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THE WEIL REPRESENTATION AND GAUSS SUMS

ANTONIA BLUHER

We use the Weil representation to evaluate certain Gauss
sums over a local field, up to £1. Also we construct a cocycle
on Sp(2m,R) with a simple formula on the maximal compact
torus and we show how to lift homomorphisms j : Sp(2n,R) —
Sp(2m, R) to the double covers of these groups.

1. Introduction.

Let F be a self-dual local field of char # 2, for instance F = R, C, or a
finite extension of Q,. For most of the paper we will assume F' # C. Let
x be a nontrivial additive character of F. Then all additive characters of F
have the form Ay for some A € F, where A\x(t) = x(\t). We consider the
following unitary operators on L?(F™):

(1.1) (a(4)®)(X) = |det A[Y2®(XA)  for A€ GLn(F),
(1.2) n(B)®(X) = x(XBXT/2) ®(X) for B = BT € M,,,(F),

(1.3)
(‘T-Jq))(X) = /F Q)(Yi’ )Yi’Xj-i-la"' 7Xm)X(X11,1 +oe +X.?Y7)dY;

(1.4) ((1)®)(X) =t®(X), teT={2€Clzz=1}.

Here 9 is a nice function in L2(F™) (to be precise, ® belongs to the Schwartz
space S(F™)), dY is an additive Haar measure on F’ normalized so that
F? = a(diag{—1I;, In—;}) for 0 < j < m, and |a|r for a € F is the modulus
function, determined by d(ya) = |a|r dy for a Haar measure dy on (F,+).
All our vectors are row vectors. We will usually suppress the symbol ¢; that -
is, identify ¢t with ¢(¢) for t € T. Let Mp = Mp(F™) be the topological group
generated by all the above operators. We call this the metaplectic group.
This group is independent of x since Ax(XBX7/2) = x(X(AB)XT/2) and
a((* ,  ))Fix = Fiax, where we have added a subscript to the Fourier

Lm—;
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transform F; for clarification. Let Sp = Sp(2m, F) denote the symplectic
group cons1sting of all 2m x 2m matrices 7 such that 77w,,7 = w,,, where
w, = (2 0), I = I,,. This group is generated by the matrices {a(4)| A4 €
GL,.(F)}, {n(B)| B = BT € M,,(F) }, and w,,, where

a(A) = (A A_T) n(B) = (’ ?) (A € GL(F), B = BT € M (F)).

Theorem (Segal, Shale, Weil). There is a homomorphism 7 = =, : Mp —
Sp such that

m(a(4)) =a(4), 7m(B))=n(B), 7(t)=Dlm  7(F)=w;,

where

Om_j Im—j

Moreover, there is an exact sequence of topological groups
(1.6) 1-T—-—Mp——Sp— L.

If F = C, this sequence splits. If F # C then Mp contains a subgroup
Sp = Sp(2m F) such that 7r|s Sp — Sp is a nontrivial two-fold cover of
Sp.

From now on assume F # C. The realization Sp C U(L?(F™)) is known as
the Weil, oscillator, or Segal-Weil-Shale representation. The group Mp and
the projection m have much better definitions in terms of a certain central-
izing property these operators have with respect to a unitary representation
of the Heisenberg group; see [R1, §3.2]. Note that

(1.7) Ty (0) = (I )\I) 7y (0) (I A’1I> for 0 € Mp.

The main result of this paper is that a certain Gauss sum is computed up
to £1. The idea of the proof is to compare two sections of the homomorphism
w. If F = R or if F is a nonarchimedean field whose residue characteristic
is # 2 then there is a splitting homomorphism k : K — Mp, where K is
a certain maximal compact subgroup of Sp. This section can be compared
to the standard section 7y, : Sp — Mp (see (4.1)) which was defined by
Rao. Define zy : K — T by the formula ro(k) = zo(k) k(k). We will find
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an expression for zo(k) as a Gauss sum. The operators in Sp are known
explicitly, thus yo(g) and y(k) may be found (Prop. 2 and Lemma 7) such
that yo(g9) ro(g9) € Sp and y(k) k(k) € Sp for each g € Sp, k¥ € K. Then
zo(k) yo(k) y(k)™ € SpN T = {£1}. In this way the exact value of the
Gauss sum z,(k) may be computed, up to 1. A technical difficulty is that
one must find an explicit formula for the Bruhat decomposition on K in
order to compare the sections ry and k; this is done in Lemma 9.

