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In this paper, we show how to use the method of Cartan
triples (see V. Patrangenaru) in small dimensions.

We classify the 3-dimensional simply connected homoge-
neous Riemannian spaces, and the 4-dimensional simply con-
nected homogeneous Riemanunian spaces with 5-dimensional
total isometry group. We show that the smallest dimension
where locally homogeneous Riemannian manifolds that are
not locally isometric to homogeneous Riemannian spaces ex-
ist, is 5.
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1. Preliminaries.

The long history of homogeneous Riemannian spaces (on which we do not
dwell here), knew an important moment with the appearance of E. Cartan’s
method of adapted frames [3, Chap XII] which was subsequently used by
Ishihara [4] and Jensen [5] to list homogeneous Riemannian spaces of di-
mension four. In [13], we have shown that this method may be put in an
algebraic form, called the method of Cartan triples, which provides us with
necessary and sufficient conditions of local isometry of two locally homoge-
neous Riemannian spaces (l.h.R.s.).

The aim of the present paper is to use the formalism of Cartan triples in
dimensions 3 and 4, in order to parametrize the isometry classes of simply
connected homogeneous Riemannian spaces. We use and enhance the well
known list of Milnor [9], of Riemannian curvatures of left invariant metrics
on 3-dimensional Lie groups. We are led to a different proof of Thurston’s
[16] and part of Wall’s [17] classification of 3 and 4 geometries. O

Let g be a Lie subalgebra of o(n). We shall denote by g the orthocom-
plement of g with respect to the Killing form.

Let a be a vector subspace of o(n), such that [g,a] C a and let ® be an
a-valued, k-multilinear map of R*. We say that ® is g-invariant if for any
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£ € gaXi € Rnaz =1a_k,
[§, ¢(X1’ - Xk)] = Zle ¢(X1: "7§(Xi)’ aX_k_)

If the linear map I' : R* — g* and the bilinear map Q : R* x R* — g
are g-invariant and if £, is the orthogonal projection (with respect to the
Killing form) of £ € o(n) on g, we say that T : R* x R® — R" respectively
Q:R" xR — g, defined by

(1.1) T(X,Y) = T(Y)X - [(X)Y

(1.2) QX,Y) =Q(X,Y) - [[(X),T(Y)],

are the A - S (Ambrose - Singer) torsion respectively curvature associated
to the triple (g,T', ) [13, §1] (one may try to find the connection with the
infinitesimal model [8, 11, 12, 15] etc.).

An n-dimensional Cartan triple [13, §1] is a triple (g,T',Q), where g is a
Lie subalgebra of o(n),I" : R* — g* is a linear map and  : R* xR* - gisa
bilinear skew symmetric map, which are both g-invariant and together with
their associated A — S torsion and curvature, satisfy the following identities:

(1.3) 3 UT(X,Y),Z)=0, VXY, ZeR

cycl
X,Y,Z

(1.4) Y (T(T(X,Y),2) - UX,Y)(Z) =0, VX,Y,Z e R".

cycl
X,Y,Z

To the Cartan triple (g,I', ), one associates the Lie algebra €(g,I",Q) =
(g@R*, [, ]) with [ , ] defined by:

(1.5) En=1[n V& Vneg
(1.6) [£,X]=¢X Vecg, VXeER"
(1.7) [X,Y]=-T(X,Y) - Q(X,Y), VX,Y€eR".

In the upper formulas, [ , ] is the commutator of two matrices, and X
is seen as a column matrix, such that £X is the ordinary multiplication of
matrices; obviously g is a Lie subalgebra of ¢(g,T’,{2). Let K be the simply
connected Lie group of Lie algebra #(g,T', ), and let G be the connected Lie
subgroup of K of Lie algebra g. A Cartan triple is closed if G is closed in K
(13, Remark 2.1].
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Let C = (g,I,Q), C' = (g, I",ﬁl) be n-dimensional Cartan triples; we say
that C is smaller than C', if g C g, and with respect to the decompositions
g =g®da,glt=(g)" ®a, we have

(1.8) Q=000, I'=I"eTl,,

where Q—;,Fa are the a-components of ﬁl, I' with respect to the decomposi-
tions of g', g* considered above.

(1.9)  QX,Y) = [[(X),[(Y)]e - Ta(T(X)(Y) — D(Y)(X)).

Let M, be the set of mazimal Cartan triples. The action A, of O(n) on
the set C,, of n-dimensional Cartan triples [13, Proposition 3.2], defined by:

A, ((8,T,9),a) = (¢, I",Q), where

(1.10) g =Ad(a)g
(1.11) I'() = Ad(a™")I(a("))
(1.12) Q'(,-) = Ad(a™)Qa(*), a("))

leaves M, invariant.

We showed in [13, Theorem 3.1. a)] that there is a bijection from the
set of local isometry classes of n-dimensional 1.h.R.s.-es and the set of A,
orbits of M,,. Under this map homogeneous Riemannian spaces correspond
to orbits of closed Cartan triples.

