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Let 7 be the tensor product of an anisotropic principal se-
ries representation of a free group [', not an endpoint rep-
resentation, with an irreducible unitary finite dimensional
-representation. Usually 7 is irreducible and has exactly
two perfect boundary realizations. In a certain well speci-
fied anomalous case 7T splits into two irreducible components
and each component has exactly one boundary realization,
which is not perfect.

1. Introduction.

Let I' be a noncommutative free group on finitely many generators. Fix a
basis A, for I" and let A = A, U A" consist of the basis elements and their
inverses. Let 7 be a representation from one of the anisotropic principal
series of [Figa-Talamanca-Steger|. Let p be an irreducible unitary finite
dimensional representation of I'.  The aim of this paper is to apply the
results of [Steger| to the tensor product 7 ® p. In particular, we show
that the representation m ® p is irreducible under most circumstances, and
decomposes into two irreducible components when it does decompose.

Anisotropic principal series representations. The following is taken
from [Figa-Talamanca-Steger|. (That paper deals with a free product of
copies of Z/2. The case of a free group is somewhat less complicated.) Let
i be a symmetric probability measure on A, suppose that p(a) > 0 fora € A,
and denote by Spec(u) the spectrum of p acting on £2(T") by left convolution.
Then Spec(p) consists of a closed interval symmetric about 0. Let o belong
to the interior of that interval. There is a unitary representation, 7, described
below, determined by the pair (u, o). Fixing p and letting o vary we obtain
a series of representations whose direct integral is the regular representation
of I'. Call such a series an anisotropic principal series for (', A), and call
the representation 7 an anisotropic principal series representation.

Fix (u,0). Recall that each z € T has a unique shortest expression,
a,ay---ar, as a product of elements in A. That shortest expression is the
reduced word for z, characterized by the property that a;a,,; # e for any [.
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The length, |z|, of z as above is L. A nonzero function f: I' — C is called
multiplicative if

(1.1) f(zy) = f(z)f(y)  when |zy| = |z| + [y].

A multiplicative function is determined by its values on A. For -y ¢ Spec(u),
the inverse of left convolution by yd. — p on £*(T") is left convolution by
9y = h,/(2w,), where h, is a multiplicative function and w,, is a constant.
Let

(1-2) hy = hotio = lim hgy4s
§—0+
W4 = Wotio = él_ig:_ We +is

9+ = Gotio = h:t/(2wd:)
¢=¢s = (9+ —9-)/(9+(e) —g-(e)) -

Then ¢ is a positive definite function on I', and the representation (7, ) is
defined by applying the construction of Gel’fand and Raikov to ¢.

For later use, observe that since p is symmetric, h.(a) = h,(a™') for all
a € A, and consequently the same holds for A.. Also note that since y is
real, hy; = BA,, wy = W,, and consequently hy, wy, and g, are complex
conjugates of one another.
Results for 7 = 7 ® p. Let H ® V be the representation space of 7, where
‘H is the representation space of m and V is the representation space of p.
Define sgn: I' — C* by sgn(z) = (—1)ll.

Theorem 1.1. FEzclude the anomalous case that o = 0 and p = p ® sgn.
Then T 1is irreducible.

In the anomalous case, 7 splits into two irreducible representations. The
full story of the anomalous case is in Section 4.

Theorem 1.2. Exclude the anomalous case that 0 = 0 and p = p ® sgn.
Then there is a dense subspace Z C H Q®V and a constant Cy > 0 so that

El_i)xg:_ Coeze—el’:'(wl,v'(a:)wz)(wg,T(x)w4) = (wy, w3)(wa, wy)
zel

for wi, w3 € H®V and w,, wy € Z.

The boundary, €2, of I'. The statements of the other main results, and the
proofs of all the results, depend on the idea of the boundary of I'. See [Figa-
Talamanca-Nebbia] or the introduction to [Kuhn-Steger| for more de-
tailed discussions of the boundary. Give I the structure of a tree by putting
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an edge between z and za for z € I' and a € A. Let d(-,-) be the distance
on I' given by this tree structure. Note that |z| = d(e,z). A geodesic is a
sequence (z;); C I' such that d(z;, z,,) = |l — m|. There is a unique geodesic
between any two elements of I'. The boundary, 2, is conveniently defined as
{semiinfinite geodesics (z;)2,}/ ~ where two such geodesics are considered
equivalent when some shift of the indices makes them cofinally equal. This
space is also called the space of ends of the tree. Given z € " and w € (,
there is a unique geodesic [z,w) starting at z and representing w, and this
we think of as the geodesic from z to w. Let

(1.3) le,w) = (e,wr,wa,...) .

There will exist (a;)52, C A satisfying a;a;4, # e such that w;, = a1a2---af.
We may think of w as the infinite reduced word a,asas.... For z € T, define

I'(z) ={z €T; z € le,z]} and Qz)={weD; z€ew)},

those reduced words, respectively finite or infinite, which start out with the
word for z. Topologize I' U Q by taking the singleton subsets of I" and the
sets (I'(2) U(2)).er as a basis of open sets. This topology makes I' U2 and
Q compact, with I discrete and with every point of €2 in the closure of T
Indeed, w = limy_, o, w; where w; is as in (1.3).

The left action of I' on itself preserves the tree structure, and therefore
it induces an action of I" on 2. We write that action as multiplication, and
indeed, it is the obvious action by left multiplication of finite reduced words
on infinite reduced words. This left action of I" on I' U Q2 leaves the topology
fixed.