Now we state our result explicitly. Let F' = R or F = a self-dual nonar-
chimedean local field such that 2 is a unit in the ring oz of algebraic integers
of F. Let x(t) = e*™ if F = R, and let x be any additive character such
that a, = o if F' is nonarchimedean, where

(1.8) ay={z€F|x(zy)=1 forally€cor}.

For example, if F = @Q,, one could take x = x, to be the unique additive
character such that x,(a/p") = e 2"/?" when a,n € Z, and if F is a finite
extension of Q, one could take x = Ax, o trr/q,, where X is a generator for
the inverse different of F'. Let K = Sp(2m, o) if F' is nonarchimedean and

K={<_aﬂ§)|(a+iﬂ)(a—iﬂ)T=Im} if F=R
Define ®, € L?(F™) to be the characteristic function of o7 if F' is nonar-
chimedean and @o(X) = e ™¥ X if F =R Letk = (57) € K and j =
rank(C). It is not hard to see (Lemma 8) that there exist 7,7, € SO(m, F)
such that all entries of m; are 0,1, or —1 and such that the top left j x j5
minor of 7, C, is invertible. Let

_ Cl Cg _ D1 D2
(1.9) mCmy = (Cs 04) , mDmy = (D3 D4> ,

where C;, D, are j X j matrices and Cy, D4 are (m — j) X (m — j) matrices.
For a,b € F* let (a,b)r € {£1} denote the Hilbert symbol: (a,b)r =1 or
—1 according as a is or is not a norm in F(v/b). In particular, if F = R then
(a,b)g = —1 iff a and b are both negative.

Main Theorem. Let k € K — P and my,m3,C1,Cs,... , Dy be as above. Put
n = det (:g; g:). Then n # 0, and the quantity

(1.10)

zo(k) = | det Cy| lnl“”z /F X(y(DICIT + chzT)yT/z) o (yCh,yCy) dy

is independent of the choice of m; and m,. Furthermore, zo(k)?> = (n,—1)F
if F is nonarchimedean and zo(k)* = sign(n) (=)’ det(D —iC) if F = R.
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In §2 we discuss the Weil index, which is fundamental to the study of the
Weil representation, and we give a new method to compute the operators
belonging to Sp. In §3 we discuss splittings of the maximal compact subgroup
of Sp into Mp. The main theorem is proved in §4, and as an application we
construct in Proposition 10 a section r, : Sp — Sp such that the associated
cocycle c, has the following nice properties: a) ¢4 (pg1,92) = ¢4(91,92) =
c+(g1,92p) for all p= (4 %) € Sp with det A > 0 and all g1,9, € Sp; b) ¢,
has a simple formula on the standard maximal compact torus of Sp; and c)
¢ coincides with the Kubota cocycle when m = 1. In §5 we show how to
lift homomorphisms j : Sp(2n,R) — Sp(2m,R) to the double covers of these
groups.

We would like to thank the referee for many insightful comments, sim-
plifications of arguments (for example, the proof of (4.10)), and specific
references to the literature which helped to improve and shorten the paper.

2. The Weil index.

We first show that §13 is equal to the commutator subgroup of Mp (this
fact is known). By computing some commutators explicitly, we are led to
consider some products of Gauss sums which Rao calls the Weil index. We
will give a new proof that the Weil index defines a homomorphism of the
Witt group and a new way to compute the operators in Sp. If H is any
group, let (H, H) denote its commutator.

Lemma 1. S\f) is equal to the commutator subgroup of Mp. If G, is a
subgroup of Mp and 7(G,) = Sp then Gy = HSp = H(Mp,Mp), where
H =G, NT. Also, Sp = (Sp, Sp)-

Proof. Let Gy = (Mp,Mp). Then 7|Gy is surjective, because Sp = (Sp, Sp).
Now let G, be any subgroup of Mp such that the restriction of = to G; is
surjective and let H = G; N'T. Then (G,,G,) contains Gy because given
any A, B in Mp there are constants ¢; and ¢, in T such that ¢; A and ¢,B
belong to Gy; thus ABA™'B~! = (t,A)(t,B)(t,A)"'(t.B)™! € (G1,G1)- In
particular, Gy, C (Sp, Sp) C Sp If the inclusion of Go in Sp were proper, then
the exact sequence (1.6) would be split. So Sp = (Sp, Sp) = Gy C G; C Mp.
Given any g € G, there exists a € T such that ag € Sp Since §f) CGy,a=
(ag)g~! € G;N'T = H. Since g = a™(ag), we see G; C HSp C G, a

Let P be the subgroup of matrices (5 5) € Sp such that C = 0. Then P
is generated by a(A)n(B) such that A € GL,,(F) and B = BT € M,,,(F),
and the section rp : P — Mp given by

(2.1) rr(a(4)n(B)) = a(4) n(B)
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is easily seen to be a homomorphism. Since P and {w; |j =0,... ,m} gener-
ate Sp ([R1, Lemma 2.14}), their lifts {rp(p) |p € P} and F;, together with
T, generate Mp. We will use this information to compute Sp = (Mp, Mp)
and see how Gauss sums arise in the process. In the following let F = F,,.