A Lh.R.s. corresponding by the inverse of this map to a Cartan triple
C, is called a local geometric realization of C. If C is closed, there exists
a unique, up to an isometry, simply connected Riemannian homogeneous
space M corresponding to C; such a manifold will be called the geometric
realization of C.

More precisely, to the local isometry class of M, one associates the orbit
of the following Cartan triple: let u be an orthonormal frame at the point
x € M. The first component of this triple, g = A\,(8(M)y) is the image of
the isotropy algebra at the point of x of the algebra ¢(M) of Killing vector
fields of M, by the tangent map of the isotropy representation with respect
to the frame u. Let K be a Lie group of Lie algebra ¢(M), and let H be its
connected Lie subgroup of Lie algebra ¢(M),. If V is an open neighborhood
of 1k, such that the foliation of F' of V determined by the left cosets of H,
is simple, we showed that F' is a reductive Riemannian foliation [10], such
that the quotient V/F is locally isometric to M [13, Theorem 1.1].

The A — S torsion of the second component of the Cartan triple is the
torsion at z, the leaf of 1k, of the canonical metric connection of V/F,
invariant under the local action of K on V/F, induced by left translations.
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The last component of the associated Cartan triple is the g-part of the
Riemannian curvature form with respect to u and to the decomposition of
o(n) = g ® g+, evaluated at x.

The gt-component of the Riemannian curvature form with respect to
u, g1, may be recovered from this Cartan triple in the following way
[13, (1.24)]:

(113) 9, (X,Y) = [[(X),T(Y)],. +T(T(X,Y)), VX, VY eR".

Thus the Riemannian curvature form, with respect to u, @ = Q, @ Q.
yields the components of the curvature tensor by the usual formulas:

(1.14) ],W = Q(ex, er)e;

Beside the usual metric invariants, such as the Ricci spectrum, an useful
invariant is the square norm of the Cartan-Singer map I' of a maximal Cartan
triple, given by:

(1.15) IT ” = Zk (e;),T'(e;))-

j=1

In (1.15), k is a fixed multiple of the Killing form.

2. The classification of 3-dimensional locally homogeneous
Riemannian manifolds.

Let (E}) 4,5 = (1,n), be the natural basis of gl(n,R), whose elements are
acting on R” by:

(2.1) Ei(ex) = Sie;

and let f; = — E!,i > j, be the natural basis of o(n).

In order to descnbe the moduli space M;/A3, as a stratified set, we shall
recall first that any proper, nontrivial Lie subalgebra of o(3) is conjugated
to 0(2) = Rf2.

Thus there are three types of 3-dimensional Cartan triples: 3-triples (0(3),
0,9), 1-triples (0(2),T, Q) and O-triples (O, T, O).

The 0(3)-curvature of 3-triples has the form Q = K - Q,,

(z,y) = ('y* — z"Y?) I + (='y® — 2®y") 7 + (%% — 2%%) f3.

The geometric realization of such a 3-triple is a space of constant curvature
K.
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Following [3, p. 301], a 1-triple (0(2),T, Q) has the form:

(2.2) L(er) = af? +bf3,

(e2) = —-be +af3,
(e3) =
(e, € 2) =Kf?,
(e1,€3) = Q—(62,6’3) =0,
a(K + a® + b%) = ab = 0.

{Olblﬂ"'i

If a # 0, such a triple is smaller than the triple (0(2), 0, —a*Q;), and then
its geometric realization is a space of constant negative curvature —a?.
If a = 0, the associated Ricci form is:

(2.3) p(X) = (K +b*)((X7)* + (X*)%) + 26*(X?)?

and the principal Ricci curvatures {K + b?,2b*} are those of a space of
constant curvature iff K = b%. Only in this case our triple is smaller than a
3-triple and then its geometric realization is a space of constant curvature
b2

A 1-triple is maximal iff a = 0, K # b%. O(3) orbits of such Cartan triples
are distinguished by their principal Ricci curvatures, and correspond to the
so called Berger metrics [2].

Corollary 2.1. A 3-dimensional l.h.R.s. is locally isometric to a homoge-
neous space.

Proof. 1t is enough to notice that all the 1-triples are closed. Other 3-
dimensional Cartan triples are obviously closed. O

A R — L group is a Lie group with a left invariant Riemannian metric.
R — L groups may be unimodular or nonunimodular [9].

Corollary 2.2. Assume M is the geometric realization of a mazimal 1-
triple of Ricci spectrum (K + b, K + b%,2b?).

a. Ifb=0,K >0, M is not isometric to a R — L group.

b. Ifb=0,K <0, M is isometric to a nonunimodular R — L group.

c. Ifb#0, M is isometric to an unimodular R — L group.

Proof. Let M = K/H be the geometric maximal 1-triple.

