, then the following
are equivalent.
(1) There is a constant C > 0 such that

[uravsc [ ffudm

for all f in P.
(2) There exist v > 0 and v > 0 such that

or(a) < i (a)

for all a in D.
(3) For any r > 0, there exists v =y, > 0 such that

o, (a) < vi,(a)
for all a in D.

Proof. Suppose that (1) holds. Since u satisfies the (As)s-condition, by (1) of
Proposition 8, u satisfies a relation in (3) of Lemma 1 for all 7 > 0. Therefore,
(3) follows from (1) of Proposition 2. The implication (3) = (2) is obvious.
We will show that (2) = (1). Since u satisfies the (A;)s-condition, v~ is
integrable, hence u > 0 a.e. on D. Moreover, by (5) of Proposition 4, u
satisfies the (A;)-condition for all 7 > 0 and therefore (2) implies that

Dr(a) x (™)} (a) < Ay

for all @ in D. In the statement of Proposition 1, put £ = D, then the
above fact shows that the inequality in (1) is satisfied. This completes the
proof. O

For any u in L?, a in D, we put
MO(u)(a) = {|ul*™(a) — |a(a) *}'/?,

and let BMO; be the space of functions u such that M O(u)(a) is bounded
on D (cf. [9, p. 127]). We give several simple sufficient conditions.

Proposition 4. Let u be a non-negative function in L', then the following
are true.
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(1) If both 4 and (u™*)~ are in L™, then u satisfies the (A;)a-condition.

(2) If both u and u™" are in BM Oy, then u satisfies the (Ay)s-condition.

(3) Let 1 <p,g< oo and 1/p+1/q=1. If u} and ul satisfy the (Az)s-
condition, then u = u uy satisfies the (Az)a-condition.

(4) Suppose that f is a complex valued function in L' such that f # 0 on
D, f~Visin L, f x (f~Y)~ is in L, and |arg f| < /2 — € for some € > 0.
If u = |f|, then u satisfies the (Az)s-condition.

(5) If u satisfies the (Az)o-condition, then u satisfies the (A,)-condition.

Proof. (1) is trivial. By Proposition 6.1.7 in [9, p. 108], we have that
@(a) x (u™')~(a) < MO(u)(a) x MO(u"")(a) + 1.

This implies that (2) is true. The Holder’s inequality implies that (3) is true.
(5) follows from Lemma 4.3.3 in [9, p. 60].

We show that (4) is true. Suppose that u = |f| and there exists ¢ > 0
such that |arg f| < 7/2—¢ on D. Since |arg f| < 7/2 —¢ on D, there exists
0 > 0 such that cos(arg f) > 6 on D . Therefore, we have that

Re f = |f| x cos(arg f) > |f] - 6 = bu.

For any a in D, it follows that
5ii(a) < /Ref ka2 d m < |f(a)].
Similarly, we have that

8(u™)~ (@) <1(f7)(a)]-

Thus, )
a(a) x (u')~(a) <072 x|f(a)] x |(f~)™(a)l

for all @ in D, and hence (4) follows. t
We exhibit some concrete examples which satisfy the (A;)s-condition.

Proposition 5. If u is a function that is given by (1), (2), or (3), then u
satisfies the (Asy)s-condition.

(1) For any —1 < a <1, put u(z) = (1 — |z|*)~.

(2) Let {b;} be a finite sequence of complex numbers in D U dD with
b; # b;(i # j), and let 0 < o) < 2 for all j or =2 < a(j) < 0 for all j.
Put u = Hp;'(j) where p;(z) = |z — bj].
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(3) Let {b;},{p;} asin (2) and =1 < a(j) <1 for all j. Putu = Hp;‘(j).

Proof. We suppose that u has the form of (1). For any a in D, making a
change of variable, we have that

ila) x (u™)(@) = [(1=1a)(1 = |2)7I1 - az*d m(2)
x [(1=laP) (1= [2P) 21 - az**d m(2)
= = lzP)e - azl2ed m(z)
x /(1 —12P) 0|1 — G2**d m(2).

Since —1 < a < 1, Rudin’s lemma (cf. [9, p. 53]) implies that both factors
of the right hand side in the above equality are bounded. Hence satisfies the
(Asz)s-condition.

