Pacific Journal of Mathematics

INTERPOLATING BLASCHKE PRODUCTS GENERATE H^{∞}

JOHN BRADY GARNETT AND ARTUR NICOLAU

Volume 173 No. 2

April 1996

INTERPOLATING BLASCHKE PRODUCTS GENERATE H^{∞}

JOHN GARNETT AND ARTUR NICOLAU

The algebra of bounded analytic functions on the open unit disc is generated by the set of Blaschke products having simple zeros which form an interpolating sequence.

Let H^{∞} be the algebra of bounded analytic functions in the unit disc \mathbb{D} and set

$$||f|| = \sup_{z \in \mathbb{D}} |f(z)|,$$

for $f \in H^{\infty}$. A Blaschke product is an H^{∞} function of the form

$$B(z) = \prod_{\nu=1}^{\infty} \frac{-\overline{z_{\nu}}}{|z_{\nu}|} \frac{z - z_{\nu}}{1 - \overline{z_{\nu}}z}$$

with $\sum (1 - |z_{\nu}|) < \infty$. In [5] D.E. Marshall proved that H^{∞} is the closed linear span of the Blaschke products: given $f \in H^{\infty}$ and $\varepsilon > 0$, there are constants c_1, \ldots, c_n and Blaschke products B_1, \ldots, B_n such that

(1)
$$||f + c_1 B_1 + \dots + c_n B_n||_{\infty} < \varepsilon.$$

In fact, Marshall proved that the unit ball of H^{∞} is the uniformly closed convex hull of the set of Blaschke products (including $B \equiv 1$).

A Blaschke product B(z) is called an *interpolating Blaschke product* if

(2)
$$\inf_{\nu} \left(1 - |z_{\nu}|^2 \right) |B'(z_{\nu})| = \delta_B > 0,$$

because of the Carleson theorem that (2) holds if and only if every interpolation problem

$$f(z_{\nu})=w_{\nu}, \qquad \nu=1,2,\ldots,$$

for $\{w_{\nu}\} \in l^{\infty}$, has a solution $f \in H^{\infty}$. Although the interpolating Blaschke products comprise a small subset of the set of all Blaschke products, they play a central role in the theory of H^{∞} . See the last three chapters of [3]. The theorem in this paper helps explain why interpolating Blaschke products are so important in that theory.

Theorem. H^{∞} is the closed linear span of the interpolating Blaschke products.

In other words, (1) is true with the additional proviso that each of B_1, \ldots, B_n is an interpolating Blaschke product.

The theorem solves a problem posed in [3] and [4]. It is not known if the set of interpolating Blaschke products is norm dense in the set of all Blaschke products. It is also not known if the unit ball of H^{∞} is the closed convex hull of the set of all interpolating Blaschke products.

Recently, Marshall and A. Stray [6] proved the theorem in the special case that f extends continuously to almost every point of $\partial \mathbb{D}$, and our proof closely follows their reasoning. In particular, the idea of comparing (11) and (12) and the argument deriving the theorem from Lemma 3 below are both due to them. We thank Violant Marti for making the drawings.

The hyperbolic distance between $z \in \mathbb{D}$ and $w \in \mathbb{D}$ is

$$\rho(z,w) = \log\left(\frac{1+\left|\frac{z-w}{1-\overline{w}z}\right|}{1-\left|\frac{z-w}{1-\overline{w}z}\right|}\right),$$

and the hyperbolic derivative of an analytic function f is

$$(1-|z|^2)|f'(z)|.$$

The hyperbolic derivative is invariant under conformal changes in $z \in \mathbb{D}$.

The Blaschke product with zeros $\{z_{\nu}\}$ is an interpolating Blaschke product if and only if the following conditions both hold:

(3)
$$\inf_{\nu\neq\mu}\rho(z_{\mu},z_{\nu})>0$$

and

(4)
$$\sum_{z_{\nu} \in Q} (1 - |z_{\nu}|) < C\ell(Q)$$

for all $Q = \{re^{i\theta} : \theta_0 < \theta < \theta_0 + \ell(Q), 1 - \ell(Q) < r < 1\}$. See [1] or Chapter VII of [3].

