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‘We prove that an explicit formula, due to Berndtsson, for
representation of solutions of holomorphic division problems
in a strictly pseudoconvex domain admit H?P-estimates and
provides a solution to the following problem: Given bounded
holomorphic functions Gi,...,Gy, such that Y |G;|? > 42, and
¢ € H?, find u; € H? such that } Gju; = ¢. The estimates
are based on careful estimates of Hefer functions and a T'1-
theorem for Carleson measures, due to Christ and Journé.

1. Introduction.

Let G1,G,, ..., G;, be holomorphic functions in some pseudoconvex domain
D in C* without common zeros. For any holomorphic ¢ one can then find
holomorphic vy, ..., u,, such that

(1.1) > Gju;=¢.

Formulas for explicit solutions of such division problems were introduced in
[B1]. These formulas have been used by several authors to obtain estimates
in various situations and norms, see e.g. [B2] and the references given there.
Our main purpose in this note is to show that appropriate such formulas
admit H? estimates in strictly pseudoconvex domains. More precisely we
have

Theorem 1.1. Let D be a strictly pseudoconvex domain with C3-boundary
and let Gy, ...,G,, € H™® be given such that

(12) Y6 > &

for some § > 0. Then there are explicit integral operators T, ...,T,, which
are bounded on H?, 1 < p < 0o, take H*® into H* - BMO and satisfy

> GT;6=¢.

A function f is in H*® - BMO if it is holomorphic and its boundary values
can be written as a finite sum } a;b; where a; € H* and b; € BMO.
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Thus, in strictly pseudoconvex domains, we have solved, for 1 < p < x,
what we call the HP-corona problem:

Given Gy, ...,G,, € H* such that (1.2) holds, find to each ¢ € H? solutions
u; of (1.1) in H?, if p < oo. If p = x it means that, for each ¢ € H*, one
has to find a solution in H* - BMO.

Of course, the true corona problem is to find bounded solutions u; when
¢ is bounded.

For 0 < p < 2 this problem was solved by L2-methods in quite general
pseudoconvex domains with C?-boundary in [Anl], [An2], for an arbitrary
(even infinite) m. The proof was based on a modification of a technique due
to Skoda, see [Sk], where L*-estimates of solutions of division problems are
obtained.

Another way to deal with division problems is to use the Koszul complex
to reduce it to (systems of) d-equations. When m = 2 (or n = 1) this is
particularily simple as one just ends up with a finite number of equations
Ou = f where f is a (0,1)-form. In this method, as well as in the method
exploited in this paper, one starts with a smooth solution y; to > G;vy; =
1. On can make such a choice so that dy; are Carleson measures, and
then one can apply any popular weighted solution formula for 4 and get a
solution of the HP-corona problem in a strictly pseudoconvex domain for
1 < p < x, see e.g. Varopoulos [V1]. However, the simplest choice vy, =
G ;/|G|? requires a Wolff-type estimate of the corresponding O-problem. This
approach was carried out for the ball in [Am)] and in [AnC2] in the general
strictly pseudoconvex case.

When the number of generators exceeds two, the situation is more com-
plicated. In this case the Koszul complex provides a scheme for solving the
division problem by iteratively solving equations du = f for various (0, q)-
forms q. In §7 we indicate how one can use integral formulas to solve the
0-equations and obtain HP-estimates for the division problem.

However, our main purpose is to prove Theorem 1.1, i.e. solve the H?-
problem with Berndtsson’s explicit formulas. Also this method is consider-
ably simpler when m = 2. The main ingredients in the proof are careful
estimates of certain Hefer functions of a bounded function, see §4, and the
T'1-theorem for Carleson mesures from [ChJ].

The plan of this paper is the following. First we recall some preliminary
facts about integral formulas and harmonic analysis in strictly pseudoconvex
domains (§2) and then in §3 we give the proof of our main result, relying on
a some propositions which are proved in the succeeding paragraphs, §4-§7.
Finally in §8 we briefly discuss the Koszul complex approach.
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2. Preliminaries.

We start by recalling some facts about harmonic analysis and integral repre-
sentation in a strictly pseudoconvex domain D = {p < 0} with C® boundary
(although C? is enough at several instances) where p is strictly plurisubhar-
monic in a neighborhood of D and dp # 0 on dD. For more details see e.g.
[CoW], [AnC1] and the references given there.

A vector v at p € 9D is complex tangential if v is a tangent vector, i.e.
dp|,v = 0, and d°p|,v = 0. Here d° is the real operator (9 — 9). A K-
basis (K =Koranyi) at p € 8D is a basis of neighborhoods B;(p) C 9D,
t > 0, at p such that B;(p) has length ~ /¢ in all complex tangential
directions and ~ t in the last one. Then clearly |B;(p)| ~ ¢t". Sometimes we
consider neighborhoods Q;(p) C D which have also extension ~ t into D, so
that |Q:(p)| ~ t"*'. Any two K-bases B;(p) and B;(p) are equivalent, i.e.
B, C B; C By, t > 0, for some constant ¢ > 0. For instance, it s, ..., T2,
are local coordintes at p € dD such that z(p) = 0 and dz,|, and d°p|, are
colinear, then By(p) = {z;|z2| + Xz} < t} is a K-basis at p.

If now By(p) is any continuous choice of a K-basis at each p € 9D one can
put o(p, z) = inf{t; z € B,(p)} and d(z,w) = }(o(2,w) + o(w, 2)). Then

d(z,w) + d(w,¢) < Cd(,().
Since also

|B2t(p)| < C|B:(p)l,

0D is a homogeneous space, so a lot of tools of harmonic analysis are avail-
able. By replacing B;(p) by Q:(p), d(¢, ) extends to D x dD.

For p > 0 we put
H? = {f € O(D); sup [ |f|Pdo < 00},
>0 8D,

where D, = {p < —e€} and do is (some) surface measure. It is well-known
that any f € H? has admissible (i.e. “non-tangential” with respect to the
balls B;(p)) boundary values f* a.e. [do] and that f is the Poisson integral
(or the Bergman-Poisson dito) of f* if p > 1.