We show that u satisfies the (A;)s-condition when u has the form of (2).
Let a be a real number such that 0 < o < 2. For any fixed b in D, put
p(2) = |z—1b|. Firstly, we show that the Berezin transform of p~ is bounded.
In fact, making a change of variable, elementary calculations show that

(r™)"(@) < 1L =@ - 1L = azlz, x [ 1ga(b) = 2| *d m(2).

Since ¢,(b) — z lies in 2D = {2z;z € D} for any a,z in D and an area
measure is translation invariant, we have that

(™) (a) < W= P -1 = azl2 x [ ul~0d m(w)

for all @ in D. Hence we obtain that the Berezin transform of p~® is bounded.
Next, let b be in D and put p(z) = |z — b|. Then, as in the proof of the
above case, we have that

(°)"(@) < a = b* - [ga(®) — 2l13, x [ 11— az|"*d m(2)

and
(7Y (@) < fo =4 | =azls x [ jul=d m(w)

Therefore, Rudin’s lemma implies that p* satisfies the (A;)s-condition. For
any b; in D and by in 8D, put p,(2) = |z — b;| and po(2) = |z — by]. Fix
0 < a(j) <2for j=1,2and ¢ > 0. Because b; = b,, there exist measurable
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subsets B; of D such that By N B, = ¢ and p; > € on Bj for j = 1,2. Set
BO = D\B]_ U BQ, then

(s - pi™ (a) x (7 - py %) (a)
< @By (a) x (e [ Jpd m
Bo

+ee® /B p1 “Vlk,2d m

+e—a<1>/ POk 2d m
Bs
< MO X 8_Ot(1)—04(2) + M X E—a(Z . ( —a(l) )N( )
+M1><5'0‘(1-( ) (a) (—a2)) ()
where M, = || . pe (1) at)
o p1 P |l and My = |[pi*"]|. Hence we have that pj
pg(2) satisfies the (AQ)a—condition. If u has the form of (2), then applying

the sarne argument for finitely many factors of u and u™!, we obtain that u

satisfies (A2)s-condition.
Apparently, (3) follows from (2) of this proposition and (3) of Proposi-
tion 4. In fact, we let —1 < a(j) < 1 for all j, and set

+)={4; alj) 20}, J(=) =15 ali) <0}
Put w; = []; p?(j) and uy = Hj(_)p‘;(]), then uf and uj satisfy the (4s)s
-condltion. Hence, (3) of Proposition 4 implies that u = u; X u, satisfies the
(As3)s-condition. Ol
Corollary 1 is a partial result of [2], [7] and [8].

Corollary 1, Oleinik-Pavlov-Hastings-Stegenga. Let v be a finite positive
measure on D. For any —1 < a < 1, there is a constant C > 0 such that

[irtavse [P -laprdm
for all f in P if and only if there exist r > 0 and v > 0 such that
by(a) < y(1 = la]*)®
for all a in D.

Proof. Since [(1 — |2]*)*]2(a) is comparable to (1 — |a|*)*, by Theorem 3 and
(1) of Proposition 5 the corollary follows. l
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Lemma 2. Let {b;} be a finite sequence of complex numbers in DUOD with
b; # b;(i # j), and let {a(j)} be a finite sequence of real numbers such that
—2 < afj) when j is in A° (the definition of A is below). Put p;(2z) = |z —bj]

and u = Hpq(j), and let 0 < r < oo, then there are constants y; > 0 and

j
Y2 > 0 such that

nir(a) < [T la = 4*? < 752,(a)
J€A

for all a in D, here A = {j;b; is in OD}.

Proof. For any fixed 0 < r < 00, in general, Lemma 4.3.3 in [9, p. 60] implies
that there are constants L > 0 and M > 0 such that

Lin@) < [ wogudm < Min(a)
D..(0)

for all @ in D, where u is a non-negative integrable function on D. Let
u=[]|z—b;]*P, {b;} C DUAD, b; # b;(i # j), and a(j) be real numbers.
Then, by the same calculations in the proof of (2) of Proposition 5, we have
that

/ u 0 P d m
D..(0)
=TI =able® [ TLialb) = 2159 |1 = @20 d m(z).
D.(0)