= Span(ff,e1,ez,€3),
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has the structure equations:

[f127e1] = —e€y, [f12,32] = €1,
[f12’ 63] =0, [61, 63] = bey,
[61,62] = —“2b€3(K + b2)f12, [62, 63] = —bel.
Assume M is isometric to a R — L group. Then the Lie algebra m of M
has an orthobasis (E;, E,, E3) with E; = e; + a;f?. Since m is closed under
[, ] the following equalities hold:
ay(b+a3) =0, a;(b+a3)=0, 2bas— K —b*—a?—al=0.
a. Ifb=0,K > 0, there are no solutions.
b. Ifb=0,K <0, then a; = a3 = 0,a; = vV/—K is a solution, and from
(2.4) it follows that this is a nonunimodular R — L group.
c. Ifb#0,thena; =a; =0, az = (K + b?)(2ab)~! is a solution and m
turns out to be an unimodular R — L group.

O

The geometric realization of a O-triple is a Lie group endowed with a
left invariant metric; in this case the Levi-Civita connection is given by
VxY =T'(X)(Y).

It was shown by Milnor [9] that such homogeneous spaces depend at most
on 3 parameters. Let ¢ = €(O, T, 0); two cases are to be distinguished:

If ¢ is not unimodular then it has orthonormal basis, (e;, e;, €3) such that

[9]:
(2.4) [e1,e2] = ae; + Bes
[e1, e3] = yes + des
[e2,e3] =0, a+d>0, a>46, =7, ay+pB6=0.

Proposition 2.1. There is a one to one onto map from the space of orbits
of mazimal O-triples with nonunimodular associated Lie algebra and the set

NU = ((0,00) x (0,00) x (=1,1)) U ((0,00) x {0} x ((—1,0) U (0,1))).
Proof. The basis which satisfies (2.4) brings the Ricci operator to a diagonal

form. Let Ricci € be defined by A = £a, then the possibly principal Ricci
curvatures expressed in terms of the parameters (o, §,&), are [9, Lemma 6.5]

(r11,722,733) = (”(1 +&)a® — %(1 - £)?p?,
- (+9a" + 5 - DS,

2 1 2\ 22
~¢(L+€a’ + 31—,
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a>0, €€ (—1,1], (1 -¢&) > 0. Notice that r;; < 0.

The given triple is smaller than a 1-triple if r;; = ry and 733 > 0. This
happens iff £ = 0. Then, with the previous notation, the 1-triple is given by
b= 3B, K =—a’-24% From Corollary 2.2 this is possible iff b = 0, K < 0,
that is # = 0. Note that by Corollary 3.2.c there are pairs (G,G’) of
non isometric R — L groups, G unimodular and G’ nonunimodular with
& =0, B #0. This contradicts a statement in the last section of [7], there
are no such pairs, where G and G’ are both nonunimodular.

The given triple is smaller than a 3-triple iff £ = 1. In this case the geo-
metric realization is a space of constant curvature —a? and we may consider
that 8 = 0.

For the remaining cases, the principal Ricci curvatures in increasing order
are: (r11,722,733),1f € € (=1,0) and (re2,711,733),if € € (0,1).

The O(3) orbits of two such maximal O-triples are different since their
sets of principal Ricci curvatures are different.

Now we find the metric correspondent to («,3,€) € NU. a

Lemma 2.1. Let A be a linear automorphism of RP, and let v = v'e; € CP
be an eigenvector for the eigenvalue A of At. Suppose 0 = dz is an ezact
form of an open set U C RP, and w = w'e; € D(U,RP) is a solution of
dw =0 A A(w).

Then w, = exp(—Az) 30_, v'w; is ezact on U.

Nonunimodular 3-dimensional Lie algebras ¢ are classified by the deter-
minant D of the ad-action on [, €] of some element z of €\[¢,€]. D is given
in the next formula [9, p. 321]:

4P+ 5
(2.5) D= et

Lemma 2.1 may be used in order to find a basis of left invariant Pfaff forms
(o!,a?,a®), on the simply connected 3-dimensional Lie nonunimodular D-
group K as follows:

Pick up a basis (fs, f3) of [¢,€], and f; € &\[t,€]. If a = o'f; is the
canonical form of K [9, p. 321, first formula, since [f,, f3] =0, o' is exact,
and w = o®f, + &®f;, A = ad f, | [¢,€] are verifying the hypothesis of
Lemma 2.1. We obtain the solutions:

If D <1and \; > A, are roots of A2 + 2\ + D = 0, then:

(2.6) o' = dz,
a® = =X exp(Mz)dy + A exp(Aez)dz
o® = —exp(\ z)dy + exp(\oz)dz, (T,y,2) € R* = K.
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IfD =1,

(2.7 o' =dr,
2

o’ = exp(—z)(zdy + dz),
o® = exp(—z)((1 — z)dy — dz), (z,y,2) € R® = K.
If D >1 and (z,y,2) € R® =K, then:
(2.8) o = dz,
o® = —exp(—z) (sin (:1:\/5——1) dy + cos (ac\/_D_——sz)) ,
o’ = exp(—z) ((\/D——lcos (m\/l?_——f) + sin (xm)) dy—
- (Msin (xx/D—:_I) — COoS (xx/D_——I)) dz) .