An f € LL (D) is in BMO if

1
Sup ——
t>0,p€8D |Bt(P)l B:(p)

where up,(p) is the mean value of u over B;(p). We also put BMOA =
BMO NO(D).

|u — up,(p)ldo = ||lull. < oo,
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Since 8D is a homogeneous space there is also an atomic H'-space on 8D
whose dual is BMO.

A measure p in D is a Carleson measure if
lu(Q:(p))| < Ct*, teoD, t>0,
and for such measures the Carleson-Hérmander inequality holds;

[lgPPdp < Goligltw, g € H?, p>0.
If f € H?, p < oo, then
(2.1) I(- plOf1? +10p AOFP)FIP~? S I e
and if f € BMOA, then
(2.2) ~plof|* +|0p A Of?

is a Carleson measure with Carleson norm bounded by || f||2.

For smooth functions f and g we put
(2.3) (f,9) = [ fgdo.
8D

Let Hy = {f € H*; f(0) = 0} (0 is any point in D). Via the pairing (2.3),
BMOA is the dual space of H}.

Ifv({,2) : D x D — C" satisfies
2Rev > —p(¢) — p(2) +0|¢ — 2

and
dlg=r = —dsvlc=. = —0p(C).

then Q:(p) = {¢ € D; |v(p,¢)| < t} is a K-basis at p (take local coordinates

z; = —p, T, = Imv and z3,..., Ty, arbitrary). In particular, |v(¢,z2)| is
compatible with d((, z), and we have the well-known estimates
2.9 [ e
d(w,z)<d I’U('UJ, z)'n «
do(w) _

2.5 / 2T < g
29 sysa ol e S0

do(w) ( 1 )“
2.6 S )
29 o Tolw, A1 ~ \=p(2)
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and

@ | S s ()

if & and (3 are positive. Furthermore, see [AnC1, Lemma 5.2], if o, 8 < n

do(w) 1
(28) /aD d(w, z)*d(w, ()P ~ d(z,{)>+A-n

if o + > n and the integral is bounded if a + 8 < n.
We also need the simple estimate

(2.9) [o(w, 2) — v(w,¢)| S \/d(¢, 2)(d(w, 2) + d(w, (),
see [AnC1, formula (6.1)].

One can choose such a v that is holomorphic in z for fixed ¢ € D, and for
the rest of this paper v denote such a choice. Then we have the representation
formula

aA (09" 'u

(2.10) Hu(z) = caL oG z€ D,

where ¢ = Y Q,d(;, 3 Q;(z; — (;) = v((, 2) and ¢((, z) is holomorphic in z.
Moreover, q(¢,z) = 9p(¢)+0O(|¢ —2|) and g = 30p+O(|¢ —z|). Clearly, Hu
is holomorphic in D if u € L*(8D) and, by the Cauchy-Fantappie formula,
Hu = u if u is (the boundary values of) a holomorphic function. In fact, Hu
has admissible boundary values a.e. if u € LP(0D), p > 1, and this operator
maps L?(8D) into H?, BMO into BMOA, and H! boundedly into L*(9D).

When 2z € 9D, we let Hu(z) denote the boundary values of Hu. This
operator is closely related to a singular integral operator on dD. Let

3, \n—1
Hsu(z) = c/ M——E, z € 0D,
ac>s  v(C2)"
and
Hyu = }1_1)13 Hjsu.
Then,

1
Hu = §u + H,,u.

In particular, if G is holomorphic, then H,,G = %G . Furthermore, if H*u =
Supsso |Hsu| and M is the Hardy-Littlewood maximal operator on 0D (w.r.t.
the balls B;(p)), then by Cotlar’s inequality, see e.g. [J],

H*u S Mu+ MHp,u.
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Thus

A (89)" 1@
(2.11) / ) )>}—‘—‘Il———— < C|Gllg=,

v(¢,2)"

with C independent of 4.
Finally we also recall the weighted representation formulas

Bau@) =<, [ (ETHEREDT N Gyeingq), e

for holomorphic functions u and a > 0. In fact, if @ — 0 one obtains (2.10).

3. The division formulas.

Suppose that Gy, ...,G,, are given holomorphic functions without common
zeros, so that |G| = 3 |G;|* > 0, and let Hf(C, z) be Hefer functions to G;.
This means that they are holomorphic solutions of

in(C,Z)(Ce —z1) = G;(¢) — G, (2)-

We also define the (1,0)-forms,

n

(3.1) hy =) Hidés,
and

Gi
(3:2) TeTeR

If p is a strictly plurisubharmonic C? defining function for D and v((, 2) and
the (1,0)-form ¢ = Y~ Q,d(, are as in §2, then (for > 0) we can define the
operators, cf. [B1],
= G(Z -k a—-1
[pdg+(n— k)ap Aq] (aq)" * Y K=k PE A s AR A Gy A - A,
oG, 2o

¢..

Here

6() G =3 6,(G5(0).
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If ¢ is holomorphic and the integrals converge in some reasonable way
then, see [B1],
m
z GJI}¢ = ¢’
j=1
so T'¢ provides a solution to the division problem. Hence Theorem 1.1 is a
direct consequence of the next theorem.

Theorem 3.1. Let D be a strictly pseudoconvez domain with C*-boundary
and Gy, ...,G,, bounded holomorphic functions in D such that

(3-4) d_IGi* > ¢,
1

for some § > 0. Then for o > min(n,m — 1)/2 each operator T; defined
above can be written as a sum Y, G*T*, where each G* is a product of some
of the functions G; and the operators T* take HP into LP(8D) , 1 < p < oo,
and H* into BMO.

Remark 3.1. Since

m ~ m
_ G, _
0= 81 = aZGJI—aF = Zngj,
=1 =1
g1, -, gm are linearly dependent and hence the terms for ¥ > m vanish in
the sum (3.3). In particular, if m = 2 then only terms with one factor h;
occur; this simplifies the argument in §6.