Put
=] o LL1606) = 210 m(2),

then it is easy to see that [ D.o(0) U © ¢.d m is equivalent to
I(a) x ] la — b;]*1.
JEA

Firstly, we show that the lemma is true when 0 < «(j) for all j. By the
above facts, it is enough to prove that the integration

1@= [ TIal) = =0d m(2

is bounded below for all a in D, because 0 < a(j). Conversely, suppose
that there exists {a,} C D such that I(a,) < 1/n. Here we can choose a
subsequence {ax} C {a,} such that a; — a'(k — o0), where a’ may be in
D U dD. Therefore, Fatou’s lemma implies that I(a') = 0, thus it follows
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that []|¢a (b;) — 2/*9 = 0 on D,(0). This contradiction implies that the
assertion is true when 0 < a(j) for all j.

Next, we prove that the lemma is true when —2 < «(j) < 0 for all 5
in A° and —oo < a(j) < 0 for all j in A. In fact, we claim that I(a) is
bounded for all @ in D. If j is in A, then |¢,(b;)| = 1 for all a in D, therefore
|¢o(b;) — 2|7 is bounded, because z belongs to D, (0). Analogously, if j is
in A, then |¢,(b;)| = 1 (Ja] = 1), therefore |¢,(b,) — z|~! is bounded when
a is nearby 9D, because z belongs to D,(0). Thus, it is sufficient to prove
that

Ja)= [ I 1aloy) = 22D d mz)
Dr(0) jepe
is bounded for all a in U,(0) = {a € D;la] < n}, where 0 < n < 1isa
constant which is close to 1. Put

D, ,(a) = [pa(b;) — ¢pa(bj)] (3,5 € A°, a € U,(0)).

For any fixed i,j € A°, since ®,, is a continuous function on U,(0) and
Mobius functions are one-to-one correspondence on D, there exists
(i, 4) > 0 such that ®;;(a) > €(i,7) for all a in U, (0) when i # j. Put
e = min{e(4,5)/2; 4,7 € A° such that ¢ # 7},

Bj(a) = {z € D,(0);|a(b;) — 2| <€}
and By(a) = D,(0)\ U B;(a). For any j in A° U {0}, since |¢,(b,) — z] > €

when z belongs to B;(a) and i belongs to A° such that ¢ # j, therefore we
have that

J(a) < Z 6aw(j)/

(ba(;) — 21°Dd m(z) + / d m(z)
(a) Bo(a)

JEAC B,
<y sHm/ [w[*0d m(w) + e
jEAC 2D

where

a= Y alj).
jEA®
Therefore, J is bounded on D, (0), and hence we obtain that I is bounded
on D.

Using the above facts, we can show that the assertion is true when v has
the general form of the statement of this lemma. Let {a(j)} be a finite
sequence of real numbers such that —2 < «(j) < oo when j is in A and
—00 < aj) < oo when j is in A. As in the proof of Proposition 5, set
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J(+) = {J; a(4) >0} and j(-) = {j; a(j) <0}, then we have that

I(a) < 22;‘(+)a(j)/ H ‘f/’a(bj) _ Zla(j)d m(z)

- (0) =)

and
I(a) > 2Ej<—>a(a‘)/ H [pa(b;) — z["‘(j)d m(z).
" jc+)
Therefore, we obtain that I is bounded and bounded below on D. Hence,
this completes the proof. O

Corollary 2. Let u be a non-negative function in L' that is given by (2),
or (3) of Proposition 5 and v be a finite positive measure on D, then there
is a constant C > 0 such that

[irdvsc [ 1fPudm
D D
for all f in P if and only if there exist r > 0 and v = v, > 0 such that

o(0) <7 I la = b0
JEA

for all a in D, here A = {j; b; is in OD}.

Proof. The corollary follows from Theorem 3, Proposition 5 and Lemma 2.

O

We give a characterization of u which satisfies the (A,)-condition or the
(Az)s-condition when u is a modulus of a rational function or a modulus
of a polynomial, respectively. Let u be a non-negative integrable function
on D, then it is easy to see that if u satisfies the (A4;)s-condition then u™!
is integrable on D. But, we claim that the converse is true, when u is a
modulus of a polynomial. As the result, we show that the (A,)s-condition is
properly contained in the (A;)-condition. The essential part of the following
theorem is proved in Proposition 5 and Lemma 2.