Lemma 1. Let B be a Blaschke product and let $\{z_{\nu}\}$ be its zeros, counted with their multiplicities. Then the following are equivalent:

(a) $B = B_1 \dots B_N$, with each B_j an interpolating Blaschke product.

(b) Condition (4) holds.

(c) There exist positive constants ρ_0, δ_0 such that for each z_{ν} there is w_{ν} with

(5)
$$\rho(z_{\nu}, w_{\nu}) \leq \rho_0$$

and

(6)
$$(1 - |w_{\nu}|^2) |B'(w_{\nu})| \ge \delta_0.$$

In [6] it is shown that if B satisfies one of these conditions, then B is the uniform limit of a sequence of interpolating Blaschke products.

Proof of Lemma 1. The equivalence between (a) and (b) is in [7]. Assume (c) holds, let

$$Q = \{ re^{i\theta} : \theta_0 < \theta < \theta_0 + \ell(Q), \ 1 - \ell(Q) < r < 1 \},\$$

and set

$$T(Q) = \{ re^{i\theta} \in Q : 1 - \ell(Q) < r < 1 - 2^{-1}\ell(Q) \}.$$

To prove (4), we may assume there exists $z_{\nu} \in T(Q)$. Let w_{ν} satisfy (5) and (6). Then there exists a_{ν} such that $\rho(a_{\nu}, z_{\nu}) < \rho_0$ and $|B(a_{\nu})| \ge m = m(\rho_0, \delta_0) > 0$. Then the inequalities

$$\log m^{-2} \ge \log |B(a_{\nu})|^{-2} \ge \sum_{z_{\mu} \in Q} \frac{(1 - |z_{\mu}|^2) (1 - |a_{\nu}|^2)}{|1 - \overline{a_{\nu}} z_{\mu}|^2}$$
$$\ge \frac{A(\rho_0, \delta_0)}{\ell(Q)} \sum_{z_{\mu} \in Q} (1 - |z_{\mu}|)$$

show that (4) holds.

If (a) holds, there exists C > 0 such that

$$|B(z)| \ge C \prod_{j=1}^N \inf_{\{B_j(z_\nu)=0\}} \left| \frac{z - z_\nu}{1 - \overline{z_\nu} z} \right|.$$

Fix $\delta_0 > 0$. Given z_{ν} , there exists ζ_{ν} such that $\rho(z_{\nu}, \zeta_{\nu}) \leq \delta_0$ and $|B(\zeta_{\nu})| \geq m = m(\delta_0) > 0$, and then the geodesic arc from z_{ν} to ζ_{ν} contains a point w_{ν} at which (6) holds.

We write \mathcal{F} for the set of finite products of interpolating Blaschke products. By the remark following Lemma 1, it is enough to prove (1) with each $B_j \in \mathcal{F}$, and by Marshall's theorem it is also enough to prove (1) when f = B is a Blaschke product.

Fix a Blaschke product B and let $0 < \alpha < \beta < 1$, $M = 2^{K} > 1$, and $\delta < 1$ be constants which will be determined later. We may assume $|B(0)| > \beta$. Consider "squares" of the form

$$Q_{n,j} = \{ re^{i\theta} : 2\pi j 2^{-n} \le \theta < 2\pi (j+1)2^{-n}; \ 1-2^{-n} \le r < 1 \}$$

and their top halves

$$T(Q_{n,j}) = Q_{n,j} \cap \{ re^{i\theta} : 1 - 2^{-n} \le r < 1 - 2^{-n-1} \}.$$

Let $G_1 = \left\{Q_1^{(1)}, Q_2^{(1)}, \dots\right\}$ be the set of maximal $Q_{n,j}$ for which

$$\inf_{T(Q_{n,j})}|B(z)|<\alpha.$$

The squares in G_1 have disjoint interiors. Write $S_{p,j}^{(1)}$, $1 \le p \le M = 2^K$, for 2^K different $Q_{n+K,j} \subset Q_k^{(1)} = Q_{n,j}$. If M is fixed and $1 - \beta$ is small, then by Harnack's inequality