Realization of 7 on the boundary. Define a probability measure v on 2
by

v(Q(za)) = |hy(za)]?/(1 + |hy(a)]?) forzeTl,a€A, |zal| =|z|+1.

This works since Y, 4 |h4(a)|*/(1 + |h4(a)|?) = 1. Define a unitary repre-
sentation 7', of ' on L*(f, dv) by

hi(a)F(a™'w), if w ¢ Qa)

(1.4) (rhr(a)F)(w) = {h+(a)_1F(a"1w)’ if we Qa)

for a € A. This extends to a representation of I because 7', . (a) 7', - (a™!) = 1.
The action of general z € I is given by

(myp(2)F)(w) = Py(z,w)F(z7'w)
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for

(1.5) P, (z,w) =

where z = z;z, and z; is the last element common to the geodesics [e, z]
and [e,w), that is, the longest common initial segment of the reduced words
for  and w. Unitarity of 7/, depends on

(16) 1Py (2, w)? = d—;f@i) ,

the right hand side being a Radon-Nikodym derivative. This is easy to check
for z € A and then follows for all z. One defines 7’ . in just the same way,
using h_ instead of h.

[Figa-Talamanca-Steger] exhibits unitary [-maps v4: H — L%(Q, dv),
intertwining 7 to 7/, respectively. Also exhibited explicitly is the intertwin-
ing operator

J =115 L*(Q,dv) — L*(Q,dv)

which satisfies J7!, (z) = 7’_(z)J for z € I'. Although complex conjugation
intertwines 7', and 7’ just as J does, J is a complex linear map, more
complicated than simple conjugation.

Boundary representations. Define x-representations 7/, of the commu-
tative C*-algebra C(2) on L*(Q,dv) by

(1.7) (Tho(G)F)(w) = (t_o(G)F)(w) = G(w)F(w) -

The symbols 7!, and 7',, are chosen so as to match the following defini-
tion from [Steger].

Definition 1.3. Let I' be any free group and let 2 be its boundary. A
(T, C(Q2))-representation or boundary representation, 7', of I on H' is a pair
(7}, g,) such that

(1) = is a unitary representation of I' on H'.

(2) =g is a *representation of C(€2) on H'.

(3) For z €T and G € C(Q), np(z)7mo(G)nr (271) = mg(AM(@)G) .

Here (A(z)G)(w) = G(z~'w). The reader familiar with crossed product
C*-algebras will see that a boundary representation is just a representation
of the crossed product algebra I' x C(2). We will routinely drop the sub-
scripts I' and € on 7. One may easily verify that the two representations
!, defined by (1.4) and (1.7) fit together to give a boundary representation
of I". One makes 7’ into a boundary representation in the same way. Note
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that although 7!, and 7’ are equivalent as I'-representations and identical as
C(§2)-representations, they are not equivalent as (T, C(2))-representations.

Let p be an irreducible unitary representation of I on a finite dimensional
Hilbert space V. It is easily verified that the definitions

Thr(z) = mir(z) ® p(7) Thol(G) = 7l (G) ® id

give boundary representations 7} acting on L*(2,dv) ® V. Indeed this sim-
ple construction applies generally, yielding a boundary representation as
the tensor product of any boundary representation and any ordinary I'-
representation. Identifying L?(Q,dv) ® V with L*(Q,dv; V), (see [Reed-
Simon] Section 2.4, Theorem 10,) gives for any F € L*(Q,dv; V)

(rir(@)F)(w) = Pi(z,w)p(z) F(z™ w)

and
(Tha(G)F)(w) = G(w)F(w)

where z € I and G € C().

The following definitions are also from [Steger].
Definition 1.4. Let I" be a free group, let Q be its boundary, and let & be
a fixed unitary representation of I' on H. A boundary intertwiner for m is a
pair (¢, ') satisfying
(1) ='is a boundary representation of I' on a Hilbert space #'.
(2) ¢ is a bounded I-map from H to H'.
(3) H' is generated as a (I', C(2))-space by +(H).
If + is an isometric inclusion, the pair is called a boundary realization of ,
and if ¢ is unitary, the pair is called a perfect boundary realization of .
Condition (3) is equivalent to requiring that #'(C'(Q)).(H) be dense in H'.
Definition 1.5. Two boundary intertwiners (¢, 7}) and (to, 75) for the same
given representation 7 of ' are equivalent if there is a unitary (I", C(2))-map
U: H, — H, so that Uiy = ¢s.