Theorem 6. Let {b;} be a finite sequence of complex numbers such that
b; # bj(i # j) and {a(j)} be a finite sequence of real numbers. Put p;(z) =
|z — b;] and u = Hp?(j), then the following are true.

(1) If a(j) > 0 for all j or a(j) <0 for all j, then u satisfies the (Az)s-
condition if and only if a(j) < 2 or a(j) > —2 when b; s in D U 0D
respectively.
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(2) u satisfies the (A,)-condition if and only if —2 < a(j) < 2 when b; is
in D.

Proof. (1) By (2) of Proposition 5 and the remark above this theorem, it is
enough to prove that u™! is not integrable on D when «(j) > 2 for some b;
in D U OD. Suppose that there is a j such that b; in DU dD and «a(j) > 2,
then there exists a L>-function h such that u(z) = [z —b,|* - h(z). It is easy
to see that u™! is not integrable on U = {z € D; |z —b| < dist(b,, D)} when
b, is in D, therefore we consider the case when b; = 1. Put M, = ||h] .,
then

1 2m
/uﬁldszrjl/ 2r/ 1 —re”’d 0/2nd r
01 ° 1
= M;lf 2r(l—=r*)ldr= M;l/ t ' dt.
0 0

Hence we obtain that u~! is not integrable.

(2) Suppose that —2 < a(j) < 2 when b, is in D, then apparently Lemma 2
implies that u satisfies the (A;)-condition. Conversely, suppose that there
exist r > 0 and A, > 0 such that

for all @ in D. Since 1, is non-zero on D, therefore (u=')"(a) < co for all a
in D. By the same argument in (1), we have that a(j) must be less than 2
when b; is in D. In fact, if a(j) > 2 for some b; in D, then there exists a
function h such that u(z) = |z — b;|* - h(2). Put

¢ = min{dist(b;, b,)/2; 1 # j}

and
U(j) = {z € D;|z — b;| < e},

then obviously h is bounded on U (j). Since there exists a, such that a center
of the Bergman disk D, (a;) is just equal to b,, therefore we have that u™!
is not integrable on D, (a;) N U(j), and thus, it follows that the average of
u™! on D,(a;) is infinite. This contradicts the above fact. Consequently, we
obtain that a(j) must lie in (—o0,2) when b; is in D. Applying the same
argument to u~!, we have that «(j) must lie in (—2,00) when b; is in D.
Therefore, we conclude that —2 < a(j) < 2 when b, is in D. O
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§4. Uniformly absolutely continuous.

Recall that

-1
er(1t) = sup </ |ka|* d u) X (/ |kal* d u) ,
aeD \JD\D,(a) D

where p is a finite positive measure on D (see Lemma 1 and Proposition 2).
Using the quantity ¢, we give a necessary condition on v and g which satisfy
the (v, u)-Carleson inequality.

Theorem 7. Suppose that d v = vd m, &(v) — 0 (t = o0), and that v
satisfies the (Asy)-condition, furthermore p and v satisfy the (u,v)-Carleson
inequality. If there is a constant C' > 0 such that

[ikav<c [ rpan

for all f in P, then there exist r > 0 and v > 0 such that
,(a) < i (a)
for all a in D.

Proof. By hypotheses on v and Lemma 1, there exist ¢t > 0,p > 0 and A >0
such that

v<p-0,<Ap-(vHN
Moreover, Lemma 4.3.3 in [9, p. 60] and the (u, v)-Carleson inequality imply
that there exist L > 0 and C' > 0 such that

L-p<p<C-b
Thus, a desired result follows from (2) of Proposition 2. (]

Luecking [5] shows the above theorem when v is the Lebesgue area mea-
sure m. It is clear that €,(m) — 0 (r — oo) and m satisfies the (A,)-
condition. Now, we are interested in measures pu such that ¢,.(u) < 1 or
e-(u) = 0(r — 00).

Proposition 8. Suppose that d u = ud m, and u is a non-negative function
in L*. If u is the function such that (1) or (2), then there exists 0 < 1 < 00
such that €, (p) < 1.

(1) u satisfies the (A3)s-condition.

(2) u(z) = (1 —|2|?)* for some 1 < a < 2.