Remark 3.2. The formula (3.3) provides a solution to the division problem
if G/|G|? is replaced by any smooth solution v; to 3 G;; = 1. In particular,
one can choose <y; such that such that g§; = &v; are Carleson measures
(see [Ca] for n = 1 and [V2] for the multidimensional case). Then still
Theorem 3.1 holds and, as for the Kozsul complex method cf. §7, this choice
considerably simplifies the estimation of the, though less explicit, solutions.
However, even in this case the estimates of the Hefer functions in Proposition
3.2. are required.

We now state some results (mainly) about the Hefer functions, Proposi-
tions 3.2 and 3.3, from which we can conclude the proof of Theorem 3.1,
whereas the proofs of these propositions are left to later paragraphs.

Proposition 3.2. IfG,,...,G,, are bounded holomorphic functions and the
forms g; are defined by (3.2), then

oG] _ 1

o)~ o

(3.5) g1 A Agil S

k=1
2
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and

(3.6) OpAgi A ng < 10PAOCG < 1
(=p)= T (-p)2

where |G| = /31" |G,|*. Moreover, there are “good” Hefer functions HY
corresponding to the G;, such that for z € 0D the Hefer forms h; defined by
(3.1) satisfy

1
3.7 hiAN...Ah <'~——kff’,
(3.7 Ao Al e
and
1
3.8 OpANhiA...Nh -
(9) 00 s Ao Al S T

The estimates (3.5) and (3.6) are simple and well known whereas the
estimates of the Hefer functions are more delicate. We postpone the proof
to §4 where also our exact choice of the Hefer functions is described.

Remark 3.3. Using Proposition 3.2 and that

lg — 0pl S 1€ — 2| S 4/d(¢ 2),

we get (if « is large enough) the rough estimate

15 [ B0

Czn+1'

Unfortunately this integral is infinite if z € 0D but if we for some reason can
gain just an € in the exponent in the denominator, then the L?(9D)-norm
of the integral is less than a constant times ||¢||g». In fact, if ¢ is in BMOA
or even in H? for a sufficiently large p, then the integral is bounded. On the
other hand, if ¢ is in H' then by (2.6), the L*(8D)-norm is

S [ =711 S gl

By this observation we may diregard various error term.

(3.9) |Té(=

We will also need

Proposition 3.3. If £ is a smooth (1,0)-field, then the forms g; from
Proposition 3.2 satisfy the following additional estimates,

_ dG|?
(3.10) £ A 130 5 s
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and

| < 1961190 1 06

(3.11) |0p A L(Gy A ... AGx) —
(o) =

To decompose T} we first put each factor G*(z) of G;:s occurring from the

G(2)-G
1G>
ated in the factors G¢(z) in Theorem 3.1), and for simplicity we just denote
the remaining factor by G. Thus G is just a product of a certain number of

factors G;/|G|*.

First consider the terms corresponding to £ > 1. In view of Remark 3.3
the factors dq can be replaced by d9p (modulo negligable terms) and to
simplify notation we omit them in the sequel. They play no other role then
to achieve full bidegree in the d(. Any remaining integral from (3.3) is then
either

n—k
factors ( > in (3.3) outside the integrals (they will be incorper-

Tid(2) = [ (=0)*5Gax, A A i A M6, )90,

¢eD
where
atzt h (C,2) Ao A bk, (¢, 2)
(312)  M(G,2) = (mp)e T R,
or
Ted(2) = [ (=0)E1G0p A A Ao, A MG 2)H(C),
where
1 a—iq/\h 1((3 )A"'/\h k((a )
(313) MK(C';Z) = (—p) 2 = 'U(Z, z)n+a—k £ £ .

In view of (3.7) and (3.8) (and assuming that G, and ¢ are smooth up to
the boundary) Tk ¢(z) and Tj ¢(z) has meaning even for z € dD. However,.
in order to be able to estimate them we are forced to decompose the kernels
Mk (¢, z) and My (, z) further. We say that a locally integrable function b in

D is a Carleson function if ||b||2 = the Carleson norm of —p|b|?+sup(—p|b|)?
is finite.
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Proposition 3.4.  Any kernel Mg or My can be written as a sum
> GH2)M*((, 2), where each G*(z) is a product of some of the G; and such
that the dual operators M satisfy the following estimates.

a)
(3.14) IMipllL= S 9l (op)-

If dt is a Carleson measure, then
(3.15) [ IMzsdr S 1l o

for ¢ in LP(0D), 1 < p < o0, and

(3.16) /D IMildr S ([l

b)  Moreover, if L is a smooth (1,0)-field then
IMzdllc < l[9llLe(om),
(3.17) [ oMMt S 1lrom)

and if b is a Carleson function then

(3.18) /D (=P)|LM;BI[b] S bl Bl

This proposition gives rise to the decomposition G*T* of each Tk and T
and hence of the proposed decomposition of T' in Theorem 3.1 and is the
key point in the proof.

To estimate the boundary values of each T¢(z) we shall use duality, and
hence we integrate against some locally integrable function 1 on 0D. Then
by Fubini’s theorem,

| @ @e@do) = [ (0T 0, A A 3 Mip(OD(0),

¢eD

or
[ @9Ew@do) = [ (=p41680 Agi A A G MHIQH(C).
8D ¢eD

Now we apply the Wolff trick that allow us to increase the power of —p with
one unit at the cost of the action of a certain smooth (1,0)-vector field £
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on the rest of the integrand. In the ball £ can be chosen as ) C,-%. Then,
modulo negligable terms e.g.,

/8 S TDEWE(E) ~ [ (~0)F LG A A G IMHOI(C)
+ (ED(~p>k+‘ggK1 A oo A G LM) (O (C)

+ [ (=n)F G A A (MEB) (L) (Q)-

¢eD

and analogously for the other type of terms.
In view of Propositions 3.2 and 3.3 we get the estimate

619) | T'owEdo(=)| S [ (=olOGIIMblI4
+ [ (pIoGlCM il + [ (~)I0GIMzw108),
or
(3.20)
[ @owEista)| 5 [ v=70G110 n 06l

+ /D V=010 A G| LMp]|g] + /D V=0l0p A G||M;]|0¢).