Let (¢, 7)) and (¢2, 7)) be two boundary intertwiners for a given repre-
sentation 7 of I'. The direct sum of these two intertwiners,

(Lsaﬂ-‘ls) = (leﬂi) + (LZaﬂ.;) 3

is defined in two steps. Let 7. be the direct sum boundary representation
on H| & H.,. Let i;(v) = (¢1(v),t2(v)). Then (Z,,7,) satisfies the definition
of a boundary intertwiner except for condition (3). Let H! be the closure
in Hi ® Hj, of 7 (C(2))i5(H). Then H. is a subboundary representation of
‘H} & H;. Denote the boundary representation on H. by =.. Finally, let
ts: H — M} be i, with its range restricted to H!.
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For G € C(Q) one may verify that
G (G)es = G (G + 37y (G)es

To be consistent with that definition define, for a boundary intertwiner (¢, 7')
and for real £ > 0,
t(e, ') = (t/%,7")

and define

0(,7') = (0,¢')
where (' is the boundary representation on 0O-dimensional Hilbert space.
From these definitions it follows that if (:;,7]) and (¢2, 7)) are boundary
realizations, that is, if ¢; and ¢, are isometric inclusions, and if 0 < ¢ < 1,
then (1, 7)) + (1 — ) (12, 7,) is also a boundary realization.
Results on boundary realizations of 7. Return to the specific case
of the tensor product representation (7,H ® V) of an anisotropic principal
series representation (mw,) and an irreducible unitary finite dimensional
representation (p,V) of I'. The maps

1y ®idHRYV — L*(Q,dv) @V

are unitary I-maps intertwining 7 with 7} . Thus (¢4 ®id, 7} ), where 7} =
(Thr,Tha), are two perfect boundary realizations of 7.

Theorem 1.6. Ezclude the anomalous case that 0 = 0 and p = p ® sgn.
Then, up to equivalence, the only perfect boundary realizations of T are (1+ ®
id, 71). Moreover, all boundary realizations, perfect or otherwise, are given,
up to equivalence, by

tey ®id, 7)) + (1 =) (t- ®id, 7) for0<t<1.

Outline. Section 2 describes some general results on unitary representations
of free groups and their boundary realizations. Section 3 establishes the
applicability of those general results in the present context. Section 4 deals
with the anomalous case, 0 = 0 and p = p ® sgn.

2. General Results.

If H and H, are Hilbert spaces, we denote by B(#,?H;) the vector space of
all bounded linear maps from H to H,. If H = H, then B(H) = B(H,H).

Definition 2.1. Let T € B(H). We say that T is positive if

(Tv,v),, >0 forveH.
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We denote by B” (#) the set of all positive operators in B(#).
Definition 2.2. Let T € B' (). We define the trace of T' as

+oo

tr(T) = Z (Ten, en),,

n=1

where (e,);%] is a fixed orthonormal basis for .

Properties 2.3. Let § and T be in B' (H).
(1) tx(T) € [0, 4+00].

(2) tr(a S+BT)=atr(S)+Ltr(T) for o, 8 € RY.

(3) tr(SS5*) = ”S“ZS where | - ||, is the Hilbert-Schmidt norm.

(4) I U € B(H) is unitary, then tr(UTU ') = tr(T).

(5) tr(T) is independent of the choice of basis.

(6) LetV be a finite dimensional Hilbert space, then tr(T'®idy) = dimV tr(T).

Proof. For (1)~(5), see [Dixmier] Section 1.6.6, Theorem 5. Let (v,,)N_,
be an orthonormal basis of V. Then using (e, ® Uy )nm as a basisof H® V
gives (6). O

Definition 2.4. Let S, T € B' (#). We define the following inner product

(5,714, = tr(vVSTVS) .

Properties 2.5. Let S and T be in B (#).

(1) (S, T)B+(H) € [0, +o0].

@) (57, = IVEVTI,,.

) (5T, = (15,0,

(4) (S, T)B+(m is bilinear in S and T

(5) Let V be a finite dimensional Hilbert space, then (S®id, T®id)p+wuev) =

dimV (S, T)B+(H)-
Proof. (1) follows directly from the definition. For (2),

= tr(V/STV'S) = tr(VSVTVTVS)
= tr((VSVT)(VSVT)*) = |VSVTI,,, -

(5,T)

Bt
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For (3),
(8,7) 4,y = IVSVTI,, = WWSVT)' I, = IVTVSI,, = (T,5)

Bt ()

Finally (4) follows from the definition and (3), and (5) follows from (6) of
Properties 2.3. O

One may easily verify the following lemma.

Lemma 2.6. Let T be a free group. Let m be a unitary representation of
T and let (v, 7") be a boundary intertwiner for w. For any G € C(Q) with
G > 0 the operator

(G H — H

1s linear, bounded and positive.

Now we can give the definition of the Finite Trace Condition (FTC) for
boundary intertwiners.

Definition 2.7. Let A be a set of generators and their inverses for a
free group I'. Let (¢1,71) and (¢, 7)) be two boundary intertwiners for
a representation (m,H) of I'. We say that (v, 7]) and (tq,7) satisfy the
(FTC) if

(1171 (L)) ers t3m5(1 = L) )ea)s+(a) < +00

for all a € A.

Lemma 2.8. Let T" be a free group with A as a set of generators and
inverses. Let w be a unitary representation of I' and let (v,,7}) and (12, 7h) be
boundary intertwiners for T'. Let p be a unitary representation of T' on a finite
dimensional Hilbert space V. Let T=m®p, T\ p =T r ® p, Top = Ty B p,
T o = T o®id, and 75 o = 7 o ®id. Then (1, ®id, 7{) and (12®id, ) satisfy
the (FTC) as realizations of T if and only if (t1,7)) and (12, 7)) satisfy the
(FTC) as realizations of .

