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The algebra of bounded analytic functions on the open unit
disc is generated by the set of Blaschke products having simple
zeros which form an interpolating sequence.

Let H* be the algebra of bounded analytic functions in the unit disc D
and set

|If1l = sup £ (2)],
z€D
for f € H*. A Blaschke product is an H* function of the form

= 7, z2— 2
B — v v
(2) H |zu] 1 =%,z

v=1
with 3>3(1 — |2,|) < oo. In [5] D.E. Marshall proved that H* is the closed

linear span of the Blaschke products: given f € H*™ and € > 0, there are
constants ¢, ... , ¢, and Blaschke products By, ... , B, such that

(1) ||f+ClBl++Can“°o < E.

In fact, Marshall proved that the unit ball of H* is the uniformly closed
convex hull of the set of Blaschke products (including B = 1).
A Blaschke product B(z) is called an interpolating Blaschke product if

(2) inf (1 - |2,1?) |B'(2,)| = 65 > 0,

because of the Carleson theorem that (2) holds if and only if every interpo-
lation problem
f(z) =w,, v=12...,

for {w,} € [*°, has a solution f € H*. Although the interpolating Blaschke
products comprise a small subset of the set of all Blaschke products, they
play a central role in the theory of H*. See the last three chapters of [3]. The
theorem in this paper helps explain why interpolating Blaschke products are
so important in that theory.

Theorem. H®™ is the closed linear span of the interpolating Blaschke prod-
ucts.

In other words, (1) is true with the additional proviso that each of By, ...,
B, is an interpolating Blaschke product.
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The theorem solves a problem posed in [3] and [4]. It is not known if
the set of interpolating Blaschke products is norm dense in the set of all
Blaschke products. It is also not known if the unit ball of H* is the closed
convex hull of the set of all interpolating Blaschke products.

Recently, Marshall and A. Stray [6] proved the theorem in the special
case that f extends continuously to almost every point of D, and our proof
closely follows their reasoning. In particular, the idea of comparing (11) and
(12) and the argument deriving the theorem from Lemma 3 below are both
due to them. We thank Violant Marti for making the drawings.

The hyperbolic distance between z € D and w € D is

Z—w
1+ —
1—wz
p(Z,lU) ZIOg z —w 3
1- —
1 —-w=z

and the hyperbolic derivative of an analytic function f is
(1= 121*) 1f'(2)].

The hyperbolic derivative is invariant under conformal changes in z € D.
The Blaschke product with zeros {z,} is an interpolating Blaschke product
if and only if the following conditions both hold:

(3) inf p(z,2) > 0

and

(4) Y (1-lz)) < ClHQ)
2,€EQ

forall @ = {re? : 6 < 6 < 6, +£(Q), 1 — £(Q) < r < 1}. See [1] or Chapter
VII of [3].

Lemma 1. Let B be a Blaschke product and let {z,} be its zeros, counted
with their multiplicities. Then the following are equivalent:

(a) B = B;...By, with each B; an interpolating Blaschke product.

(b) Condition (4) holds.

(c) There exist positive constants py, & such that for each z, there is w,
with

(5) p(z,,,w,,) < po
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and

(6) (1w, ) |B'(w,)] 2 do.

In [6] it is shown that if B satisfies one of these conditions, then B is the
uniform limit of a sequence of interpolating Blaschke products.
Proof of Lemma 1. The equivalence between (a) and (b) is in [7]. Assume
(c) holds, let

Q={re? 0, <0 <6, +£Q),1-£Q)<r <1},
and set

TQ)={re? €Q:1—-£4(Q) <r<1-2"(Q)}.