We want the estimates

(3.21) bl 22 | Dl o
(3.22) !l ze o) ll ]l v
and

(3-23) ||¢”L°°(6D)”¢”H1

for each term in (3.19) and (3.20). These together imply Theorem 3.1.

The first terms in any of (3.19) and (3.20) are handled by Holder’s in-
equality, (3.14)-(3.16) and the Carleson Hérmander inequality, as (—p)|0G|?
and +/=p|dG||dp A OG| both are Carleson measures, see §2.

The third term in (3.19) is by (3.15) and (3.16) estimated by
1¥llLeopyll@llar and ||9]|2 ||@llae-, but the last estimate, cf. §2, can be
sharpened to ||9||x: ||¢llBmoa, and hence we can interpolate and get the in-
termediate estimates (3.22). The third term in (3.20) is handled similarily.
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For the second term in (3.19) we notice that
10G|¢] < [0(G¢)| + 19

(and similarily for the second one in (3.20)) so it is enough to get the desired
estimates for the term

—P)|0B|| LM,

(letting ¢ play the role of both ¢ and G¢) and this is accomplished as for
the third term(s), using (3.17) and and that LM} is a Carleson function
if ¢ is in L*°.

Finally we consider the term corresponding to & = 0 in (3.3),
/D G [(=p)* +n(=p)*"*0p N q] A (0g)" " X 4 )n+a =2 G'T'¢

where T'¢ are nothing but the weighted Bergman-type operator B, acting
on the function G¢, and the necessary estimate follows from
Proposition 3.5. Let B,, a >0, and G be as before. Then
T': ¢+ Ba(G9)
maps H? — H?,1 < p < oo and H* — BMOA.

Proof. We may assume that G and ¢ are smooth up to the boundary. Then
B,(G¢) has continuous boundary values defined by the formula

2) = [ BEAGOH0) ~ G9(2)AN0) +G()9(:),

since B,1 = 1. It is clearly enough to estimate the integral, and to this end
we integrate against some 1) on the boundary and get by Fubini’s theorem
modulo innocent terms

_ a1 [ (G(QE(C) — G(2)9(2))¢(2)
I= /D(-—p) /ap (. 2)me do(z).

Let
Pye) = [ (o B2,

By the Wolff trick I is comparable to

/D GOpPy
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since v((, z) is anti-holomorphic in ¢ to the first order. It can also occur
derivatives of G but as above these terms can be reduced to the case when

the derivatives occur on ¢.
Now we can apply the Wolff trick again but with the vector field £ instead.

We then get the terms like
[ (~o)aGogPy + / P)GOGV Py
D

and both of these admit the estimates (3.21) to (3.23) by means of Proposi-
tion 7.1. This concludes the proof. W]

4. The Hefer functions and proof of Propositions 3.2 and 3.3.

In this section we define our Hefer functions and prove Propositions 3.2 and
3.3.

First notice that the Cauchy-Fantappie representation formula (2.10) for
a holomorphic function G can be written

G(z) = /L,,D Aw, 2)G(w)do(w)

v(w, 2)"

)

where A(w, z) is of class C? (since p is assumed to be C?) and holomorphic
in z. Now
G(z) - G(¢) = /6 N (ﬁfuw;)l - jg"gi ) G(w)do(w)
o A(w’f()w—z?fw’ JG(wio(w
n Z / (w,¢) (v w,¢) — v(w, 2))G(w)do(w)

,w z)k (,w C)n-{-l -k

We can write
A(w, 2) — A(w,{) = Y A;j(w,2,¢)(z — ),
1

for some C'-functions A; (they are still C* since A is holomorphic in z),
which in addition are holomorphic in ¢ and 2. Moreover, as v(w,2z) =
Q(w, 2) - (z — w), we have

(4.1)
v(w, () —v(w,2) = —Q(w,() - (z — {) + (Q(w, ) — Q(w, 2)) - (z — w)
= (—Qw,¢) + O(lz — w|)) - (z = ) =U’(%, ¢, w) - (2 =€)
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and similarily

(4.2)
v(w,{) —v(w,2) = (=Q(w,2) + O(I¢ —wl)) - (2 = () = U'(2,{,w) - (2 = ().

If we now let a = 3 A;d(;, un = Y UPd(; and ux = 1 Ujd(; if k < n we
can define the Hefer form of the function G as

43 6o = [ B i)

p v(w,z)"

+Z/ w(uka, 2)G(w)do (w) th(C7

v(w, 2)*v(w, )1k

The reason for having different definitions of u; when & is n and less than
n is merely technical. Then u, = —q(z,({) + O(|z — w|) (with the obvious
definition of ¢(z,¢)) so that the term corresponding to the error O is not
singular.

Proof of Proposition 3.2. The statements concerning the g; are well known
and quite simple. First observe that if G is any bounded holomorphic func-

tion in D, then

1
8G| < —, |8pABG| < ——=
l IN_p I | \/—

This follows e.g. from the representation formula (2.10), noting that
dv(w,z) = —9p+ O(Jw — 2|). Thus

(4.4) 0G(z) = a(z)0p(z) + b(z),
where |a| £ 1/(—p) and |b| < 1/4/=p. Next notice that

(45) g; = ZijaGk,

where wj;, are bounded. The estimates (3.5) and (3.6) now follow from (4.4)
and (4.5).

The corresponding estimates for the Hefer forms, (3.7) and (3.8), are mare
involved. It is enough to prove that

k — 1 _
h (C,z)*O( e )>8p(C)+(’)<———d(<’z)), k=0,1,..n.



HP_ESTIMATES OF HOLOMORPHIC DIVISION FORMULAS 321

The term h°((, z) is bounded. To see this, first observe that

A(w, 2) + O(lw — 2|)

a(waC,Z) = A(Z Z) (G.(Z,C,Z) +O(|’LU—Z|))
_ A(w,z)a(z,(,z)
= A(.2) + O(jw — 2|).
Hence
(¢, z) = jl(zf,j)G( +0(1 / .d—_—”+1/2 = 0O(1).