Proof. Let a € A. Then

((n ®id)*7; (La@) (1 ®id), (12 ®id)" 75 (1 = La) (t2 ®1d)) g1 ey
= (47 (law) u ®id, i3m (1 = 1g) t2 ®1d) 51 3y
= dimV (Liﬂ'i (19(0)) 1y ’*;7"; (1 - lﬂ(a)) L2)5+(;{)
according to (5) of Properties 2.5. O

The following result, which is our main tool, is from [Steger].
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Theorem 2.9. LetI' be a free group and let A be a set of generators and
their inverses. Let (m,H) be a unitary representation of I' on a Hilbert space
H. If (11, 7)) and (La, 7)) are two perfect boundary realizations of 7 satisfying
the (FTC), and if m; and 7, are irreducible and inequivalent as boundary
representations, then
(1) = is irreducible.

(2) Up to equivalence (t1,m;) and (13,7h) are the only perfect boundary
realizations of w.

(3) Up to equivalence all boundary realizations of © are obtained as
t(e1,m) + (1 — ¢)(ea,my)  with ¢ €[0,1].

(4) There ezists a dense subspace Ho C H and a constant Cy > 0 so that

El_i)fggr Coe Z eIl (v, m(2)v2)(vs, T(T)va) = (v1,3)(V2, V4)
z€l

for vy, vs € H and vs, vy € Hy.

3. Technical Results.

In this section, let I be a free group with A as a fixed set of generators and
their inverses. Let (7, H) be an anisotropic principal series representation of
I" and let (¢4, 7.) be the two perfect boundary realizations of m described
in the introduction. Let p be an irreducible unitary representation of I
on a Hilbert space V of finite dimension N. Let 7 = m ® p be the tensor
product representation of I' on the Hilbert space H ® V. We will establish
that the hypotheses of Theorem 2.9 apply to 7 and its two perfect boundary
realizations (14 ®id, 7, ) except in the anomalous case o = 0 and p = p®sgn.
The various conclusions of Theorem 2.9 give Theorems 1.1, 1.2, and 1.6.

Lemma 3.1. LetT € B(L*(Q,dv;V)) be a linear bounded C(Q2)-map. Then
there exists t € L>(2,dv; GL(V)) such that

(TF)(w) = t(w)F(w) for F € L*(Q,dv;V) .

Proof. We identify V with CV and use subscripts on elements of V to pick -
out their coordinates. For every n = 1,..., N define E™ € L*(Q,dv;V) as
follows

(E™) () = 6(m,n) =

1 fm=n
0 ifm#n .
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Hence for any F € C(Q;V) we have F = YN 7', (Fn)E™. The operator T
acts as follows

TF=T (i w;(Fn)E"> = LI{‘ ', (F)TE™ .

n=1

We define
tmn(w) = (TE™)m(w) where t,,, € L*(Q,dv) .

Then
N

(TF)m(w) = Ztmn(w)Fn(w) = (Hw)F(@))m

=1

where t(w) = (tn(w)) .~ belongs to L?(R,dv; GL(V)). Since T is bounded,
it follows from Lusin’s Theorem that the entries of ¢ are almost everywhere
bounded. Then ¢ € L*°(2,dv; GL(V)). Consequently extending by density,

we get
(TF)(w) = t(w)F(w) for F € L*(Q,dv;V) .

O

Endow GL(V) with the norm || ||, obtained by identifying any linear
operator ¢: V — V with its matrix (¢;;); and setting ||¢||c = sup; , |¢;i]-

Lemma 3.2. Let f be a function in L*(Q,dv; GL(V)). Then

. ]- Yy _ w v ! —
lim ——— / o 1) = F@sodr(e) =0

n=+o0 v(Q(wn))
for almost all w = (W, W1, .-, Wn,...) € .

Proof. This is a standard consequence of the boundedness of the maximal
function for L'-martingales. O

Lemma 3.3. Ify€Tl, a€ A, and |ya| = |y| + 1, then v 'Q(va) = Q(a) .

Proof. Thinking of boundary points of ) as infinite reduced words, one sees

easily that
77'Q(7a) CQa) and YQ(a) C Qva) .

O

Lemma 3.4. Ify€eT,a€ A, and |ya| = |y|+1, then P, (y,w) is constant
for w € Q(vya).

Proof. By (1.5)

P, (y,w) = h+1('y) for w € Q(vya) . ]
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Lemma 3.5. Ify €T, a€ A, and |ya| = |y + 1, then

dv(y'w) | v(a)) )
@) vQhay) S0

Proof. From (1.6) we have that

dv(y~'w)
) [Py (y,w)]? .
By Lemma 3.4 above, |P,(v,w)|? is constant for w € Q(va). Clearly this

constant also gives
v(y ' Qya)) _ v(9(a))
v(Q(ya))  v(Qya))

O

Lemma 3.6. Let f be a function in L°°(Q,dv; GL(V)). Let p be a unitary
representation of ' on a finite dimensional Hilbert space V and let Q: I' X
Q —» C be a function, v-measurable in w, such that

(1) |1Q(z,w)| =1 forallz €T and w € .

(2) flz7'w) = Q(z,w)p(z™") f(w)p(z) for allz €T and w € Q.

(3) Ifvy,yel andy ¢ '(y) then Q(vy,w) is constant for w € Q(y).
Then there exists a € A and to € GL(V) such that

flw) =ty for almost all w € Q(a) .