Let 6',62,0° be defined in the next formula

2
2.9 ' = ———a,
29) o1+86"
6 = —a(l +&)a? +2(8 — af)a?
and «,3.£ and D are constrained by (2.5), then the metric on the D-
nonunimodular group that corresponds to (o, 8,¢) € NU is

0* = a(1 +£)a® + 2(a + fé)a’,

(2.10) g = (0" + (6%)* + (6%)°.
If £ is unimodular then I is given by (see [9, p. 319]):
(2.11) Pler) = —mf3, T(ex) = nafi, Tles) = —pafy-

Define the new parameters ()\;),7 = 1,2,3 by
Ai = pa + o + P — i
Then the bracket of ¢ is [Mi, p. 319]:
(2.12) [e1, €2] = Ases
[62, 63] = A\1eg
[es, €1] = Azey
and the principal Ricci curvatures are:
(2.13) Ti1 = 2Uaf3, T2z = 2W3fly, T3z = 2f1la.

The geometric realization of such a nontrivial O-triple is one of the fol-
lowing Lie groups:
SL,, the universal covering group of SL,(R),



CLASSIFYING HOMOGENEQOUS RIEMANNIAN MANIFOLDS 519

. E(2) the universal covering group of the group of direct isometries of
the Euclidean plane,

e Sol®, the universal covering group of the group of direct, time preserv-
ing, isometries of the Minkowski plane,

e Nil3, the Heisenberg group of 3 x 3 real triangular matrices I3 + zE? +
yE} + zE3,
e S3, the group of unit quaternions.

Proposition 2.2.  There is one to one and onto map from the set of
isometry classes of left invariant metrics on SLy and the set A,

A= {(Al,Az,A3) (S RS,Al S )\2 < 0 < Ag}
The parameters are those of (2.12).

Proof. W.l.o.g., one may suppose that A\; < Ay < 0 < A3. From (2.13) it
follows that either two of the principal Ricci curvatures are negative and
one is positive (u2 # 0), or there is a double zero principal Ricci curvature
and a negative one (u; = 0). In the first case the O-triple is maximal except
for the case when A\; = X\, when it is smaller then a 1-triple in Corollary
2.2., with the parameters (b, K) = (3X3, =37 4+ A )3). In the second, the
O-triple is maximal, since by (2.3) if the geometric realization of a maximal
1-triple has a double zero principal Ricci curvature, the other principal Ricci
curvature is positive. On the other hand if u, = 0, then by (2.11) and (1.15),
IITII? = A2 + )3, and ||T'||* and the nonzero principal Ricci curvature,

(A1, Az = A1+ 23, 43), A <A <0< s
O

In order to find the left invariant metric of SL, that corresponds to the
parameter A, we recall 14, p. 462] that this group is the universal covering
group of isometries of H2. If one identifies I(H?) with OH? may recover the
canonical form of I(H?) from the fundamental and Levi-Civita connection
forms on OH?. Therefore we may take the following basis of left invariant
Pfaff forms on SL, ((z,y,2) € R® are the coordinates of SL,)

w! = coszdy — sinz coshydz, w? = sinzdy + cosz coshydz,

w?® = dzr —sinhydz, z,y,z€R

Then, the metric associated to the parameter A € A, is

1

(2.14) D=1y

1 1
w!)? 2)2 4 3)2
(@) )\3)\1( ) )\1)\2( )



520 VICTOR PATRANGENARU

Since the proofs of the Propositions 2.3-2.6 do not imply different ideas
from those of Propositions 2.1-2.2 (we suggest also the parallel reading of
[9]), these proofs shall be omitted.

Proposition 2.3. Any left invariant Riemannian metric on
Sol’> = ({e*E} + e *Ej + E3 + zE? + yE3, z,y,z € R}, ")

1s isometric with one and only one of the following metrics:

A
?z(w1 + w?)? —

w! = e*dy,w® = e *dz,,w® = dz,
AL>0> A > -

_ﬁ 1, 2\2 _ 312
(215  g=2(' - SR

Proposition 2.4. Any left invariant Riemannian metric on E(2) = (R3, ®),
the universal covering group of the group of motions of the FEuclidean plane
is isometric with one and only one of the following metrics:

(w®)?,

(2.16) g = M(w')? + A (w?)? +
A2

w' = (cos z) dz + (sin 2) dy,w® = —(sin z) dz + (cos z) dy,
(4) =dz ,)\1>)\2>007‘A1=A2=1.

Proposition 2.5. The isometry group of any left invariant metric on Nil3
1s 4-dimensional. These metrics are homothetic. The nonisometric metrics
are determined by a positive parameter X, in the formula:

(2.17) g =\ (dz — ydz)? + dy* + d2°.
Proposition 2.6. There ezists a bijection from the set of isometry classes
of Riemannian homogeneous metrics on the Euclidean sphere

={r e R,z = (z',2% 2% "), ||lz| =1},

to the unbounded simplex S = {()\1,)\2,)\3) A1 > A > A3 > 0}. The metric

gr = 4((A223) 707 + (Ash1)71ad + (M Ag) ha3)
(2.18) o, = -z’ dz' + ' dz?® — z* dz® + 1% dz®
0y = —23dz! + ztdz?® — z' do® + 2% dz?

o3 = —ztdz! + 2% dz® — 2? dz® + 2! dz?,



CLASSIFYING HOMOGENEOUS RIEMANNIAN MANIFOLDS 521

is assigned by this bijection to A € S.
The dimension dy of the isometry group of (S3,gy) is

3 if M >A> A3
d)‘-: 4 2f )\1:>\2>>\307')\1>)\2=>\3-
6 Zf Al—_-/\z:)\g

Particularly, nonisometric homogeneous structures on S3, depend on 3
real parameters [19, p. 352].