To prove (4), we may assume there exists z, € T(Q). Let w, satisfy (5)
and (6). Then there exists a, such that p(a,,2,) < po and |B(a,)| > m =
m(po, do) > 0. Then the inequalities

1—12,*) (1 —|au[*)

logm ™2 > log|B(a,)|™* > Z (

ZyGQ |1 - a:‘zﬂlz
A(pO') 50)
> 200 0) §™ 1,
K(Q) ZMZEQ( ' #I)
show that (4) holds.
If (a) holds, there exists C' > 0 such that
N zZ—2

B(z)| > i ~ .
|B(z)| > le;[l {Bj(l,?uf):o} T

Fix &3 > 0. Given z,, there exists ¢, such that p(z,,(,) < & and |B((,)| >
m = m(dy) > 0, and then the geodesic arc from z, to {, contains a point w,
at which (6) holds. ]

We write F for the set of finite products of interpolating Blaschke prod-
ucts. By the remark following Lemma 1, it is enough to prove (1) with each
B; € F, and by Marshall’s theorem it is also enough to prove (1) when
f = B is a Blaschke product.

Fix a Blaschke product Bandlet 0 < a<f38<1, M =2K >1,and§ < 1
be constants which will be determined later. We may assume |B(0)| > f.
Consider “squares” of the form

Qnj={re?:2mj2 " <f<2r(j+1)27™ 1-2"<r<1}
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and their top halves
T(Qn;)=QnjN{re?:1-2""<r<1-2""1}.
Let G, = {le), gl), ... } be the set of maximal Q, ; for which

inf |B(2)| < a.
T(QM)I ()|

The squares in G; have disjoint interiors. Write SI(:}, 1<p<M=2K for

2K different Qn4x; C Qscl) = @Qn,;- If M is fixed and 1 — 3 is small, then by
Harnack’s inequality

(7) sup |B(z)| < 6.

Now let H, = {Vl(l), V2(1), . } be the set of maximal @), ; such that

Vk(l) c Qs)
for some Q! and
inf |B(z)| > 8.
i 1BE) > 6
Since |B| has nontangential limit 1 almost everywhere,
e(v®) =¢(QW).
v
If (1 - B)/(1 — @) is small, then
™) « L (ow
L) < 57t (@)
when Vk(l) C Q;l), again by Harnack’s inequality. Hence Vk(l) C S,(,f}, for

some p, j, because of (7).
Next let G, = { §2> §2), ... } be the set of maximal Q,, ; such that

and

inf |B(?2)| < a.
T(Q.,,,.)l (2)]
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If (1 -B)/(1 — ) is small, then
(® > e(@P) <et(n”)

QP ey

(see [3, p. 334]).
We form the SI(,?,Z as before and continue, obtaining Q§m), S,(,Z-L) and Vk(mH)
with
Qi 5 86 5 Y,

See Figure 1. Then B(z) has zeros only in

U Q§m) U Vk(m+1)

m,j Vk(m+1)CQ§"‘)

In fact, if 1 — o is small enough, all zeros from

ng) U Vk(m+1)
VD Qi)
fall into
o (m) M (m) ( )
m m m+1
U Ry = U Sp.i U Vi J
p=1 p=1 Vk(m+1)csx(>";')

and we require 1 — a to be that small.

(m)
)

(m)

(me)

Figure 1.
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Now factor
B =B1-BZ"'BMa

where for fixed p, B, has zeros only in U, R,(,"'}). Fix p, set

pJ

(m) _ (m) (m)
riw = OR{ \ 88,
and mark points 2} = z}(m,p,j) on I‘("') with

9 p(z),2,,1) = 0.

Let B; be the Blaschke product with zeros {,,, ; 25(m,p, j). Then by (3), (4),
(8) a.nd (9), B; is an interpolating Blaschke product.

Lemma 2. |B;| <84 on,,; R(7.