(7)
$$\sup_{T(S_{p,j}^{(1)})} |B(z)| < \beta.$$

Now let $H_1 = \left\{ V_1^{(1)}, V_2^{(1)}, \dots \right\}$ be the set of maximal $Q_{n,j}$ such that

$$V^{(1)}_{k} \subset Q^{(1)}_{p}$$

for some $Q_p^{(1)}$ and

$$\inf_{T\left(V_{k}^{(1)}\right)}|B(z)|>\beta.$$

Since |B| has nontangential limit 1 almost everywhere,

$$\sum_{V_k^{(1)} \subset Q_p^{(1)}} \ell\left(V_k^{(1)}\right) = \ell\left(Q_p^{(1)}\right).$$

If $(1 - \beta)/(1 - \alpha)$ is small, then

$$l\left(V_{k}^{(1)}\right) < \frac{1}{M}l\left(Q_{p}^{(1)}\right)$$

when $V_k^{(1)} \subset Q_p^{(1)}$, again by Harnack's inequality. Hence $V_k^{(1)} \subset S_{p,j}^{(1)}$, for some p, j, because of (7).

Next let $G_2 = \left\{Q_1^{(2)}, Q_2^{(2)}, \dots\right\}$ be the set of maximal $Q_{n,j}$ such that

$$Q_{n,j} \subset V_k^{(1)} \in H_1$$

and

$$\inf_{T(Q_{n,j})}|B(z)|<\alpha.$$

If $(1 - \beta)/(1 - \alpha)$ is small, then

(8)
$$\sum_{Q_j^{(2)} \subset V_k^{(1)}} \ell\left(Q_j^{(2)}\right) < \varepsilon \ell\left(V_k^{(1)}\right)$$

(see [3, p. 334]). We form the $S_{p,k}^{(2)}$ as before and continue, obtaining $Q_j^{(m)}, S_{p,j}^{(m)}$ and $V_k^{(m+1)}$ with

$$Q_j^{(m)} \supset S_{p,j}^{(m)} \supset V_k^{(m+1)}.$$

See Figure 1. Then B(z) has zeros only in

$$\bigcup_{m,j} \left(Q_j^{(m)} \setminus \bigcup_{V_k^{(m+1)} \subset Q_j^{(m)}} V_k^{(m+1)} \right).$$

In fact, if $1 - \alpha$ is small enough, all zeros from

$$Q_j^{(m)} igvee_{V_k^{(m+1)} \subset Q_j^{(m)}} V_k^{(m+1)}$$

fall into

$$\bigcup_{p=1}^{M} R_{p,j}^{(m)} = \bigcup_{p=1}^{M} \left(S_{p,j}^{(m)} \setminus \bigcup_{V_{k}^{(m+1)} \subset S_{p,j}^{(m)}} V_{k}^{(m+1)} \right),$$

`

and we require $1 - \alpha$ to be that small.

Figure 1.

Now factor

$$B=B_1B_2\cdots B_M,$$

where for fixed p, B_p has zeros only in $\bigcup_{m,j} R_{p,j}^{(m)}$. Fix p, set

$$\Gamma_{p,j}^{(m)} = \partial R_{p,j}^{(m)} \setminus \partial S_{p,j}^{(m)}$$

and mark points $z^*_{\nu} = z^*_{\nu}(m,p,j)$ on $\Gamma^{(m)}_{p,j}$ with

(9)
$$\rho(z_{\nu}^*, z_{\nu+1}^*) = \delta.$$

Let B_p^* be the Blaschke product with zeros $\bigcup_{m,j} z_{\nu}^*(m, p, j)$. Then by (3), (4), (8) and (9), B_p^* is an interpolating Blaschke product.

Lemma 2. $|B_p^*| \leq \delta^{1/4}$ on $\bigcup_{m,j} R_{p,j}^{(m)}$.