Proof. By Lemma 3.2 there exists w = (wg, w1, ..., Wn,...) € £ such that

1

lim o [ W) = slledv(@) = 0
n—-4+00 I/(Q(wn)) . Q(wn)

where s = f(w). For every n > 1 let a, = v, 'w, where v, = w,,_;. Accord-

ing to (3) Q(v,,w’)s has a constant value for w' € Q(w,). Let s, = Q(v,,w')s

be that constant value. Then

1 o |
m/%n) llo(7) f (@)p(777) = nlleodr (W)
v(Qwy)) 1 o

= 0 (Qan)) (@) S e () f (v () = Salleodr (v W)
- m /Q(Wn) If(w') = slleedv(w') (using Lemmas 3.3 and 3.5).
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Hence

: 1 ! -1 N __
oty o 10 F 005" = sullodv(w) =0

Since U(V) is compact, since s, € {as ; |a] = 1}, and since A is finite,
we may select a sequence (n;) so that p(vy,,) = po for some p, in U(V), so
that s,, — t for some t € GL(V), and so that a,, = a for all j and for
some a € A. Then

/ loo f(w')pg™ — tlleodv(w') = 0.
Q(a)

That is
f(w) =t, for almost all w € 2(a)

where t, = pg ‘tpo. O

In analogy with I'(y), the set of all words which start with the letters of y,
define I'(y) = T'(y~') ™!, the set of all words that end with the letters of y.

Lemma 3.7. Let (I', A) be a free group. Let p be a unitary representation
of T' on a finite dimensional Hilbert space V and let g: I' — C be a mul-
tiplicative function (not a character, see (1.1)). If there exists a € A and
to € GL(V) such that

top(z) = q(x)p(z)to  for z € T(a)\['(a™)

then
top(z) = q(z)p(z)te forz €T .

Proof. Fix z € I'(a;) N T'(a;) where a;, a; € A and ay # a~!. Choose
w; € I'(a) such that w;, ¢ ['(a™!) and w;, ¢ I'(a;!). Choose w, € I'(a)
such that w, ¢ T'(a™!). Then w;, w,, wizw, € ['(a)\['(a™?), and |w,zw,| =
|w;| + |z| + |w2|. Hence

top(wlxwz) q(wyzwsy) p(wy zws )ty

= q(wy) p(w1)top(z)p(w2) = q(w1)p(w;)g(zws) p(zws)to

= top(z)p(w2) = q(z)p(z)q(w2) p(w2)to = q(z)p(z)top(w2)
)=

= top(z) = q(z)p(z)to -

For z € I'(a™') choose b € A such that b # a and b # a~'. Then b and zb are
words which don’t end with a™! and |zb| = |z| + 1. In this case we already
know that

top(zb) = q(zb)p(zb)te and top(b) = g(b)p(b)to -
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Hence
top(z)p(b) = q(z)p(z)q(b)p(b)te = q(z)p(z)top(D) .

a
Recall that o € Spec(u) is not allowed to be an endpoint. We define
_ hy(z)
q(z) = h(2) forzel.

This makes g a multiplicative function of modulus one on I

il

Lemma 3.8. If¢*(a) =1 for all a € A, then 0 =0 and ¢(z) = sgn(z)
(=)=l for all z € T.

Proof. From [Figa-Talamanca-Steger|, Proposition 1.3.4, we will use
(1) 2wy = ple)(hi'(c) — hy(c)) for any c € A and

(2) 2wi =0 — Y ,cq p(b)hy(D).

We proceed, dividing the proof into two cases.

(A) There is a ¢ € A such that h,(c) € R. By (1) we note first that w,
is real and then that h,(b) is real for all b € A. By [Figa-Talamanca-
Steger], Lemma 2.3.1, and the discussion thereafter, we know that h, = h_
and w, = w_ is impossible for ¢ in the interior of Spec(x). This eliminates
case (A).

(B) For all a € A we have h,(a) € iR. Since hy(a) € iR for all a € A,
wy € iR. By (2) 0 = 0. We also have that g(a) = —1 for all @ € A, so
g(z) = (=D forall z € T. U

Proposition 3.9. The two boundary representations T, are irreducible.

Proof. We only need to work with 7}. Let ; be a closed (I', C(£2))-stable
subspace in L%(,dv;V). Then H, = Hi has the same property, so the
orthogonal projection T': L*(Q,dv; V) — L?(Q,dv;V) onto H; commutes
with 7, (x) and 7{(G) for all z € I and G € C(Q2). So, as usual, we only
need to prove that any bounded (', C(2))-map T on L?*(2,dv;V) is scalar.
Applying Lemma 3.1 there exists t € L>(£, dv; GL(V)) such that

(TF)(w) = t(w)F(w) for F e L*(Q,dv;V) .
On the other hand, for all z € T and F € L%(Q,dv; V)
(74.(2)TF)(w) = Py (z,w)p(z)t(z w) F(z™ w)

and
(T, (2)F)(w) = t(w) Py (z,w)p(z) F(z7'w) .



194 CARLO PENSAVALLE AND TIM STEGER

Therefore
t(z7'w) = p(z " )t(w)p(z) foranyz €T .

From Lemma 3.6, with Q(z,w) = 1 there exists a € I' and #, € GL(V)
such that ¢(w) = t, for almost all w € Q(a). Fix z € I'(a)\I'(a™*). Then
zw € Q(a) and the product zw does not simplify when w € Q(a). Therefore

by = t{zw) = p(z)t(@)p(z™") = p(a)top(z )
for almost all w € Q(a). By Lemma 3.7, with ¢(z) = 1, it follows that
top(z) = p(x)ty forz €T .