Proof. If u has the property in (1), then by the remark above Theorem 3,
for any r > 0 there is a positive constant p = p, such that fi(a) < pf.(a) for
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all @ in D and hence ¢, () < 1 by Lemma 1. Suppose that « has the form of
(2). For any fixed 1 < a < 2, put u(z) = (1 — |2/?)*, Then, Rudin’s lemma,
(cf. [9, p. 53]) shows that

a(a) = (1 - af*)" /D(l = 12")*[1 = @2|7**d m(z) < (1 - al)?,

where v > 0 is finite. On the other hand, Lemma 4.3.3 in [9, p. 60] implies
that

(@) 2 M7 x (1= o) [ (1= |2P)elt - a2 od miz)

td

> M7 x (1—]2*)*(1 — tanh® r)® x 272,
therefore, by (3) of Lemma 1, we obtain that €,(u) < 1. Il

Proposition 9. Suppose that d p = ud m, and u is a non-negative function
in L'. If u is one of the following functions (1) ~ (7), then e,(u) — O(r —
00).

(1) There ezists €9 > 0 such that i > ¢y on D, and {u o ¢,d m;a € D}
is uniformly absolutely continuous with respect to the Lebesgue area measure
m.

(2) There exists g > 0 such that & > €y on D, and there is a constant
C > 0 such that (u'™?)~ < C on D for some 8> 0.

(3) u is in L™, and there exist r > 0 and 6§ > 0 such that u > § on
D\D,(0).

(4) u = |p|, where p is an analytic polynomial which has no zeros on 8D.

(5) u(z) = (1 = |2]?)® for some -1 < a < 1.

(6) u= Hp?(j), where p;(z) = |z — B;], b # b;(1 # 7), and 0 < a(j) < 2
for b; in DUOD, or =2 < a(j) <0 for b; in DU OD.

(7) w=T1p;" where p;(2) = |2 = b;|, bi # b;(i # ), and —1 < a(j) <1
for b; in DUOD.

Proof. Firstly, we show that the assertion is true when u has the property
of (1). Since {u o ¢,d m;a € D} is uniformly absolutely continuous, for any
€ > 0 there exists r > 0 such that [, ;. uo¢sd m < g€ for all a in
D. Therefore, making a change of variable, let » be sufficiently large, then
e.(1) < &' - €0 - € = £. Hence, we obtain that ¢,(u) — 0(r — 00).

Next, we prove the implications (2) = (1), (3) = (2), and (4) = (3). Then
e-(1) — 0 when u is a function such that (2), (3) or (4). In fact, suppose
that there exists 8 > 0 such that the Berezin transform of the function u!*+?
is bounded, then a set of functions {u o ¢,;a € D} is uniformly integrable
(cf. [1, p. 120]), therefore it follows that {u o ¢,d m;a € D} is uniformly
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absolutely continuous with respect to m. Hence, (2) implies (1). If there
exist » > 0 and § > 0 such that u > § on D\D,(0), then

i(a) >6—4 |ko|?d m = 8[1 — m(D,(a))] > 6(1 — tanh®r) > 0.
D,(0)

Hence (3) implies (2) because (u!*#)~(a) < {lul|}*? for all @ in D and any
B > 0. Next, let p be an analytic polynomial which has no zeros on 0D,
then there are r > 0 and § > 0 such that u = |p| > § on D\D,(0), therefore
(4) = (3).

We prove that the assertion is true when u has the form of (5). For any
fixed —1 < a < 1, put u(z) = (1 — |2]?)* and making a change of variable,
then

euli) =sup ([ (1= 2P)°11 = asf=d m(2))

x (/ (1= 12]%)?|1 — az|~>d m(z)) .
D\D-(0)

When 0 < a <1, since 0 < 1 — |z[> < 1, we have that
/ (1 —1z)%|1 — az["**d m > 2‘2“/ (1 — |2|>)d m = constant.
D D

If -1 < a < 0, then the familiar inequality between the harmonic and
arithmetic means shows that

/D(l — 2|1 — @z|~**d m > (/D(l —12P)e|L - azPd m) ~1

> constant.