Proof. Clearly $|B_p^*| < \delta$ on $\bigcup_{m,j} \Gamma_{p,j}^{(m)}$. Fix one $R_{p,j}^{(m)}$. Then for any $\varepsilon > 0$, the harmonic measure

$$\omega\left(z,\Gamma_{p,j}^{(m)},\mathbb{D}\setminus\bigcup\left\{\overline{V_{k}^{(m+1)}\subset S_{p,j}^{(m)}}\right\}\right)>\frac{1}{4}-\varepsilon$$

for all $z \in R_{p,j}^{(m)}$, provided $(1 - \beta)/(1 - \alpha)$ is small. Since $\log |B_p^*(z)|$ is harmonic, that shows $|B_p^*| \le \delta^{1/4}$ on $R_{p,j}^{(m)}$.

Lemma 3. There exist $A = A(\alpha, \beta, \delta, M)$ and $\eta = \eta(\alpha, \beta, \delta, M) > 0$ so that if

(10)
$$\inf_{\xi \in \bigcup_{m,j} R_{p,j}^{(m)}} \rho(z,\xi) > A$$

and if

$$|B_p B_p^*(z)| = \delta^{1/8},$$

then

$$(1-|z|^2)\left|(B_pB_p^*)'(z)\right| \geq \eta.$$

Proof. We have

(11)
$$\frac{1}{4}\log\frac{1}{\delta} = \log|B_p B_p^*(z)|^{-2} \sim \sum_{\nu} \frac{(1-|z|^2)(1-|z_{\nu}|^2)}{|1-\overline{z_{\nu}}z|^2},$$

where $\{z_{\nu}\}$ is the zero set of $B_{p}B_{p}^{*}$. On the other hand,

(12)
$$(1-|z|^2) \frac{(B_p B_p^*)'(z)}{B_p B_p^*(z)} = \overline{z} \sum_{\nu} \frac{(1-|z|^2) (1-|z_{\nu}|^2)}{|1-\overline{z_{\nu}}z|^2} \left(\frac{\frac{1}{z}-z_{\nu}}{z-z_{\nu}}\right).$$

By (10) there is A' so that if $|z - z_{\nu}| < A'(1 - |z|)$, then $z_{\nu} \in R_{p,j}^{(m)}$ where $\ell\left(S_{p,j}^{(m)}\right) < 1 - |z|$. See Figure 2.

Figure 2.

If $(1 - \alpha)$ is small compared to 1/M, then $\inf_{T(S_{p,j}^{(m)})} |B(z)| \ge C(\alpha) > 0$ and

$$\sum_{\left\{z_n \in R_{p,j}^{(m)}; B(z_n) = 0\right\}} (1 - |z|^2) \le C_1(\alpha) \ell\left(S_{p,j}^{(m)}\right),$$

where $C_1(\alpha)$ tends to 0 if α tends to 1. Therefore

$$\sum_{|z_{\nu}-z| < A'(1-|z|)} \frac{(1-|z_{\nu}|^{2})(1-|z|^{2})}{|1-\overline{z_{\nu}}z|^{2}} \leq \frac{1}{1-|z|^{2}} \sum_{|z_{\nu}-z| < A'(1-|z|)} (1-|z_{\nu}|^{2})$$
$$\leq \frac{1}{\delta M} (1+\varepsilon+\varepsilon^{2}+\cdots)$$
$$+ \frac{C_{1}(\alpha)}{M} (1+\varepsilon+\varepsilon^{2}+\cdots).$$

Take M so large (and consequently $1 - \alpha$ so small) that

$$\sum_{|z_{\nu}-z| < A'(1-|z|)} \frac{(1-|z_{\nu}|^2)(1-|z|^2)}{|1-\overline{z_{\nu}}z|^2} < \frac{1}{16} \log \frac{1}{\delta}.$$

If $|z - z_{\nu}| > A'(1 - |z|)$ then

$$\left| \arg\left(rac{1}{z} - z_{
u} \atop z - z_{
u}
ight)
ight| < c(A')$$

where $c(A') \to 0$ as $A' \to \infty$. Hence

$$\left| \sum_{|z-z_{\nu}| \ge A'(1-|z|)} \frac{\overline{z} \left(1-|z|^{2}\right) \left(1-|z_{\nu}|^{2}\right)}{|1-\overline{z_{\nu}}z|^{2}} \left(\frac{\frac{1}{z}-z_{\nu}}{z-z_{\nu}}\right) \right| \\ \ge \cos^{-1}(c(A')) \sum_{|z-z_{\nu}| \ge A'(1-|z|)} \left| \frac{\overline{z} \left(1-|z|^{2}\right) \left(1-|z_{\nu}|^{2}\right)}{|1-\overline{z_{\nu}}z|^{2}} \left(\frac{\frac{1}{z}-z_{\nu}}{z-z_{\nu}}\right) \right|.$$