Then ¢, commutes with p(z) for all z € I'. As a consequence of Schur’s
Lemma, %, is scalar. That is, there exists o € C such that

t(w) = aidy for almost all w € Q(a) .

We want now to extend this result to Q. Fix b € A. Find z € T'(a) N T(b).
Then for w ¢ Q(b71), zw € Q(a). Thus t(w) = « idy almost everywhere on
OQ\Q(b71). Vary b to see that this holds almost everywhere on Q. Thus T is
multiplication by a. O

Proposition 3.10. Ezcluding the anomalous case that 0 = 0 and p =
p ® sgn, the two boundary representations T\ are inequivalent.

Proof. We proceed by contradiction. Suppose that
T: L*(Q,dv;V) — L*(Q,dv; V)

is a unitary (I',C(Q?))-map that intertwines 7/ (z) with 7’ (z) and 7, (G)
with 7/ (G) for any z in I" and G in C(2). By Lemma 3.1 there exists
t € L>*(Q,dv; GL(V)) such that

(TF)(w) = t(w)F(w) for F € L*(Q,dv;V) .
For all z € T and F € L*(,dv; V) the following holds.
(! (2)TF)(w) = P_(z,0)p(e)t( w) Pz~ )

and
(T7,(2)F)(w) = t(w) Py (z,w)p(z) F(z7'w) .

Hence
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By Lemma 3.6 with

P+(I’w) _ P_,.(IE,(U)

Q(x,w) N P_(LL',(U) a P+(x,w)_ ’

there exists a € I' and ¢, € GL(V) such that
t(w) =ty for almost all w € Q(a) .

Fix z € T(a)\['(a™'). When w € Q(a), the product zw does not simplify
and zw € (a). By the absence of cancellation

for w € Q(a). For almost every w € Q(a)

to = t(aw) = Qa™, w)p(@)t(w)pla™) = g(@)p(@)top(z ") .

Thus, by Lemma 3.7, the relation typ(z) = ¢(z)p(z)ts holds for all z € I
Forz,yel

q(zy)p(zy)te = top(zy) = top(z)p(y)
= q(z)p(z)top(y) = q(z)p(z)q(y)p(v)te = a(T)q(y)p(zy)to -

Hence
q(z)q(y) = q(zy) forz,yel.

This means that ¢ is a character of I". Then for any a € A we have
1=q(e) = q(a"'a) = q(a™")q(a) .

That is
¢*(a) =1 forac A.

By Lemma 3.8 it follows that 0 = 0 and ¢(z) = sgn(z) for all z € I'. Since
top(z) = sgn(z)p(z)to, to is an intertwiner between p and p ® sgn. Since
the anomalous case is excluded, and since ¢ = 0, p and p ® sgn cannot be
equivalent. Therefore ¢, must be 0. O

Proposition 3.11. The two boundary realizations (1+ @ id, 7)) satisfy the
(FTC).

Proof. Given Lemma 2.8, we need only to work with (c4,7’). Remem-
ber that ¢4 are unitary, and that the Hilbert—Schmidt norm is invariant
under unitary operator action on either side. Observe also that for any
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a € A the functions 1g(,) and 1 — 1g(,) are idempotent, so 7, (1g(,)) and
7’ (1 — 1g(,)) are projections and consequently the operators v% 7', (1g(q))t+
and > 7' (1 — 1g(q))t— are too. Recall that J = 1_¢% intertwines

(n! (z), L*(Q,dv)) with (n’(z), L*(Q,dv)).
Therefore, our problem reduces as follows

(L:_ﬂ';. (1Q(a)) bt Dk 8 (1 - ]'Q(a)) [’—)

Bt (H)
= [le3 7} (L) t4e272 (1 = Log)) o],
= |7} (Law@) J*72 (1 = Low)]|, -

Section 3 of [Figa-Talamanca-Steger] gives the following description of
J. Define a set (F,),er of functions in (), the space of locally constant
functions in L*(f2,dv), by

F,= 1q
1 1
S(0@) 2 T va@)

We know that (F,),er spans K(€2) and

Fop = for |a] =1 and |za| = |z|+1.

JF, = F,
JF,, = &h"L(x)FM for |a| =1 and |za| = |z|+1.
w4 h_ (.’II)

For z € T' let K, be the linear span of {F,, ; |za] = |z| + 1 and a € A}.
This means that

K, ={F € K(Q); supp(F) C Qz /F Ydv(w) =0,
and F depends only on the first |z| + 1 letters of w} .

Define Ky = C - 1g. Then the spaces K, together with Ky span (). Each
element of K, is an eigenvector of J. In addition, for z # y, K, and X, are
orthogonal to each other and to Ky, with respect to integration by v. For
these reasons, we can write

L(Qdv)= Keo P K.
zel
J‘)Co - id}(;o
e, = W=hele)y

* T wy h_(z)
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Let z € I and |z| > 1. If z € Q(a) then 7' (1 — 1g(,))(K;) = 0. If z ¢ Q(a)
we have

T (o) T (1 = 1)) (K:) C 7, (1a@)(K2) = 0.