Corollary 2.3. Any simple connected 3-dimensional homogeneous Rie-
mannian space is isometric to one and only one of the following:

I. The Riemannian product of round 2-sphere of radius R, S% with an Eu-
clidean line,

II. The Riemannian product of a hyperbolic plane H of constant curvature

- R=2 with an Euclidean line,
IIL. The sphere S® endowed with one of the metrics g» of (2.18),

IV. R?, endowed with one of the metrics (2.10), (2.14), (2.15), (2.16), (2.17).

The above classification is a concrete exemplification of the general prin-
ciple [8], that Lie groups with left invariant metrics are “generic” in the set
of Riemannian homogeneous spaces of a given dimension.

As a consequence of Corollary 2.3 above we get another proof of the
classification of the 1-connected maximal geometries with compact quotient
of Thurston [16, 14].

We recall that such a geometry is a pair (X, K) where K is a Lie group
that acts transitively on X, with compact isotropy group, and has a discrete

subgroup I', such that F\K is compact.

Two geometries (X, K), (X', K') are equivalent is there is a diffeomor-
phism f : X — X’ that sends the action of K onto the one of K'. If K is
subgroup of K’, and dim K < dim K', and if the restriction of the action of
K' to K is still transitive then the geometry of (X, K) is smaller than the
geometry of (X, K'); a geometry is mazimal, if it is not smaller than another
one. The geometry (X, K) is 1-connected, if X is simply connected.

Let us consider that we put on X a metric ¢’ such that K acts by isometries
(this is possible because the isotropy group is compact). Then (X,g') is
isometric either to S2 x R or with H3 x E*, or to (R?,g) where g is one of
the metrics (2.10), (2.14), (2.15), (2.16), (2.17), or finally to (S3,g) where g
is one of the metrics (2.18).

Two geometries in the same family of metrics and based on the same Lie
group K, are equivalent, since the isomorphism which carries the basis e of
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t corresponding to the first metric onto the basis e’ corresponding to the
second one, induces an equivalence of the two geometries.

It is worth mentioning that the left invariant metrics on SL, depends
continuously on the parameter A € A of Proposition 2.2. A is contractible
and has an obvious 3-dimensional stratification, such that the 2-dimensional
stratum consists of maximal geometries.

Particularly if in Proposition 2.3, A\; = Ay = —A3 = —1, we find the metric
of SL, given in [16, p. 369]. The nonunimodular O-group (D = 0), is also
a transitive group of isometries of such a geometry.

The set of all left invariant metrics on Sol® has a structure of a 2-dimensional,
contractible stratified set, as shown in Proposition 2.3. For any such geom-
etry, Sol® is the component of the identity of its group isometries.

The set of all left invariant metrics on E(2) is also a 2-dimensional strat-
ified set, which may be parametrized by a subset of R? contractible to the
point corresponding to the Euclidean geometry.

Nil® has a unique left invariant metric, up to a homothety. The isometry
group of this geometry is 4-dimensional, and Nil® is the only 3-dimensional
transitive subgroup of this group.

The isometry group of H} x E' is 4-dimensional. Although this group
has no 3-dimensional transitive Lie subgroup, it is unimodular. Therefore
H? x E' is another geometry of R3.

The isometry group of H3 is 6-dimensional and unimodular. Any proper
transitive subgroup of this geometry is a nonunimodular D-group, for some
D >1.

The six contractible families of geometries mentioned above are the only
geometries with compact quotient supported by R3.

Two geometries that are members of different families are not equivalent,
because the maximal geometries of different families have nonisomorphic
groups.

The set of all geometries supported by S is a contractible 3-dimensional
stratified set, as shown in Proposition 2.6. The round spheres are in the
1-dimensional stratum.

The isometry group of S? x E' is unimodular and it does not have a tran-
sitive subgroup of dimension 3. These geometries of S x R, are homothetic,
thus equivalent.

As R%,S® and S? x R are 1-connected and pairwise nonhomeomorphic, if
one chooses one maximal geometry of each of the eight families of geome-
tries encountered above, one obtains all the nonequivalent 3-dimensional,
1-connected geometries with compact quotient.

Notice that R3 also supports geometries without compact quotient, given
by its nonunimodular D-group structures with left invariant metrics, for
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D <1, D #0, as shown by Proposition 2.1.