Consequently,

$$\begin{split} (1-|z|^2) \left| (B_p B_p^*)'(z) \right| \\ &\geq \delta^{1/8} \left(\left| \sum_{|z-z_\nu| \ge A'(1-|z|)} \frac{\overline{z} \left(1-|z|^2\right) \left(1-|z_\nu|^2\right)}{|1-\overline{z_\nu} z|^2} \left(\frac{\frac{1}{z}-z_\nu}{z-z_\nu}\right) \right| \right. \\ &- \left. \sum_{|z-z_\nu| < A'(1-|z|)} \left| \frac{\overline{z} \left(1-|z|^2\right) \left(1-|z_\nu|^2\right)}{|1-\overline{z_\nu} z|^2} \left(\frac{\frac{1}{z}-z_\nu}{z-z_\nu}\right) \right| \right) \\ &\geq \delta^{1/8} \left(\cos^{-1}(c(A')) \frac{11}{16} \log(1/\delta) - \frac{1}{16} \log(1/\delta) \right), \end{split}$$

and if A' is large, that proves the lemma.

With Lemma 3, the remainder of the proof is just like in the Marshall-Stray paper [6]. There is $\gamma, |\gamma| = \delta^{1/8}$, so that

П

$$\frac{B_p B_p^* - \gamma}{1 - \overline{\gamma} B_p B_p^*} = C_p$$

is a Blaschke product, by a theorem of Frostman [2]. Suppose $C_p(z) = 0$. Then

$$|B_p B_p^*(z)| = \delta^{1/8}$$

and

$$(1-|z|^2)\left|C'_p(z)\right| = \frac{(1-|z|^2)}{1-|\gamma|^2}\left|(B_p B_p^*)'(z)\right|.$$

Thus by Lemma 3

$$(1 - |z|^2) \left| C'_p(z) \right| \ge rac{\eta}{1 - \delta^{1/4}}$$

if (10) holds. But if (10) fails, then there is $\xi \in \bigcup_{m,j} R_{p,j}^{(m)}$ with $\rho(z,\xi) < A$. By Lemma 2, $|B_p B_p^*(\xi)| \leq \delta^{1/4}$. Somewhere along the hyperbolic geodesic from z to ξ there is a point w with

$$(1 - |w|^2) \left| (B_p B_p^*)'(w) \right| > \eta' > 0$$

and $\rho(z, w) < A$. So by Lemma 1, C_p is a finite product of interpolating Blaschke products and $B_p B_p^* \in \mathcal{F}$.

For σ very small, replace B_p^* by

$$\widetilde{B}_p^* = \frac{B_p^* - \sigma}{1 - \overline{\sigma} B_p^*},$$

which is again an interpolating Blaschke product by [3, p. 404]. Repeating the above argument with \tilde{B}_p^* , we see that

$$\widetilde{C}_p = \frac{B_p \widetilde{B}_p^* - \widetilde{\gamma}}{1 - \widetilde{\gamma} B_p \widetilde{B}_p^*}$$

is also a finite product of interpolating Blaschke products for some $\tilde{\gamma}$. Thus also $B_p \tilde{B}_p^* \in \mathcal{F}$. But then since

$$B_p \widetilde{B}_p^* = -\sigma B_p + (1 - |\sigma|^2) B_p B_p^* + \cdots,$$

we conclude that $B_p \in \mathcal{F}$.

References

- L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., 80 (1958), 921-930.
- [2] O. Frostman, Potential d'equilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds. Univ. Mat. Sem., 3 (1935), 1-118.
- [3] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- P. Jones, Ratios of interpolating Blaschke products, Pacific J. Math., 95(2) (1981), 311-321.
- [5] D. Marshall, Blaschke products generate H^{∞} , Bull. Amer. Math. Soc., 82 (1976), 494-496.
- [6] D. Marshall and A. Stray, Interpolating Blaschke products, Pacific J. Math., 173 (1996), 491-499.
- [7] G. Mc.Donald and C. Sundberg, Toeplitz operators on the disc, Indiana U. Math. J., 28 (1979), 595-611.