Since (GL(m, F), GL(m, F)) = SL(m, F) for any field F (Milnor, J., In-
troduction to Algebraic K-Theory, Ann. of Math. Studies No. 72, p. 25
and 28), it is not hard to see that (P, P) is generated by a(A) such that
A € SL,,,(F) and n(B) such that B = BT € M,,,(F), where I = I,,,. Since a
and n are homomorphisms,

(2.2)
a(A) € Sp and n(B) € Sp for all 4 € SL,,(F) and B = BT € M,,(F).

Since Sp = (Mp, Mp) is normal in Mp and (113 ;) = wmn(—B)w,},

(2.3) Fun(-B)F'eSpnzt (II? I) :

Now we compute the fiber in Sp over a(B~!)w,, when B is symmetric and
invertible. The Bruhat decomposition on the big cell (det C' # 0) has the
form

(2:4) (é g) =n(ACT) a(-C™") wmn(CT' D).

Note that AC~! and C~'D are symmetric. Taking (_IB I) in place of (é, g)

when B is invertible gives
n(B™!) n(B™') = a¢(B™Hw
= B l’ 2 = m:-

An element of §f) which lies in the fiber over the left side of the equation is

n(B™') Fn(B) F*'n(B™") € Sp.

On the other hand, the fiber in Mp over the right hand side contains a(B~!) F.
Hence there is a constant y(B) € T (which depends on x) such that

(2.5) y(B)a(B™")F

=n(B™)Fn(B)F'n(B!) e Spnz? ((_B B_l)) :
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This constant is the same as y(f) of [W, No. 14] or the “Weil index” yg(f)
of [R1, Appendix], where f is the character of second degree on F™ given
by f(X) = x(XBXT/2).

Weil has shown that + is a homomorphism of the Witt group ([W, No. 25]);
that is,

(2.6) v(R"BR) = v(B), g (Bl Bz) = (B1)7(B)

for all R € GL,,(F) and all square matrices B, B,. Here is a different proof
of these facts. Take any R € GL,,(F) such that RT BR = diag{bi,... ,b,}
with b; € F*. It will suffice to show v(B) = [](b;). Let ¢ be any nonzero
element of L2(F), and define ®™ € L?*(F™) by ¢®™(X) = [1p(X;). Let
®(X) = ¢®™(XR). The right side of (2.5) evaluated at ® is the function

®,(X)
=x(XB71Xx7T/2) / x(YBYT/2) (F 'n(B™Y) ®)(YV) x(XYT)dY
Fm

=x(XB~'Xx7/2) / x(YBY7T)2) / x(ZB™1ZT2)8(Z)x((X - 2)YT)dZ dY.
Fm Fm

Let X' = XR = (X},...,X,). Now change variablesY = YR™T Z — ZR.
Then

@,(X)

= [IxCx7/2) [ xa?/D) [ x07'2/2) o) x(X = 2)y) dzdy.

i=1

On the other hand, the left side of (2.5) evaluated at ® is

&,(X) = v(B)| det B|5** / ®(Y) x(XB'YT)dY

=1(8) [T | ot) o Xt

= y(B) H |bil 520 (671 X7),

where ¢ is the Fourier transform of . Comparing the two expressions for
®,(X), we find v(B) = [1~(b;), where ~(b) for b € F* is the constant in T
such that

(2.7) (Bl 2p(b7 2)
= x(67'5*/2) [ x(e /2 /F x(6712%/2)0(2)x((z — 2)y) dz dy.
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Note that our notation is consistent: if m = 1 and B = b then v(B) =
[Ti—, 7(b) = 7y(b). This proves (2.6).
If F = R and x(t) = €™ ~(b) may be evaluated by taking ¢(z) = ™=
in formula (2.7) and applying [Ig, Ch. I, §2, Lemma 1]. The result is
e?mi/8 if Ab>0
7(b) = {

2.8 .
(28) e~2mi/8 if Ab < 0.