The estimate for the terms h* when 2 < k < n — 1 are also simple. By
(43)7 uk(waC7Z) = —'Q(CVZ) + O(IC - wl), and hence by (28)7

h* (¢, 2)

o(1) /D T do(w) + o) do(w)

z)kd(w, () -+ op d(w, z)*d(w, ()" H1/2=*

= (¢, 2)0 (?-?(21—6)"> e (7(%?)) ~0 (ﬁ) o+ 0 (-ﬁ) .

The terms h! and h™ are harder as they involve singular integrals. We
first consider A™. As above it is easy to see that the contribution from the

1
O-term in (4.1) is bounded by O (————)
( Vd(C, 2)

It remains to consider

J=q(,¢) /D G(w)A(w, z)do(w)

v(w, 2)"v(w, ()

o S [ S 11y )

v(2,¢) v(w, 2) v(w,() (%)

Clearly the first term is O(1/d(z,¢)). As the kernel in the second one is
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integrable, we may assume that z € dD. Write

=0 [ G%A(? . ((«j 0~ (1 o) do(w)

=gz G(w)A(w,z) 1 — 1 o\w
=4l ,C)[[l(w,z)SCd(z,C) v(w, 2)" (U(U),C) v(z, 4))d )
G(w)A(w, z)do (w)

+
d(w,2)>Cd(z¢)  v(w, z)"v(w, ()

1 G(w)A('w,z)da('w)]
v(2,¢) Jaw,2)>Cd(z0) v(w, z)®

= q(z,¢)[I+ 11+ I1I].

By (2.11), IIT is O(1/d(z,¢)). When d(w,2) > Cd(z,(), then d(w,z) ~
d(w, () and
do(w) < 1

IIII S /d(w,z)>Cd(z,() d(,w,z)n+l ~ d(Z, C) '
Finally, since d(w, () < d(2,¢) in I we have by (2.9) that
11 ‘ \/d w, 2)(d(w, ¢) + d(z,()) < \/d(w z)
v(w,{)  v(z0)]" d(w,()d(z, () Vd(z,¢)d(w, ()’
Thus by (2.8)

do(w) < 1
d(z op d(w, 2)"~/2d(w,{) ~ d(2,{)’

11}

Summing up we have

By symmetry we get the same estimate for the term h'((, 2), at least when
¢,z € OD. But then the estimate follows for ( € D from the maximum
principle, since d(z, () ~ |v(z,¢)| and v(z,() is holomorphic in (. O

Proof of Proposition 3.3. Just notice that the w;; in (4.5) satisfy
LG)jk = (’)(BG)

Then
Lg; =Y (Lwj)0G, = >  0(8G)IG,

so the proposition follows from (3.5) and (3.6). a
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5. Decomposition of the Hefer forms, proof of Proposition 3.4 a).

To make the arguments as comprehensive as possible, we mostly restrict
ourselves to the ball. The general case is handled along the same lines, but
with a myriad of various error terms.

We first describe the decomposition of each Mg((,z) into the sum
> G4(z)M*((, z). For this we need a lemma which we prove in a moment.

Lemma 5.1. Let D be the unit ball. The Hefer form h = H?d(; of some
bounded function G, as defined in §4, can be decomposed as

G(z)d(z-¢) | 5
h=—2——"+4+h
ER I
where h satisfies the same estimates as h, i.e.
1
(5.1) B l”dC, |00 AB| S TS
but, in addition, also
(5.2)
. - d . d(z. 2%
’h’(C’ ) h’ Ca ’ ~ _(—z—zz):l—_*_l" lap/\ ( (<7z) (C’ ))I a(é*z—;’;)gv

if d(z,2') < ed((,2). Here d denotes the Koranyi distance, cf. §2.

The lemma says that & is the sum of one term, A, which satisfies a certain
Holder condition in the z-variable (intuitively it is differentiable a 1/4 time),
and one term that certainly does not, but which instead is quite simple. In
the one-variable case,

G(z) —G(Q)

Me) = 2=

and here of course h is G(¢)/(z — ¢). Notice that k is no longer holomorphic.

We are now prepared to make the decomposition of the kernels Mk (, 2)
and M} (C, z) stated in Proposition 3.4. Recall that, cf. (3.12),

My((,2) = (-py e iR A el8)

If we successively replace hg, with h K;, we get

(5.3)

Mi(6,2) = S (=p)= 7 hi, (C,2) A ... 2(?12)(725511(2 2\). . ANhg, (¢, 2)

J
a—ks1 ilKl(C,Z) A A iLKk(C,Z)
’U(C,Z)""'a_k )

+(=p)
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which defines the desired decomposition Mk ((,2)y = 3 G4 (2)M*((,2). In
the same way we get from (3.13),

(5.4)
) 3 a__q/\h,ﬁ(c, )N NGy, (2)d(Z-C) A ... ARk, (¢, 2)
My (¢, 2) = ;(—p) v((, z)nte~ky(z, () :
a——q/\hKl(Ca ) /\h k(Crz)
+ (=) R =

which defines the decomposition M} ({,2) = ¥ G*(z) M*(¢, 2).

Thus in the ball we get exactly k + 1 terms, involving respectively G,
..Gk, and 1. However, in the general case, products G* with several factors
may occur.

Proof of Proposition 3.4a). Let M((,z) denote one of the kernels M* from
(5.3) or (5.4). Using Proposition 3.2 one readily verifies that

—p(¢)
LA T
(55) IM(C’ Z)I ~ d(C, z)n+1 *
By (2.6), (3.14) immediately follows and also (3.15) is quite easily verified.
To prove (3.16), we must use the additional property

FrrEa

(5.6) |M (¢, 2z) — M(C,

if d(2,2') < ed(¢, z). This follows by iterated use of (5.2).