Hence 7!, (1g(a))J*7_ (1 — 1q() is identically zero on @D, 51 Kz Therefore
to compute the Hilbert—Schmidt norm, we need only to work with the re-
striction to Kq® K,. Since Ky@ K, is finite dimensional, the Hilbert—Schmidt
norm is finite. 0

4. Anomalous case.

Let I' be a free group and let A be a set of generators and inverses for T'.
As in the introduction, fix a symmetric probability measure u on A. The
anisotropic principal series representation 7 is constructed from the pair
(u, o) where o is in the interior of Spec(u). The burden of this section is to
explain the special case 0 = 0.

Since the function sgn is a character

(4.1) ((f1)sgn) * ((f2)sgn) = (f1 * f2)sgn

where fy and f, are functions on I" and “+” denotes convolution. The symbols
in the following lemma are from (1.2).

Lemma 4.1. When o =0
(1) g+ =—(g9-)sgn

(2) Wy = —w-

(3) hy = (h_)sgn

(4) wy,hi(a) €iR forae A

(5) ¢(z) =0 if |z| is odd.

Proof. For v ¢ Spec(u) recall that g, is defined as the inverse of vd. — p,
both functions acting on £2(T") by left convolution. From (4.1)

1

9y = (Y0 + )7 = ((v. — p)sgn) ™" = (yd. — p) 'sgn = (g, )sgn

where multiplication by sgn is pointwise multiplication but all inverses are
inverses for the convolution algebra. (1) then follows from the definition of g,
as the limit go+;0. (2) and (3) follow from the equality g+ = hy/(2wy) given
that Ay is a multiplicative function and w.y is a constant. Since w, = w_
and h, = h_, (4) is a consequence of (2) and (3). (5) is immediate from (1)
and the definition ¢ = (g5 — g-)/(g9+(e) — g_(e)). tl
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Since (7, H) is the result of the Gel’fand-Raikov construction applied to ¢,
there is a cyclic vector kq € H such that
(ko, m(z)ko) = Pp(z) forz el .
Let

(4.2) ‘H. = closed-span{n(z)ky; z € T, |z] is even}
‘H, = closed-span{n(y)ko; y € T, |y| is odd} .

By (5) of Lemma 4.1, these two spaces are orthogonal to one another, so
H=™H.®H, Define S: H— H by

S

H, = idy, Sy, = —idy, .

Lemma 4.2.

(1) Sn(z) = sgn(z)n(z)S for z €T.

(2) 7' (z)=sgn(z)n’ (z) forx eT.

(3) L+S =tl_.

Proof. (1) follows from the definitions. To establish (2), it is enough to do

so for z € A, and that is immediate by the definition (1.4) of 7/, and by (3)
of Lemma 4.1. Since ¢, Sko =1 = 1_ko,

Ly ST(x)ko = sgn(z)eym(x)Sko = sgn(z)n!, (x)e4 Sko
=n' (z)t_ko = t_m(z)ko

for z € T'. Since the I'-translates of ko are dense in #, this proves (3). (]

Fix p an irreducible unitary representation of I' on a finite dimensional
Hilbert space V, such that p = p ® sgn. Then there exists a unitary map
s: YV — V such that

(4.3) sp(z) = sgn(z)p(z)s .

Observe that since s’p(z) = p(z)s?, s? is a scalar operator. Multiplying s
by an opportune constant, we may assume s? is the identity operator.
We consider, the operator S s: HQV — HQ V.

Lemma 4.3.

(1) (S®s)r(z) =7(z)(S®s) forallz €T.
(2) (S®s) =idugy.

(3) S ® s is unitary and self adjoint.
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(4) 7i(z) =sgn(z)r (z) for allz € T.
() (14 ®1d)(§®s) = (1- @ 5).

Proof. (1) follows from (4.3) and (1) of Lemma 4.2. In fact

(S®s)7(z) = (S® s)(n(z) @ p(z)) = (S7(x) ® sp(z))
= (sgn(z)m(z)S ® sgn(z)p(z)s) = 7(2)(S ® s) .

For (2) (S®s)? = (§?®s?) = idy ®idy = idygy. Remember that S®s is the
tensor product of unitary self adjoint operators. This gives (3). By (2) of
Lemma 4.2 7/, (z) = sgn(z)n’_(z) for any z € I, and so 7 (z) = 7/, (z) ® p(x)
= sgn(z)n’ (z) @ p(z) = sgn(z)7’ (z), proving (4). Finally, (3) of Lemma 4.2
gives (5). O

Let V., and V, be the 1 and —1 eigenspaces of s respectively. This means
that

sly, =idly, sy, =—idly, V=V.®V,.

Then the 1 and —1 eigenspaces of S ® s are
W, = (He®ve)@(Ho®Vo)7 WO:(H€®VO)@(HO®VE) .

Let 7, and 7, be the representations of I' on W, and W, respectively.
From the perfect boundary realization (v, ®id, 7} ) of 7 construct boundary
realizations, no longer perfect, (i, 7)) and (., 7}) of 7. and 7, respectively,
by restricting ¢, ®id to W, and W,. Condition (3) in Definition 1.4 holds on
account of Proposition 3.9, which says that 7/ is irreducible as a (I', C'(£2))-
representation.

The following result from [Steger] is parallel to Theorem 2.9.

Theorem 4.4. Let T be a free group, let A be some set of generators and
their inverses for T', and define length on T in terms of A. Let (m,H,) be an
arbitrary unitary representation of T and let (v1,7') be a boundary realization
of m1. Suppose that (1,,7") is not perfect and that it satisfies the (FTC) with
itself. Suppose further that ©' is irreducible as a (T, C(Q))-representation.
Then

(1) my is wrreducible.