If F is nonarchimedean with a discrete valuation v, then by [W, No. 27],

29) ) =FB/FO), z:/U x(0w/2) dy,
v=—oco Y V\Y}=V
where dy is an additive Haar measure. This is recognizable as a Gauss sum.
In ([W, No. 28]) it is shown that for all a,b € F*,

(2.10) Y(=b) =7(b),  v(1)v(—a)¥(-b)¥(ab) = (a,b)F,

where (a,b)r = 1 or —1 according as a is or is not a norm in F(b'/2). From
this it is easy to deduce that y(b)® = 1, and even 7(a)*y(b)* = 1, for all
a,b € F*. Other formulas are gathered in the appendix of [R1].

Proposition 2. For all A € GL,,(F) and B = BT € M,,,(F),
(det 4,—1)}/’a(4) €Sp, n(B)eSp, (1)'F; €Sp.

Proof. These formulas can be deduced from [R1, Def. 5.2 and Cor. A.5] or
from [R2, Th. 4.1]; here we give a different proof. The first assertion when
det A = 1, the second assertion in general, and the third assertion when j =
m have already been shown (equations (2.2) and (2.5)). For arbitrary A €
GL,.(F), write A = BA, with B = diag{det A,I,,_,} and A, € SL,,(F).
Then

1(%%{1—) A) = {y(B)a(B)F} {v(I)F} " {a(A))}.

Here we have used that v(B)/v(I) = y(det A)/v(1) by (2.6). Each term in
brackets belongs to Sp by (2.5) and (2.2). Now

{y(1)/7(@)}* =~(1)*v(-a)? = (a,-1)F

by (2.10), so y(det A)/y(1) = +(det A, —1)}/*. This proves the first as-'
sertion. One can deduce the last assertion by embedding Sp(2j, F) into
Sp(2m, F) (((ZZ) — (ég)’ where A = (alm_j)v B = (bom_j)’ C= (Com_,-)’
D= (¢ Lo )) and applying the argument of (2.4-5) to the image of Sp(27, F/).

M|
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3. Splitting of K.

In this section we recall how to obtain the splitting of a maximal compact
subgroup K of Sp. First let us discuss the case where F = R. Let U, =
{ZeM,(C)|ZZT =1,}, and define u : U,, — Sp by the formula

(3.1) (A +iB) = (_“}3 ﬁ) .

It is well known that Sp acts on the Siegel upper half space, and by an easy
calculation u(U,,) is the stabilizer of iI,,, hence it is a maximal compact
subgroup of Sp. The nontrivial additive character x which appears in (1.2)
and (1.3) has the form x(t) = €™, where A € R*. Define ®, € L?(R™) by

Bo(Xr,... , Xpm) = e TMIX],

Lemma 3. Let F =R and K = u(U,,). There is a splitting homomorphism
k : K — Mp such that k(k)(®o) = ®o for allk € K.

Proof. 1t is well known that m~!(K) stabilizes C* ®y; see [Ig, Ch. I, §9] or
[B, Prop. 3.2(a)]. Let ¥ € Mp and () = k£ € K. Then 7®, = ¢®, and
c € T since 7 is a unitary operator. Thus one takes k(k) = ¢ 17. O

There is a similar result in the nonarchimedean case ([W, No. 19] or
[Kz, Lemma 2]). Let F' be a nonarchimedean field, o its ring of integers,
A a lattice in F™, and A’ the dual lattice:

N={zeF"|x(z-y)=1 forally € A}.
Let K C Sp be the stabilizer of A ® A"
K={oc€eSp|(z,y)ce AN forallz € A, ye A'}

Then K is a maximal compact subgroup of Sp. Since A = oFa for some
a € GL,(F), the various K for different choices of A are conjugate to
one another. If A = o and a, = op (see (1.8)) then A’ = o and K =
Sp(2m, 0 F) .

Lemma 4. Let F be a nonarchimedean field such that2 € op. Let @, be the
characteristic function of A. There is a splitting homomorphism k : K — Sp
such that k(k)®y = @ for allk € K.

Proof. This is proved in [Kz, Lemma 2]. (N.B. Kazhdan’s article contains an
error in the group law for the Heisenberg group, but the reasoning is correct
in the case where 2 € 0%.) O
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Lemma 5. Let FF = R or F as in the premous lemma. If p e PNK
then rp(p) = k(p). Let P = w ' Pw,, = {(£8) € Sp | B = 0} and define
r5: P — Mp by rp(wy,'pw,) = Flrp(p)F. Ifp € PNK then r5(p) = k(p).