Now one can get (3.16) either by first applying the kernel to an atom, and
then use the atomic decomposition of H?, or use the duality with BMO. In
the latter case one has to show that the dual kernel takes Carleson measures
into BMO. Such a calculation is done e.g. in in §6 in [AnC1]. One just has
to check that essentially only the properties (5.5) and (5.6) are used. O

Proof of Lemma 5.1. By (3.7) and (3.8), (5.1) is obvious. Notice that, in the
ball,

5.7) M) =Y [ b

where v(w,z) =1 — w- z. We claim that all the terms in this sum, but the
one corresponding to k = n satisfy (5.2). The problem with this term is that
it already is a singular integral when z € 0D, and hence it does not admit
the estimate (5.2) (unless G(z) is Holder continuous on 9D).
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To handle this term we first replace d(w-¢) by d(z-¢) and then the factor
v(w, () by v(z,(). Then we get the Cauchy integral

c/ d(z - )G(w)do(w) _ G(z)d(z-()
ap  v(w,2z)"v(z,() v(z,()

plus the error terms

c/ d((zZ = w) - {)G(w)do(w)
oD v(w, z)"v(w, ()
d(z - ()(v(2,¢) — v(w, ())G(w)do(w)

oD v(w, 2)"v{w, {)v(z, ()

We have to verify that these two terms and the ones in the sum (5.7) for
k < n satisfy the estimate (5.2).

The estimate is based on (2.8) but we have to be careful only to apply it
when « and S are less than n. This is hardest for the terms in (5.8), and we
only consider them.

Let ho(¢,z) be the last term in (5.8). Note that d(z,2') < cd(z,¢) for ¢
small enough, implies that d(z,¢) = d(2',¢). Also

d(z - ¢) = 0p(¢) + O(|¢ - 2|).

(5.8) +c

Let
d(z - ¢)(v(z Q) —v(w,()) d(z' - )(v(z,¢) —v(w,())

A= A ) = () w(w, )07, 0)

Thus

BalC.2) = o) = [ A, ¢ u) T,

To estimate this integral we split the range of integration into two parts.
First we consider w € A = {w; d(w,z) < Cd(z,2')}. In this part of the
integral we estimate the two terms in A separately. Note that when w € A,
we have d(w, z) < ¢Cd((, z) and hence (if ¢C is small enough), |v(w, ()| =
d(w, () = d(z,¢), and by (2.9), |v(z,¢) — v(w, )| < (d(z,w)d(z,¢))*/?. Thus
the contribution from the first term is d(z- ) times a factor that is bounded
by
/ do(w) < d(z,2')1/? < a4z, 2')1/4

d(w,)<ed(z,x) A(w, 2)"2d(2,C)32 ™ d(z,¢)32 ™ d(z, ()

Since dp A d(z - ¢) = O(d(z,¢)/?) the estimate follows.
As A C {w; d(w,2") < Cd(z,2')}, the second term can be estimated in
the same way.




326 MATS ANDERSSON AND HASSE CARLSSON

When w ¢ A, we use that A is smaller than the individual terms. By
successively replacing z by 2’ in each of the factors we obtain four terms of
which

CdE Qe —vw,Q) [ 11
Bo = w(z0) (v( )

w, 2" v(w,z')"
is the hardest. When w ¢ A, [v(w, 2')| ~ Ju(w, z)| ~ d(w, z). Thus by (2.9),
v(2,¢) — v(w, Q)| S (d(w, 2)(d(2,¢) + d(w,{)))"/?
and

1 1 < (d(z,2')d(w, z))4/?
v(w,2)*  v(w,z')*| "~ d(w, z)"t1

By (2.8) we obtain that [, 4 AO&;‘E%EZ is d(z - ¢) times

d(z, 2')"/*(d(z, ¢) + d(w, )"/
-/d(w,z)>Cd(z,z’) d(w» z)"d(z, C)d(w) C) dU(U))
o[ o)) Fdw O de, )
[222] d(w’ z)"—1/4d(z, C)d(w, C) d(z’ C)SM

as desired. (Of course 1/4 can be replaced with any €,0 < e < 1/2.)
For the first term in (5.8) we get the estimate

< d(z,z')1/4
™ d(z (¥

(but without the factor d(z - ¢)). This follows by the same argument as
above. (]

6. The T'1-theorem, proof of Proposition 3.4 b).

The proof of Proposition 3.4 b) relies on the T'1-theorem for Carleson mea-
sures, due to Christ and Journé, see [CJ]. Here we formulate it in the setting
of a strictly pseudoconvex domain. The proof is a straight forward modifi-
cation of the proof in the euclidean case.

Let T'(¢,2) be a kernel on D x dD. We say that T is a CJ-kernel if for
some € > 0,

<« o =PO)™

(6.1) IT(¢,2)| < (¢, z)nre
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and

(6:2) 1(¢,2) -7, ) < 0 (Ge2)) L

ifd(z,2') < ecd((, 2).
Let 7 denote the corresponding operator,

TY(Q) = | T((,2)3(2)do(2).

oD

327

Theorem 6.1. Let D = {p < 0} be a strictly pseudoconver domain with
C3-boundary, dp # 0 on 0D and let T be a CJ-kernel. If T is L*-bounded,

i.e.

(61) [ omers [ e,

then T maps L™ into (the space of) Carleson functions. Moreover, if T1 is

a Carleson function, then (6.3) holds, i.e T is L?-bounded.

Of course it is the last statement which is of most interest.

To obtain (3.18) we need the following simple additional result.

Proposition 6.2. If T is an L*-bounded CJ-operator as in Theorem 6.1,

1 is in H! and b is a Carleson function, then

[ oNTbl S e ol

The proof of this proposition is standard, and we omit the argument.

We also need a complement to Lemma 5.1.

Lemma 6.3. With the same notation as in Lemma 5.1 we have

~ 1 ~ 1
60 M2 e 19 S e
~ ~ , d(z,z’)%
(6.5) £ (¢ 2) =h¢ )| 8 gty
and
~ ~ , d(z,z’)%
(6.6) |00 A £ (R(¢,2) = h(¢, )| S i
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if d(z,2') < cd(¢, 2).