Here, the last inequality follows from Rudin’s lemma (cf. [9, p. 53] ). Again
using Rudin’s lemma, since —1 < a < 1, there exists § > 0 such that a set of
functions {[(1 —|2|>)?|1 — az|~2¢]'*?; @ € D} is bounded in L'. This implies
that the set of these functions are uniformly integrable ( cf. [1, p. 120]),
therefore it follows that e,.(u) — 0(r — 00).

We show that €, () — 0 when u has the form of (6). As in the proof of (2)
of Proposition 5, we only prove that €,(u) — 0(r — c0) when u = po).p2@
where p;(2) = |z — by], p2(2) = |z — ba], 0 < (1), (2) < 2, and b; is in
D, b, is in 0D. We suppose that B;, M;, and ¢ are as in the proof of (2) of
Proposition 5. By the definition of ¢,(1), we have that

~ 0 N—1

er(p) = sup(uxp,(a)<)~ (a) % @(a)
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Moreover,

(uxD, (@)~ (@) x 4(a)™" <(uxp, (@)~ (@) X (u™1)(a)
S(UXD,(a)C)N(a) x 6—a(1)*a(2)/ |k2a|2d m
Bo
+ (uxp, ()~ (a) x e - (p; )~ (a)

+ M, xe W x C 11— az|~*®d m,
D\D,(0)

where
€ = 1ga(bs) — =2 x 1 = asllz® x [ fuwl P m.
2D

Since u is bounded, therefore {u o ¢,;a € D} is uniformly integrable
(cf. [1, p. 120]), moreover applying the same argument in the proof of this
proposition when u has the form of (5), Rudin’s lemma implies that a set
of functions {|1 — az|7*®;a € D} is also uniformly integrable, hence we
conclude that ¢,() — 0(r — 00). The proof of the latter half of (6) of this
proposition is similar that in the above.

If u has the form of (7), then by the similar arguments in the proof of (3)
of Proposition 5, set j(+) = {j;a(j) > 0}, j(—=) = {7;5a(i) < 0}. And put
wr = [ P, ue = Ty p5", then

(uX D, (a)e)~ (@) X ©(a) ™" <(uxp, (@)~ (a) x (u™")(a)
=(urUsXp, (a))~ (@) X (u7 uz ')~ (a).

Therefore, the desired result follows from the Cauchy-Schwarz’s inequality
and (6) of this proposition. O

Corollary 3. Suppose that d v = vd m and there is a consrant C' > 0 such

that
[ireav=c [ iffdn

for all a in D, then the following are true.
(1) If v(z) = (1 — |z]*)* for some —1 < a < 1, and there exist | > 0 and
v =, > 0 such that

fu(a) <+'(1 - [a*)

for all a in D, then there exist v > 0 and v = v, > 0 such that
Y=
(1 = lal)* < viir(a)

for all a in D.
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(2) Ifv = [1p5Y, where p;(2) = |2 —b;, b; # b;(i # ), and 0 < a(j) < 2
for b; in DUJD or —2 < a(j) < 0 for b; in DUAD, and if there exist [ > 0
and 7' = v, > 0 such that

fu(a) <+ [] la —b;{*@
jeA

for all a in D, then there exist r > 0 and v = v, > 0 such that

II la = 8,1°9 < via,(a)
JEA
for all a in D, where A = {j;b; is in 0D}.
7
(3) Ifv = Hp?(]) where p;(z) = |z—=b;|, b; # b;(i # j), and -1 < a(j) < 1
for b; in DU OD, and if there exist | > 0 and v = v, > 0 such that
j 1

pu(e) <+ [T la - b;1°V
jen

for all a in D, then there ezist r > 0 and v =, > 0 such that

I la - 8,1°9 < yp,(a)
JEA

for all a in D, where A = {j;b; is in OD}.

Proof. We show that (1) is true. By the fact in the proof of Corollary 1, and
the fact that u(z) = (1 — |2|*)* satisfies the (Aj;)-condition for all & > —1
(see [B]), the hypothesis in (1) of the Corollary and Proposition 1 imply the
(u, v)-Carleson inequality. Hence, Theorem 7 and Proposition 9 show that
the assertion is true.

Similarly, (2) and (3) follow from Proposition 1, Lemma 2, (5) of Propo-
sition 4, Theorem 6, Theorem 7, and Proposition 9. O
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