Proof. Suppose p € PN K. We can write p = n(B)a(A). From the definition
of K it is clear that det A is a unit. Write rp(p) = ck(k), with ¢ € T. Since
®4(0) = 1 and k(k)®, = &y, we know ¢ = rp(p) ®4(0) = n(B)a(A)Py(0) =
|det A|'/2 = 1. Next suppose p = w;lpw, € PN K. Let & = Fd,
and K' = wp,Kw,!. If F = R then &, = &, and K' = K. If F is
nonarchimedean then ®; is a constant multiple of the characteristic function
of A’ and K’ is the stabilizer of A’ @ A; that is, ®;(0)~! &), K' are defined
like ®y, K with the roles of A and A’ reversed. Moreover p € P N K', hence
rp(p) @4 = ®;. Thus r5(p) @o = Flrp(p) @y = F '@, = &y, so that

r5(P) = k(p). O

Lemma 6. If F is nonarchimedean and 2 € oy then (a,b)rp = 1 for all
a,b€og.

Proof. This proof may be found in [W, Theorem 5]. Choose x such that
a, = op (see (1.8)). Let A = o%; thus K = Sp(2m, or). Note that k(w,,) =
F, since F ®; = ®,. Consider equation (2.5) with m = 1 and B = b, where
b € of. By Lemma 5, (2.5) says

70) k(a(b™) k(wn) = k(n6™) kwn)k(26)) k) " k(nb).
Since k is a homomorphism, v(b) = 1. Then (a,b)r = 1 by (2.10). [l

Lemma 7. If F is nonarchimedean and 2 € oy then k(k) € Sp for all
k€ K. If F =R then £(det Z)?k(u(Z,)) € Sp for all k € K, where
Zy = Z or Z according as A >0 or A <0.

Proof. First assume F is nonarchimedean. It is well known that K is gener-
ated by K N P and K N P, where P = w_! Pw,,. Suppose p = n(B)a(A) €
PN K. Then k(p) = rp(p) by Lemma 5. Now det A € o, so rp(p) € Sp by
Lemma 6 and Prop. 2. Next suppose p = wlpw, € PNnK. By Lemma 5,

k(p) = r5(p). Now rp(p) € Sp by the same argument as above. (Note that

p € PN K’ in the proof of Lemma 5.) Since Sp is normal in Mp, r5(p) € Sp
also.

Next assume F = R. In [R2, Th. 4.1] a homomorphism & — 7(&) from
the universal cover of Sp into Mp is constructed. From the construction it
is easy to see that for each o € Sp, the set { 7(6) |7 (6) = o } has cardinality
two. By Lemma 1 it follows that the image of r is Sp. When A = 1, the
result now follows from [R2, Prop. 4.2]. Let us add a subscript x to remind



366 ANTONIA BLUHER

ourselves that the definition of k depends on x. From (1.7) and the definition
of @, it is not hard to deduce that k, (u(Z)) = kj, (u(Z,)) for all A € R*,
Z € U,,. The result follows. O

4. Proof of the Main Theorem.

In this section we will prove the Main Theorem, which was stated in the
introduction, and give an application. Let F = R or F = a self-dual nonar-
chimedean field such that 2 is a unit in or. Let x(t) = > if F = R, and
let x(¢) be an additive character of F such that a, = op (see (1.8)) if F is
nonarchimedean. Let K = u(U,,,) if F = R (see (3.1)) and K = Sp(2m, o)
if F' is nonarchimedean. For each k € K we will define a number z,(k) € T,
which will turn out to be the same as the Gauss sum z,(k) that appears in
the statement of the Main Theorem. Moreover z,(k)? can easily be evaluated
using results of §§2-3.

Let us explain the definition of zo(k). By the Bruhat decomposition
([R1, Lemma 2.14]), every element g € Sp can be written in the form
g = pyw,p, for some p;,p, € P and 0 < 5 < m. Consider the standard

section 1o : Sp — Mp given by
(4.1) To(prw;p2) = rp(p1) Fj rp(P2)-

This is well-defined by virtue of [R1, Th. 3.5(3)]. Define z¢(k) € T for
k € K by the formula

(4.2) ro(k) = zo(k) k().

Suppose y(k), yo(g) are elements of T such that y(k) k(k) € Sp and yo(g) ro(g) €
Sp. Then zo(k) yo(k) y(k)™* € SpN T = {£1}, thus

(4.3) zo(k)* = y(k)? yo(k)™*.