Proof. Clearly |B;| < 6 on U,), ; I‘,(,"]‘) Fix one R("‘) Then for any € > 0, the
harmonic measure

(z, I‘f,";),D\U {vimy ¢ S,‘,f';’}) >-—¢

for all z € R'™, provided (1 — 8)/(1 — ) is small. Since log |B, ()| is

P> ?
harmonic, that shows |B| < §'/4 on R{7). O

Lemma 3. There exist A = A(e, 8,0,M) and n = n(e,3,6,M) > 0 so
that if

(10 seU R‘"" p(z,8) > 4

and if
|B,B;(2)| = 8/,
then
(1= 12%) |(B,B;)'(2)| 2 .

Proof. We have
2[*) 1 - lzul2)

|1 —7Z2|2

1 1 . N1 1-
(11) i log 5= log | B, B;(2)| L Z (
where {2, } is the zero set of B,B;. On the other hand,

- G Ul (22),
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By (10) there is A’ so that if |2 — 2,| < A'(1 — |2|), then 2, € Rf,’,’;) where
l (S,(,f';)) < 1 - |2|. See Figure 2.

A (1-121)

JJTHHilIL_LAH]TIIHIIIIHIGID

(m) (m)
R (-] R Pyl

Figure 2.

If (1 — o) is small compared to 1/M, then infT(s(,,,)) |B(z)] > C(a) >0
and ’

> (-lP) sa@e(ss),

{z,.GRL"';); B(z,.):O}

where C) () tends to 0 if o tends to 1. Therefore

(1 — |zu‘2) (1 — [ZIZ) < 1 Z (1 _ |zu|2)

11—z Tl

|2o—z|< A’ (1—|2]) lzv—2]< A" (1—|2])
1
< JM( +et+el+--0)

Cl (a)

(l+e+e+---).

Take M so large (and consequently 1 — « so small) that

(L—l=f) @ =12 _

|1 —Z;2|?

1
log 5
|2v—2|<A'(1—|z])

If |z — z,| > A'(1 — |2]|) then

Lo,

< c(A")
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where ¢(A’) — 0 as A’ — oo. Hence
v  Z-EROjal) (foa
[1—Z;z|? z2—2z,

=z |2 A" (1-[2])
1 - 2 1 - v 2 S - ~v

ZCOS_I(C(AI)) }: ( !124 )( |2 !Z l ) ( 2 ) .

2=z |2 A" (1-2]) 1-72 2= 2

Consequently,

(1-12) (B, B;)'(2)]

Z 61/8 (
|z2— zy|<A’(1 Izl)

> 51/ (cos (c(A’)) 1og(1/5) 1 1og(1/5))

and if A’ is large, that proves the lemma. O

dl—p?ﬂl—pA%(l—a)

1 -7 2|2

lz=z,|2A"(1-|2])

Z(1— o) (1 = |2,) (——a)

1 —%2|2

With Lemma 3, the remainder of the proof is just like in the Marshall-
Stray paper [6]. There is v, || = §'/%, so that
B,B; —
P —p 7* — Cp
1-7%B,B;
is a Blaschke product, by a theorem of Frostman [2]. Suppose C,(z) = 0.
Then

|B,B;(2)] = 6'/°
and
I z *\/
-k |esa)| = S22 |87y 0.
Thus by Lemma 3 n
(1-12P) |6@)| 2 =57

if (10) holds. But if (10) fails, then there is £ € U,, ; RY? with p(z,€) < A.
By Lemma 2, |B,B;(£)| < 6*/%. Somewhere along the hyperbohc geodesic
from z to £ there is a point w with

(1= lwl?) |(ByB;) (w)| > ' > 0
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and p(z,w) < A. So by Lemma 1, C, is a finite product of interpolating
Blaschke products and B,B; € F.
For o very small, replace B, by

*
= Bp—a

P 1-3B;’

which is again an interpolating Blaschke product by [3, p. 404]. Repeating
the above argument with B, we see that

g, =2l
1-9B,B;

is also a finite product of interpolating Blaschke products for some 7. Thus
also B,B; € F. But then since

B,,E; =—0B,+ (1— o) B,B; + -+,

we conclude that B, € F. O
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