(2) Up to equivalence, (11, 7') is the only boundary realization of .

(3) There is a dense subspace Ho1 € H; and a constant Cy > 0 so that

lim COGZ e~ <ol (uy ) 7 (2) vy ) (03, T(2)vs) = (1, 03) (Va, V4)

e—0+
zel

fO’f' V1, Vs € Hl and Vo, V4 € H()l.



200 CARLO PENSAVALLE AND TIM STEGER

The rest of this section is devoted to showing that the abstract Theo-
rem 4.4 applies to our particular situation.

Theorem 4.5. Let 0 =0 and p = p®sgn. Let 1, and 7, be the two direct
summands of T defined previously. The conclusions of Theorem 4.4 apply to
T and its realization (t.,7}) and also to 7, and its realization (i,,7}).

Accordingly we have 7| = 7, @, as representations of I', where 7 is real-
ized perfectly on the boundary, but neither of its two irreducible summands
can be realized except in conjunction with the other.

Neither (., 7)) nor (s, 7} ) is a perfect realization, verifying one of the
hypotheses of Theorem 4.4. Proposition 3.9 asserts that 7/ is an irreducible
(T, C(2))-representation, verifying another. It remains only to show that
(te, 7)) satisfies the (FTC) with itself as a realization of 7. and similarly for
(to, 74). This can be reduced to Proposition 3.11, which says that (¢, ®id, 7} )
and (t_ ®1id, 7" ) satisfy the (FTC) as realizations of 7.

Lemma 4.6. Let j: H; — H be an isometric inclusion. If S, T € BT (H),
then

(1) 358525 = (35" Si5*)'*.
(2) (785,35 T3) s+ () = (337535% 35" T35 )5+ (30 -
Proof. For (1), check that both sides are positive square roots of jj3*Sjj*.

For (2), let (e;)m be an orthonormal basis for H; and suppose that (je,)m
and (f,), together make up an orthonormal basis for . Then

(3785, 5" T5) s+ ) = _{5*T3 (5" S5) " em, (5°S5)*em
Hi

= 3" (35" T35" 5" ) /25" Gems 35" S3) /%" fem)
= 3" (33" Ti3° (35" 833")dem, (15" S15°)*jem)
= (j5" 855", 43" Tii ) s+
since
(43°T5" (35" 835/ fn (73" S35/ ), = O
for all n. O
Lemma 4.7. Let H be a Hilbert space. If X, Y € B(H) and T € Bt (H),

then
(X+Y)T(X+Y)<2(X*TX +Y*TY).
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Proof.
(X+Y)T(X+Y)v,v) = T2 (Xv 4 Yo)|?
< (T2 x0l| + |7y o)
<2 (T2 X0 + T2y o2
=2((X*TXv,v) + (Y*"TYv,0)) .

For fixed ¢ € A we must show that
(4.4) (27} (Law) ter 127y (1= La) te) gr o,
is finite. Let j.: W, — H ® V be inclusion. Then
(ty ®id)je = e Jlje = idw, 2Jej; = idugy + (S ®s) .
Together with these identities Lemma 4.6 says that up to a factor (4.4) equals

(4.5)
(d+ (S®9)) (14 ®1d)" 7} (Law) (14 ®@1d) (id + (S ® 5)),
(id+ (S®5))" (14 ®id)" 7 (1 — 1ow) (1 ®id) (id + (S ® 5))) 51 (2 -

By Lemma, 4.7 the first of the two operators in this inner product is bounded
by

(4.6) 2 ((t4 ®1d)" 7 (Lag)) (L4 ®1d)
+(S®3s)" (14 ®id)" 7} (1oea)) (14 ®1d) (S® 5)) .
Keeping in mind (5) of Lemma 4.3, the identity of 7/ and 7' as represen-

tations of C (2) and the fact that s*s = id, one sees that (4.6) is equal
to

2((ty ®1d)" 7, (o) (14 ®1d) + (1= ® 8)" 7° (1g(a)) (1 @ 5))
=2 (37} (law) e+ ®id+ 27l (1) - ®id) .
This bound, and the similar bound on the second operator in (4.5), together
with the bilinearity and positivity of the B* (H ® V)-inner product, show
that up to a factor (4.5) is bounded by
(! (Lag) t+ ®1d + 27" (1g(q)) t- @ id,
Lf‘jrf,_ (1 - lﬂ(a)) L ®1d + Il (1 - 1Q(a)> L ® id)3+(H®v) :
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This expands into four terms. The term

(":—Wfi- (lﬂ(a)) 4+ ® id, L’_‘;_T(f*_ (1 - 19(0)) t+ @ id)3+(y®v)

is zero since the two operators involved are complementary orthogonal pro-
jections.

(l’i’/ﬂf— (19(0)) L+ ® id, Lol (1 - IQ(G)) - ® id)5+('}{®v)

is finite by Proposition 3.11. The other two terms are zero and finite re-
spectively by symmetry. This concludes the proof that (4.4) is finite, and so
concludes the proof of Theorem 4.4 for 7.. To prove the (FTC) for (¢,, 7))
with itself use the same method, letting j,: W, — H ® V be inclusion and
making use of

(”+ ® ld) jo =l j:jo = idWo 2joj; = id?i@V - (S® 3) .
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