By virtue of Lemma 7, Prop. 2, and (2.8), we can take (for g = (4! >)w;(2*) €
Sp and k € K)

(4.4)
y(k) = det(u"1(k))/? and yo(g) = e*"¥/®(sign(det A; 4,))*/? if F=R,

(4.5)
y(k) =1 and yo(g) = (det A, A,, —1)}/2 if F is nonarchimedean.
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Now we begin the computation of zy(k). Suppose k = p,w;p, is the
Bruhat decomposition of £ and p; = n(B;) a(A4,). Note that j is the rank of
the bottom left m x m minor of k. Then

(6) (k) = (ra(k)Bo)(0) = |det 41" | (ro(p2) Bo)(y,0) dy.
Thus we need to calculate A, and p,. This is accomplished in the next two
lemmas.

Lemma 8. Given C € M,,(F) of rank j, there exist m,,m € SO(m, F') with
all entries 0,1, or —1 such that the top left j X j minor of 7, Cm, is invertible.

Proof. One can permute columns to make the first j columns of C linearly
independent, then one can exchange rows to make the top left 7 xj minor of C'
invertible. The resulting matrix is 7} Cn}, where 7] and 7 are permutation
matrices. One can always arrange for an even number of row exchanges (to
make det 7} = 1) unless m = 2, j = 1. When m = 2, one could choose
m=1ILor (°}). O

-10

Lemma 9. Suppose g = (é. g) € Sp(2m, F), the rank of C is j, and the top
left 5 x §j minor of C is invertible. Write

_[C1 G, _ (D1 D,
in block form, where Cy, D, are jxj matrices and Cy, Dy are (m—75)x (m—j)

matrices. Then g = pyw;p,, where w; = w(F;) is the matriz of (1.5) and
P1,P2 € P have the form

_ (aIT)_l * o = —C, D,
D= a/ ) - ~03 D4 )

(I, B\ [« (I, cC,
D2 = Im (aT)_l ) a = Im-—] )

B' = (ﬂ 0 ) , B =Cr (D + D,C,"C,™T) € My(F).
m—j

(In particular, we are asserting that o' is invertible and (3 is symmetric, so
that py, ps really belong to P.)
Proof. First, DCT is symmetric since g € Sp, thus D;C,T 4+ D,C,” is sym-

metric. This implies 3 = 87, so p, € P. Now Ca™! = (g;f) Since
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rank(Ca™') = rank(C) = rank(C)), the * is really 0. Thus

_ Aa™t # -Ci6 0
1 _ " __ 1 T
ap, = ((Cl 0) DI) ) D' = (—CSIB 0) +DO£ .

C30

By direct calculation, D' = (5, gj) for some matrix Dj. Since gp;' € Sp, we
3
' T 3 . - . .
know (&} ND'T = (29D57) is symmetric; since C; is invertible, this forces
C100 Dy

D} = 0. Thus the bottom m rows of gp;* are ( Groop.)- These rows must
be linearly independent, so o' is invertible. Moreover, the bottom m rows
of diag{a’", ' "' }gp; ! are the same as the bottom m rows of w;. Since this
matrix is symplectic, it is easy to check from the relations ATC = C7TA,
BTD = DTB, ATD — CTB =1 for all (4 }) € Sp that the top m rows of
diag{o’ T o' "'}gp5* must have the form

(A; 0 I —AgT)
AI3 Im—jO Bf;

with A} and Bj symmetric. (Here the matrices in the top row have height
j, the matrices in the first and third columns have width j.) Thus

IFE\ .. T -1 -1 _ ., Y AQT
(O I) diag{a'",o&'” }gp;' = w;, where E = (Ag _B)"

This completes the proof. O

Proof of Main Theorem. Define z(k) as in (4.2). Let k = (é. ’Ye K—P
and choose 7;, 7 as in Lemma 8. Let o; = a(m;) fori = 1,2 and k' = o k .
Then zo(k) = zo(k') because

(4.7) ro(K') = a(m) ro(k) a(m) = k(o) zo(k) k(k) k(az) = 2o (k)k(K').

Define Cy,...,C4 and D,,... ,D4 by (1.9). Now apply Lemma 9 to the
matrix k’. By (4.6) and Lemma 9, the matrix o/ = (:g; gj) is invertible,

and in the notation of Lemma 9,

J

= |det(a’)| 12 /F  X(WBY"/2) @o(y,yC;Cs) dy.

o(K) = |det(e!)| /2 [ (n(B) a(0) o) 1,0)dy

By changing variables y — yC; we obtain (1.10). Finally, z¢(k)?> can be
computed from (4.3), (4.4), and (4.5). a
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Example. For F=Q, (p>3)and k= (®}) € Sp(2,Z,), we have z,(k) =
1 if ¢ = 0, and otherwise

2o(k) = e/ [

[

x(dey?/2) dy = |¢|~*/? / x(dc™'y?/2) dy.
ZP

P

If ¢ is a unit, this integral is one. If c is not a unit, then [,_., x(dc™'y*/2)dy =
0 for all v > 0 by a standard argument in the theory of Gauss sums, so
zo(k) = y(d/c) by (2.9). In summary, for k = (%) € Sp(2,Z,),

zo(k) = ~(c/d) if ¢ # 0 and plc
IR ifc=0 orceZ,.