Received October 1, 1993 and revised November 3, 1993. The first author was partially. supported by NSF grant DMS 91-04446 and the second author was partially supported by DGICYT grant PB89-0311, Spain.

UNIVERSITY OF CALIFORNIA LOS ANGELES, CA 90095-1555

 \Box

E-mail address: jbg@math.ucla.edu

AND

UNIVERSITAT AUTÒNOMA DE BARCELONA 08193 BELLATERRA, SPAIN *E-mail address*: artur@manwe.mat.uab.es

Peng Lin and Richard Rochberg, Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type	107
Donald E. Marshall and Arne Stray , Interpolating Blaschke products	491
Kathy D. Merrill and Lynne H. Walling, On quadratic reciprocity over function fields	147
Takahiko Nakazi and Masahiro Yamada, (A_2) -conditions and Carleson inequalities in Bergman spaces	151
C. Ott, A note on a paper of E. Boasso and A. Larotonda	173
Victor Patrangenaru, Classifying 3 and 4 dimensional homogeneous Rie- mannian manifolds by Cartan triples	511
Carlo Pensavalle and Tim Steger, Tensor products with anisotropic prin- cipal series representations of free groups	181
Ying Shen, On Ricci deformation of a Riemannian metric on manifold with boundary	203
Albert Jeu-Liang Sheu, The Weyl quantization of Poisson $SU(2)$	223
Alexandra Shlapentokh, Polynomials with a given discriminant over fields of algebraic functions of positive characteristic	533
Eric Stade and D.I. Wallace, Weyl's law for $SL(3,\mathbb{Z})\backslash SL(3,\mathbb{R})/SO(3,\mathbb{R})$	241
Christopher W. Stark, Resolutions modeled on ternary trees	557
Per Tomter, Minimal hyperspheres in two-point homogeneous spaces	263
Jun Tomiyama, Topological Full groups and structure of normalizers in transformation group C^* -algebras	571
Nik Weaver, Subalgebras of little Lipschitz algebras	283

PACIFIC JOURNAL OF MATHEMATICS

Volume 173 No. 2 April 1996

A mean value inequality with applications to Bergman space operators PATRICK ROBERT AHERN and ZELIKO CUCKOVIC	295
H^{p}_{μ} astimates of holomorphic division formulas	307
MATS ANDERSSON and HASSE CARLSSON	507
Group structure and maximal division for cubic recursions with a double root CHRISTIAN JEAN-CLAUDE BALLOT	337
The Weil representation and Gauss sums ANTONIA WILSON BLUHER	357
Duality for the quantum $E(2)$ group ALFONS VAN DAELE and S. L. WORONOWICZ	375
Cohomology complex projective space with degree one codimension-two fixed submanifolds KARL HEINZ DOVERMANN and ROBERT D. LITTLE	387
On the mapping intersection problem ALEXANDER DRANISHNIKOV	403
From the L^1 norms of the complex heat kernels to a Hörmander multiplier theorem for sub-Laplacians on nilpotent Lie groups XUAN THINH DUONG	413
Isoperimetric inequalities for automorphism groups of free groups ALLEN E. HATCHER and KAREN VOGTMANN	425
Approximation by normal elements with finite spectra in C*-algebras of real rank zero HUAXIN LIN	443
Interpolating Blaschke products DONALD EDDY MARSHALL and ARNE STRAY	491
Interpolating Blaschke products generate H^{∞} JOHN BRADY GARNETT and ARTUR NICOLAU	501
Classifying 3- and 4-dimensional homogeneous Riemannian manifolds by Cartan triples VICTOR PATRANGENARU	511
Polynomials with a given discriminant over fields of algebraic functions of positive characteristic	533
Resolutions modeled on ternary trees CHRISTOPHER W. STARK	557
Topological full groups and structure of normalizers in transformation group C^* -algebras	571