Proof. From Lemma 5.1 it follows that h(¢, z)v(z,¢) is a bounded holomor-
phic function i (. Hence
1

£ (h(z,)o(2,)) S =,

and since Lv(z,() is bounded, we get the first part of (6.4). The second part
follows in the same way, noting that dpA Lh = O(|¢ — z|)Lh+ L(d(Z- ) A R)
and that \/v(z,¢)d(Z - ¢) A h((, ) is bounded and holomorphic in ¢. The
estimates (6.5) and (6.6) follow in the same way. O

Proof of Proposition 3.4 b). Put T'((,2) = LM*((, z) (for the definition of
M?* see §5, in particular (5.3) and (5.4)). The corresponding operator 7,
then satisfies Tpp = LM.

There are two kinds of 7; = LM?! from (5.3),

(6.7)
_ a2 d(Z O A Ra((2) A AR (G 2)Y(2)
T =L | (~p) o(C. o )
and
(6.8)

A NG 2)P(z)

v((, z)rek
We first consider the term (6.7) with k = 1. It is

o ¥(2)d(z - ()do(2)
Q) =L [ (-0 (o tete gy
which is an instance of a differentiated Poisson type integral, and the desired
estimate follows from Proposition 7.1 below.

If k> 1 in (6.7), Lemmas 5.1 and 6.3 imply that T is a CJ-kernel (with
€ = 1/4). In view of the T'1-theorem (Theorem 6.1) and Proposition 6.2, it
is enough to show that 7,1 is a Carleson function.

First note that h, can be replaced by h, due to the presence of the factor
d(z-¢). If we then use the definition (5.7) (of h;), and apply Fubini’s theorem,
we (formally) get

T =c [ (ot

5 (=p) T
£ /wEBD J; v(w,)n+1-i
d(z-¢) Ad(w - ¢) Ahs(C,2) A b (¢, 2) Do
x/z.GBD v({, 2)re*ku(2, ()v(w, 2)7 G2 (w)do(w).
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This computation is legitimate since the kernel is

o (d(ml;ji)uf\;;l(f : C)) =0 (W) ;

and hence integrable over 0D x 0D.
The resulting integral may be viewed as an operator acting on G,.

Claim. The corresponding kernel K (¢, w) is a C'J-kernel.
Taking this claim for granted, to see that (6.7) is a Carleson function,

again by Theorem 6.1 it is enough to do this when G, is replaced by 1. But
then the integral even vanishes because of

Lemma 6.4. In the ball the Hefer form (4.3) to the function 1 is identically
zero.

Proof. If G = 1, then the integrand in (5.7) is antiholomorphic and hence
the integrals vanish by the mean value property. (]

In the general strictly pseudoconvex case the corresponding Hefer form is
~ 0p0 (1/\/|v|) + O(1) which is also good enough.

To see that 7;1 from (6.8) is a Carleson function, we notice (cf. (5.3))
that it is the sum of operators of the type (6.7) acting on certain G; (which
hence are Carleson functions by Theorem 6.1), plus the integral

V(€ 2) A A k(G
L ( p)a———-—h' (C :()g/,\z)ni\a—/;(g Z),

8D

which by the mean value property is

LI(=p(0)* T (6, 0) A . A B¢, 0)],
and this is a Carleson function if @ > k/2. Hence Proposition 3.4 is proved.
Proof of the claim. The kernel is
ﬁi T / d(z- Q) Ad(®-¢) Aha(¢,2) A (¢, 7).
v €6D

(w, C e v((, 2) R (z, Qv (w, 2)9

j=1
Cancelling a suitable power of -p/|v|, we obtain by (2.8)

—141/4 do(z)
kGl % Z |v w, C)I"*L1 g /zeaD d((, )1 /A2 d(w, )31/

(=gt
" dw, Q)T
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and hence it satisfies (6.1) with e = 1/4. Moreover, since the exponent of
d(w, z) is at most n — 1/2 in the integral, it also satisfy (6.2) with e = 1/4,
by the same argument as for Lemma 5.1. O

The terms occurring from (5.4) are handled in the same way. This con-
cludes the proof of Proposition 3.4 b).

7. Poisson-type integrals.

Let p(¢) and v(({, z) be as before and put

P¢(<) — / (—p)eak(Caz)d)(z)

oD v(¢, 2)" i (2, ()i’

where a;((, 2) is C* and O(|¢ — 2|F). Then we say that P(¢) is a Poisson-
type integral. For instance, the Poisson-Szeg6 integral in the ball is of this
type. Another example is the dual of the approximate solution kernels for
the d0-equation from [AnC1]. However, the interesting example in this
paper is the integrals in the proof of Proposition 3.5 and in (6.7) for k = 1.

Our main result is that a Poisson-type integral satisfies the same estimates
as the integrals Mj in Proposition 3.4. For the reader’s convenience we
reformulate it.

Proposition 7.1. Let P be a Poisson-type integral.
a) If dr is a Carleson measure, then

(7.1) /D \PYPdr S 6]le omy
for ¢ in L?(0D), 1 < p < oo,
/D \Pyldr < 4]l

and
1Ppllze < %]l (o)-
b)  Moreover, if b is a Carleson function, then
/D(—p)IEPtbllbl < Ilballblic,
[ PILPYE S [1Es(on,
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and —p|LP|* is a Carleson measure (i.e. LPy is a Carleson function) if
P € L*(aD).

Proof. The proof of part a) is similar to the corresponding one for M;. It
just depends on the estimates

|P(¢,2)| S W

and

P62 - Pl s (522)) 58 de) < s, o)

To prove part b), first notice that

ILP((,2)| S

and

d(z, Z'))e (=p(O)?
d(¢,z) /) d(¢ 2)mre

if d(z,2') < ¢d(¢,z). In view of the T'1-theorem, it remains to show that
LP1 is a Carleson function.