1

Proposition 10. Let F = R, x(t) = e*™. There is a sectionr : Sp(2m, R)
Sp(2m,R) such that

a) ri(pigp2) = rp(p1) r4(9) TP(p2) whenever pi,p, € Py = { (6‘ ;) €
P| det(A) >0}; and

b) If k = u(diag{e*,... ,e’"}) (—w < 0; < ) then

(48) T+(k) — e—&m’/4(eém'/2)1/2ei0/2k(k),

where 6 = ¥.0;, § = > 0;, and §; = —1,0,1,2 according as 0; € (—,0),
6, =0, 0; € (0,7), or §; = . Define a cocycle cy : Sp x Sp = {£1} by the
formula r,(g1) 74 (92) = ¢4(91,92) 74.(9192) for 91,92 € Sp. If m =1 then c,
coincides with the Kubota cocycle.

Proof. Let W, = {w;,w_w;|j =0,... ,m}, where w_ =ga(™" r._,)- It can

easily be seen from the Bruhat decomposition that Sp = Uyew, Py w Py.
Let € : W, — Mp be the restriction to W, of k +— det(u'(k))*/2k(k),
where we choose the branch of the square root function which has argument
in (—7/2,m/2], and define r, : Sp — Sp by

4+ (prwps) = rp(p1) e(w) rp(p2) for w e W, and p;,p, € Py.

This section is well-defined by [R1, Theorem 3.5(3)], and it takes values in Sp
by Prop. 2 and Lemma 7. Clearly (a) is satisfied. Now we prove (b). Define
v:Sp — T by r,(g9) = v(g) ro(g), where ry(g) is the standard section (4.1).
Note that v(w) = (det(u~*(w)))'/? for w € W, because ro(w) ®; = ®o. By
(4.2),

(k) = v(k) zo (k) k(k).
Thus we need to show that for k as in part (b),

(4.9) v(k) zo (k) = e~°mi/4(e5mH/2)1/2¢i0/2,
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If Ay, A; € SO,,(R) and k' = a(A,) ka(A;) then v(k') = v(k) because ry and
4+ are constant on double cosets P,wP,, and zo(k') = zo(k) by (4.7). Thus
the left side of (4.9) does not change if the 6; are permuted or if an even
number of the 8; are shifted by 7. The right side is also invariant under such
manipulations of the 6;, because 6 — é7/2 and e’**/? are unchanged. Thus
we are reduced to the case where sinf, # 0 for 1 < £ < 7, sinf, = 0 for
£>j,and 6, € [0, ) for all £ > 2.

If j =0then k =1 or Kk = w_ according as 6; = O or 6, = «n. If
k = I, both sides of (4.9) are 1. If k = w_ then § = 2, 0 = m, zo(k) = 1,
v(k) = i, and again both sides are equal. Now consider the case j > 1. Then
sinf; # 0,80 0, = £1, 0, =--- =9; =1, and 6, = 0 for all £ > j. Let
w = w; or w_w; according as 6; = 1 or §; = —1. Then k € P,wPy, so
v(k) = (6,49)Y/2 = (e™/2)}/2, Tt only remains to show zo(k) = e~0"/4e¥/2,
By (1.10),

J
. _ a2 g 22
.’L'o(k') — H|Sm9£| 1/2/e wiy” sin @, cosage wy* sin“ 6, d’y
=1 R

By [Ig, Ch. I, Lemma 1], it can easily be verified that each term in the
product has positive real part, and that up to a positive constant coming
from the self-dual Haar measure, its square is |sin8,|~'(1 + icot6,)~" =
ei0¢=(m¢/2)  Gince zo(k) € T a priori, the positive constant is one. Note
that 8, — (16,/2) € (—m/2,7/2) for all £ < j, therefore Re(ei?*/2 e~%:m/4) > (.
This completes the proof of (b).