We mention that a 3-dimensional L.h.R.s. with nontrivial isotropy, is
uniquely determined by the Ricci curvature at one point. We would like
to know to what extent the geometry is determined by the Ricci form. If
one leaves aside products of an elliptic or hyperbolic plane with a line, 3-
dimensional homogeneous Riemannian manifolds have an R— L group struc-
ture. For each algebraic type of 3-dimensional Lie group, from the above
metric classification, there is a unique left invariant structure with a given
generic Ricci form. Nevertheless, even in the generic case, the Ricci form
does not completely determine the algebraic structure of the underlying Lie
group; given a Lorentz quadratic form p of signature (—, —, +) one may easily
find pairs of distinct R — L groups, with the Ricci curvature p. In the non-
generic case, assume p has the form p(X) = p((X1)? + (X?)?) +v(X3)2 If p
is the Ricci form of an R— L group, v has to be nonnegative. If v > 0,y <0,
from the proofs of Propositions 2.1, 2.2, and the case A\; > 2)Xy, Ay = A3
in Proposition 2.6, it follows that there are two unimodular and a nonuni-
modular R — L group, of Ricci form p. The case v and u both positive is
uninteresting.

If v =0, u # 0, from Corollary 2.2. a.b, it follows that locally, the only
homogeneous Riemannian manifold of Ricci form p(X) = p((X1)? + (X?)?)
is the product of a surface of constant curvature g with a line.

Corollary 2.4. For any quadratic form p in 3 variables, there are at most
finitely many non locally isometric 3-dimensional Lh.R.s., with Ricci form
p, except for the following situations:
i. Ifv >0, there is a one-parameter family of nonisometric unimodular
R — L structures on S3, with the Ricci form p(X) = v(X?®)?. There is
also a unique nonunimodular R — L group, of Ricci form p.

ii. Ifv <O there are ezactly one-parameter family of nonisometric R-L
group structures on SL,, and R — L group structures on Sol’, whose
Ricci form p(X) = v(X3)2.

Proof. The analysis done in this section points out the following unique R—L
groups of nonzero Ricci form p(X) = v(X?)? : S?, for v > 0 and SL, and
Sol?, for v > 0 and SL, and Sol® for v < 0.

i. Assume v > 0. Then A in S given in Proposition 2.6 has the components
(A1 = A2 + A3, A2, A3), A2 > A3 and the square norm of the Cartan-Singer
map is |T|> = A2 + A2 = A2 + v2)\;%. But ||T||? is strictly increasing on
the domain [/v,00) of ),. If the geometric realizations of two O-triples of
parameters A, X' of this type, even if not maximal, have to have ||T'||? = ||TV||2.
As such the set of 1-connected homogeneous 3-dimensional manifolds of Ricci
form p(X) = v(X3)?, is {gy in (2.18), A = (t + vt~ 1, t,vt™!),t € [\/v,00)}.
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ii. Assume v < 0. One may see from the proof of Proposition 2.2, the set
of R — L structures on SL,, of Ricci form p(X) = v(X?)?, is {g, in (2.14),
A=Wt Lt +vt 1)t € [V—v,0)}

From Proposition 2.3, it follows that only one left invariant metric on Sol®
has the Ricci form p(X) = v(X3)2. ]

3. Metric classification of 4-geometries with 5-dimensional total
isometry group.

Although 4-geometries not necessarily with compact quotient were classified
by Wall [18], there are still many things to do toward a complete local metric
classification of 4-dimensional 1.h.R.s.-es. Ishihara [4] reconsidered Cartan’s
original method to list 4-dimensional spaces with nontrivial isotropy. His list
was used by Jensen [5], to classify locally, 4-dimensional homogeneous Ein-
stein spaces. Bérgery [2] reobtained and completed Ishihara’s list, including
the 4-dimensional Lie groups, but his list still had a gap.

In this section we shall given a complete metric classification (i.e., a
parametrization of isometry classes) of the 4-geometries that admit a tran-
sitive Killing algebra with nontrivial isotopy, and do not admit a de Rham
decomposition in factors of constant curvature or of constant holomorphic
curvature. By the result of Jensen mentioned above, this happens if the
total isometry group of the geometry M is 5-dimensional.

Since we shall use the method of Cartan triples, as presented in the first
section, we shall look for maximal Cartan triples h,T', 2, where b is a 1-
dimensional subalgebra of 0(4).

Any such subalgebra b, is conjugated either with 0(2), or with R(f2+mf3),
with m > 1.

A Cartan triple C = (0(2),T', Q) is given by the following data [5]:

(3.1) T(e) = aff — bf] +cfi —dfy
(es) = bf} +af} +dfi +cfy
(3:2) T(es) = rf3, (ed) = tfy,
§(61,62) = K12f12
Q(es, e4) = (td + rb) f}
Q(er, e3) = Ner, eq) = ez, e3) = Qez, e4) =0,

where the constants a,b,c,d, 7, t, K;, verify the following relations (see also



CLASSIFYING HOMOGENEOUS RIEMANNIAN MANIFOLDS 525

[5, p. 326]):

(3.3) 2ab+dr =0, 2ad+dt=0, ar+ct=0
2bc —rb=0, 2cd—tb=0,
td+rb=20

(I(Klz +G/2 +b2 +CZ +d2) = 0,
c(Kyy +a*+ b+ +d*) =0.