Choose local coordinates on D at some point p € 0D, { = (y, T2, ..., Tan),
such that y = —p. If z = (0, ¢y, ..., t2,), then

v((,2) =y +ia- (t—z)+ D Bty — z;) (b — 71),

where alc—, = d°p|; and Re}_ B, (t; — z;)(tx — zx) > d|t — 2|, for some
d >0, cf. §2. Moreover,

v(z,¢) =y —ia- (t —2) + D Bty — o))t — ),

where 3} satisfy the same relation as 3};. To simplify notation, in the sequel
we denote any of them by

ytia-(t—z)+ Zﬁjk(tj —z;) (b, — zk).

lamaa—cpmznsc(

Then for ( = (y,z) near p, modulo negligable terms we have

yO((|lz — t| + y)*)x(t)dt
t(yia- (t—2) + 3 Bty — o)t — o))" tetE

(7.2) Pl(y,z
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where x(t) is a cut-off function.

To begin with, we assume that £ only involves derivatives of z, ..., T,.
After a translation in the integral in (7.2), we get

O((|t] + )*)x(t + z)dt
P1(y,2) / YOIt + )*)x( n)+e+%,
y:l:za t+z,3]kt tk)
and hence
yO((It] + y)")O(|¢])dt 1
LP1(y,z) :/ i ~) e+l o Vi)’
‘(yxia-t+ T Butite)
and thus it is a Carleson function.
L= —, we can fix £ = 0, and assume that

v=YY + ’iatz + Z ,Bjktjtk.

3,k2>3

We put ¢’ = (ts, ..., t2n) an we may assume that O(|¢ — z|*) is O(|t'|F) since
O((y + |t2])*) gives rise to a less singular integral. Then

“O(Jt'|¥)x(t)dt
t (y + ’Latz + Zj,k23 ﬂjktjtk) 2

We now make a change of variables, by putting ¢; = ys; and t; = ,/ys; for
j=3,...,2n. Then we get

O(|s'*)xds

P1(y,0) = -
g (1 + i&SQ + Zj,kZS ,BijjSk

) ntetd’

where & = a(y, yS2, \/JS3, .-+, ,/US2n), 50 that

0

o, o[
2 =0 +0l 2>+o<f>

and analogously for Bjk, X and 0. Thus,

VY

)n+e+§

5 @(IS’I")< (1) +0(s2) + O (I ,I))de
8_yP1( y,0) = + similar

(1 + ’id’Sz + Ej,kz:i ,éijjSk
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O(s'*)(O(s2) + O(Is'*)) ((9(1) +0(s2) + O (%)) Xds

+ [ ,
s (1 + i&82 + Ej,k23 ﬂijjSk
which after substituting back, yields the estimate

dt
5. P1(y,0) ,Sy‘“"/ : .
Ay ’ l<e [(y £ iots + 3, o5 Bintite) "7

) n+e+§+l

The latter integral is bounded if € < 1/2 and ~ y*/27¢ for € > 1/2, and again
it follows that (—%Pl is a Carleson function. g

8. The Koszul complex approach.

We conclude this paper with a brief discussion of the Koszul complex method
for solving division problems of our kind. The case with two generators is
already studied in [AnC2]. It just amounts to solving one single d-equation
Ou = w for a certain (0,1)-form w. Even in this case, the solution could be
simplified by using Proposition 7.1 above. In this case the equation to be
solved is Ou = w, where

w = wp = G0, — G200 ¢,

where we have used the notation from §3 (so that 1; are a smooth solution
to > G;¢; = 1). Boundary values of a solution to du = w is given by a
formula of type

[ (=p)*wAO1) + (=p)*'w Adp A O(I¢ = 2])
Kuls) = | oG 2Tz, 0) ’

where the functions O are C'. To estimate the solution we integrate against
¥(z), and get

Kw(z)(z)do(z) = /Dw ATw + /D —\/—1:_?11) A Op AT,

oD

where

(=p)*O(1)¢(z)do(2)
v(¢, 2)" e (2, ()

T$(C) = /UaD

and

T’¢(C)=/ (=p)*12O(I¢ — 2)¢(2)do(2)

8D v(¢, 2)"te"tu(z, ()
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If we use the simple choice 1; = G;/|G|* we have to apply the Wolff trick
again, and (modulo error terms) we arrive at

Kw(z)y(z)do(z) :/( )Ew/\Tw+/( p)w A LTw
/ w/\ap/\T’z/;Jr/\/_”Lw/\ap/\T'zp
+/ V—=pw A Op A LT'p,
D

and arguing as in §3, and using Proposition 7.1 (and Propositions 3.2 and
3.4) one get the estimates (3.21) to (3.23) of [, Kw(z)y(z)do(z), which
solves the HP-corona problem for 1 < p < % for two generators.

Now suppose that we have an arbitrary but finite number m of genera-
tors. Let K denote (good, apropriately weighted) homotopy operators for 9,
cousins to the operator K above; thus mapping (0, q + 1)-forms into (0, g)-
forms, such that 0K + K0 = identity. Then the Koszul complex, see e.g.
[G], furnishes a holomorphic solution to the division problem that can be
written as a sum of terms of the type

(81) (GK)’C¢K0 A 51/)1{1 Ao A 5¢K;¢¢>
where |K| = k + 1, k ranges from 0 to min(n,m — 1), and

(GK)* = GKGK...GK,

oD

where GK means the operator K followed by multiplication with one of the
generators G ;.

If now |09;| + % |0p A Oy;| are Carleson measures, |9v;| S 1/(—p)
and |0p A 9;| < 1/+/=p, then
—0) T oo A Iy A oo A Bipic, @)

and o _ B
—p) T |Op Abiy A Ok, A o N O, B

are Carleson measures, and then a size estimate of the integrals in (8.1) gives
a desired estimate for the solution. The necessary estimates for the kernel
of (GK)* follow from Lemma 5.2 in [AnC1].

The explicit choice of starting solution ¢ = G/|G|* offer additional tech-
niqual problems that we do not pursue here.
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