Finally we want to show that if m = 1 then c, coincides with the Kubota
cocycle cx which is defined in [K]. We recall the definition of ckx: if g =
(¢ 3) € SLy(R) let z(g) = c or d according as ¢ # 0 or ¢ = 0. In terms of the
Hilbert symbol which was defined after (1.9),

ck(91,92) = (2(91),2(g2))r (—2(91) 2(92), (91 92) )w-

We can reduce the proof of (c) to the case where g; € K by the following ar-
gument, which was suggested by the referee. It is clear that z(pg), z(gp), and
z(g) have the same sign if p € P, , thus ck (pg1, 92) = ¢k (91, 92p) = ¢k (91, 92)-
Moreover ck(g,p) = 1 = ck(p,g) because (z(g),1)r = (—z(9),z(9))r = 1.
Obviously c, satisfies the same relations because of the property (a) of r,
and because 7, (I,,) = 1. Also we know the cocycle relation

c(z,y) c(zy, 2) = c(y, 2) c(z, yz)

for ¢ = ¢4 or ¢ = ¢k, where z,y, 2z € SLy(R). For arbitrary g; and g, write
g1 = prk1, g2 = p2ks, g3 = 9192 = p1psks with p; € P, and k; € K. Take
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z = k1,y = pa2,z = k; in the cocycle relation. Then zy = kip; = psksk;’,
hence

(4.10)
c(91,92) = c(k1,p2ka) = c(psksk; ', ka) c(ki, p2) c(p2, k2) ™! = c(ksky*, k).

Thus it suffices to show ¢, and ck coincide on K x K. Let g; = u(e®) for
j = 1,2,3, where §; € (—m,n] and €¥(®1+%2) = ¢¥s and let z; = 1 or —1
according as ; € (—,0] or §; € (0,7]. Then c (k;,k;) = ei®1+02)/2 [¢i%s/2
and this is equal to —1 iff z; = z, = —z;. Since z; = z(g;) (mod R} ), it
can easily be seen that the two cocycles agree.

5. Embedding Sp(2n,R) into Sp(2m, R).

In this section let F = R, x(t) = €*™*. Let P, = { (5 2) € Sp | det A > 0}.
We will prove the following proposition.

Proposition 11. Consider a continuous homomorphism j : Sp(2n,R) —
Sp(2m, R) such that j(P\™) C P{™ and j(K™) c K™, where for clarity
we have superscripted our symbols with the degree of the underlying sym-
plectic space. Let p = detou™ : K — T. There is an integer N such
that

(5.1) ™ o) (k) = W E)Y  for ke K™,
Define j : Mp(R*) — Mp(R™) by

(5.2)
iCrp) k(k) = (N rp(j(P) k(i(k))  for (€T, pe P\, ke K™,

Then j is a continuous homomorphism, moj = jow, and ﬂé; (2n.R) takes
values in §f)(2m, R). Moreover, 5|S~p is the only continuous function from
Sp(2n,R) into Sp(2m, R) such that moj = jom and j(1) = 1.

If one takes n = 1 and j ((:g)) = (7;’,{1 AT), where T is a symmetric
invertible m x m real matrix, and if one identifies Sp(2, R) with Sp x{£1}
via the bijection dr(g) — (g,d) for r, as given in Prop. 10 and § € {£1},.
then the formula (6.2) is a concise statement of [RS, Th. 1.2].

Proof. Let j be as in (5.2), K = Spna~*(K) = {+4(k)/2k(k) |k € K }
(by Lemma. 7). If ( k(k) € K™ then j(¢ k(k)) = ¢V k(j(k)) € Sp(2m, F) by
(5.1). (An integer N exists as in (5.1) because any element of Hom(U,, T)
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is a power of determinant.) It is clear that 7 is well-defined, continuous, and
mo j = j om, thus we have a commutative diagram

Sp(2n,R) —— Sp(2m,R)

dl q!

Sp(2n,R) AN Sp(2m, R).
We still need to show j is a homomorphism. Let
U={pk€Sp|pe€ Py, argp(k) € [-7/2,7/2] }

and ¢ : U — Sp(2n,R) the homeomorphism: ¢(pk) = P(k)/? rp(p) k(k)
(where arg1(k)'/? € [~7/4,7/4]). Since ¢(U) generates Sp(2n,R), it will
suffice to show

for all &% = ¢(u) € $(U), § € Sp(2n,R). Both sides lie in the fiber of
Sp(2m, R) over the point j(u)j(g) € Sp(2m,R) (g = 7(§)), so the equality
holds up to 1. Let F : U — {£1}, F(u) = j(@§)j(§)' j (@), where
g € Sp is fixed. Then F is continuous and F(I,,,) = 1. Since U is connected,
F is identically one. This proves j is a homomorphism. The characterization
of 7 as the only continuous lift of j taking 1 to 1 follows from an elementary
fact about covering projections ([Sp, Ch. 2, Sec. 2, Th. 2]).
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