The discussion of (3.3) splits into the following cases:
Case bd # 0. Then a = ¢ =r =t = 0 and the Cartan triple C is given by:

(34) T'(e)) = —bf; —dfy, T(ez) = bf} + df}
I'(e3) = I'(es) =0, h—(@1,1‘32) = K12f12’
ﬁ(ez"ej) =0, if i<y, ,(i,5) # (1,2).

Let R € SO(4) be a rotation by 6 in the plane Span(e;,es) and let
C’' = A4(C,R). From (1.10)-(1.12), follows that C' is given by (3.4), de-
pending on the constants (¥',d’, K;5), where (¥',d’) is the image of (b,d), by
a rotation with @ around (0,0) in R?>. Therefore any Cartan triple in this
case is conjugated to a Cartan triple of the form:

(3:5) P(e1) = —bf;, T(e2) =bf}, T(es) =T(es) =0,
(er,e2) = KF2,b> 0,
(eiaej) =0, ifi < jv (Z,]) 7é (1a2)

Case d =0, b®> + d? # 0. In the same manner one may show that such a
Cartan triple is conjugated to a Cartan triple defined in (3.5).

If C is given by (3.5), then the principal Ricci curvatures of the local
geometric realization of C are 0, K +b%, 2b?, and it follows that C is maximal
iff K # + b%. If this is the case, it follows that &(C) is the Lie algebra of the
total group of isometries of the geometric realization M (C) of C. Moreover,
due to the discussion of 1-triples in §2, it follows that M(C) is the product
of the geometric realization of the 1-triple defined in (2.2) for a = 0, with
an Euclidean line.

If C is defined (3.5), from (1.1), (1.2), (1.5)-(1.7) we get the following
structure equations of ¢(C) (the null brackets are omitted):

(3.6) [e1, e2] = 2bes — (K + b*)F?
[61,63] = —bey, [62,63] = be,,
[£%,e1] = —eq, [f2,e2] = 1,0 > 0.
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The derived algebra £(C)' is Span(e,, e, 2bez — (K + b%)f2), and it is
isomorphic to:

e 0(3)if K+30>>0

e sl(2,R), if K + 3b% <0,

e the Lie algebra of Nil®, if K + 3% = 0.

Thus the corresponding 4-geometries with 5-dimensional group of isome-
tries, described in terms of 3-geometries are our case geometries of S3 x
E' SL, x E* or Nil® xE!.

Case b=d =0 # K3 +a®+c*. Then a = ¢ = 0, and one may show that
the Cartan triple is not maximal.
Case b=d = 0 = K, + a® + c%. Such a Cartan triple C’' is defined by:

(3.7) ['(er) = af} +cff, T'(ex) =afy+cf;
T'(es) =1f;, T'(es) =1f3,
0(e1,e2) = —(a® + A)f2, ar+ct=0,
Qe e;) =0, ifi <4, (5,5) # (1,2).
Just like in the case bd # 0, one may act on C by a suitable rotation in

the plane Span(es, e4) to show that C’ stays in the orbit of the Cartan triple
C of the form:

(3.8) I'(e;
(

If C is defined (3.8), we obtain the following structure equations of ¢(C)
(the null brackets are omitted):

[e1, €] = cex, [e2, €4] = ce22,
(3'9) [63, 64] = Tes,
[f2,e1] = —es, [f7,€2] = €,7 > 0.
The principal Ricci curvatures of the local geometric realization of C are:
(3.10) T =Ty = —2¢° —cr,
T3g = —12 — 2¢r, T4g = —1° — 2¢°

and from (1.8), (1.9) it follows that C is maximal if ¢ # r, or if er # 0. If
this is the case, it follows that #(C) is the Lie algebra of the total group of
isometries of the geometric realization M(C_) of C. Let

C_={(r,t),r >0,c>0},Cy = {(r,t),r > 0,c < 0}.
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Suppose C € C_UC,. From (3.9) it follows that the derived algebra of £(C),
is the normal abelian subalgebra n = Span(e;,e;,e3). Let a = Re,,then
m = n@® a is a solvable transitive Killing algebra of the M(C), that is a
NCO-algebra [1, 18] if C € C_. The diagonal A of C parameterizes spaces
of constant negative curvature, and thus, if C € C_, M(C) is equivalent
with H*, in the sense of Thurston.

An analysis of the signs of the principal Ricci curvatures shows that
C+ U(C_\A) parameterizes the set of isometry classes of the geometric re-
alization of maximal Cartan triples of type (3.8). Since C, is contractible,
the geometries of M(C), with C € C, are all equivalent and maximal in
the sense of Thurston. One may recognize directly this geometry in Table 1
of (17, p. 122]. If C € C4, then M(C), is a Lie group and (e;, e, €3,€4) is
a field of orthonormal frames on it. Let (6*,6?%,6%,6*) be the dual coframe.
From (3.9), it follows that

(3.11) 6" = exp(ct) - dz, 6% = exp(ct) - dy,
63 = exp(rt) -dz, 6*=dt
and then the metric of M(C) is
(3.12) ge.r = exp(2ct)(dz® + dy?) + exp(2rt)dz® + dt?

which, for r = —2¢ = —2, is exactly the metric on solg, implicitly mentioned
in [17, p. 121].
Suppose now that h = R(fZ — mf3}), with m > 1.
b-L = Span(ff)fgvff’f;,mff - f?:i)
Then
L(e;) = af; +bf; +cfi +dfy +e(mf? — f3),
T(es) = Af} + Bf; + Cfi + Dfy + E(mff — f5),

and from the h-invariance of I' and 2, and since m > 1, it follows that for
m # 2,I' =0,Q = 0, in which case the Cartan triple is not maximal.
Suppose m = 2. Then the h-invariance of I" and , together with (1.3)-
(1.4), imply that the general form of such a Cartan triple is:
(er) = —b(ff + f,) +alfz - f),
L(es) = a(f + f2) +b(f3 — f1),T(e3) =T(es) =0,

(313)  Bles,er) = la* + )7 +250)
(esrea) =2
(

(a +b2)(f1 +2f3)
e1,e3) = Qer, e4) = Nes, €3) = Nes, €4) =0,

=l i0|
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where a,b are constants.
SO(2) acts on the triples (3.13), by rotations in Span(es,es), and then
any such triple is conjugated to a Cartan triple C, of the form

=

(e1) = a(f§ — 74, T(es) = a(f} + f2),
e1,¢2) = Ca?(£2 + 2f4), T(es) = T(es) = 0,

( E
(63564) = 2a2(f12 + 2f??)aa Z 0
( Qey, eq) = Qey, e3) = Qes, e4) = 0.

=l

(3.14) Q
Q

From (1.13), (1.14)), we obtain the following expression of the Riemann
curvature tensor:

R;12 = 202, Ré34 = _2‘12,R234 = “4‘127
(3.15) R§24 = Ri24 = Ré13 = R}ms = a2a

1 _p2 _ .2
Ryy=R3n=a

which implies that M (C,) has the Ricci curvature of a product of a surface of
constant curvature 2a? which an hyperbolic plane of curvature —4a?, but it
has not the total curvature of such a space, if a # 0. It is obvious that C, has
not constant holmorphic curvature, since it is not Einstein [5]. Therefore,
C, is maximal if a > 0. This case was not not included in [5].

Let us set e5 = f2 + 2f5. From (1.1), (1.2), (1.5)-(1.7), it follows that the
structure equations of ¢(C,) are:

[e1,€2] =0, [e1,e3] = aey, [e1,€4] = —aey

[e2, €3] = aey, [eq,e4] = aes, [e3,e4] = —2a%es

[€1,€5] = €a, [e2,€5] = —e1, [e3,€5] = 2e4
(3.16) [es, €5] = —2e3.

A straightforward computation shows that €(C,) is isomorphic to the Lie
algebra of the semidirect product R* x | SL(2,R), (look at this algebra as a
subalgebra of gi(3, R)).

Therefore, the metrically distinct geometries on F [17, p. 122], are the
geometric realizations of C,,a > 0, and consequently we shall name this
geometry F? = (F*,g,).

ga is a multiple of the metric given in {17, p. 123], but one may find as
explained in §1, in the following way:

Let 6 = f'e; be the canonical form of the Lie group K of Lie algebra &(C,).
Then {|0]|? is a transverse metric [10, p. 77] of the Riemannian foliation
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defined on K by 6% = 0. From (3.16):

df' +ab> N> —ab' NO* — 02 NO° =0,
(3.17) d6® + ab* NG +ab> AO* + 6" AO° =0,

and 0% + 16*,05 play the role of the fundamental and connection form of a
surface of constant curvature —4a®. Then if we use Poincaré coordinates
T + 1y in the hyperbolic plane, we get:

L(dz +idy),

6 +i0* = (2a) " exp(it) - ”

1 dz
95:—<dt————),
2 ]

and if we put 6" +i6” = exp(i%)-(A+iB), then from (3.17) dB - %5 AB =0,
which has the solution

B =\/y-du, and dA+Z—z/\A—y:%dx/\du=0,

with the solution
A=y i(zdu+dv),

and eventually the metric on F* = H? x R? is

9o = 4(ay) "% (dz® + dy®) + = ((z du + dv)?® + y?du?) .

1
Y
The following result was essentially discovered by Mostow.

Corollary 3.1. Any L.h.R.s. of dimension 4 is locally isometric to a Rie-
mannian homogeneous space.

Proof. The local geometric realization of a four dimensional Cartan triple
(h,T,Q), with dim h = 2, is either a space of constant holomorphic curvature,
or has a de Rham decomposition in factors of constant curvature [5]. A
Lh.R.s. M, that admits a transitive Killing algebra ¢, with dim¢ = dim M,
is locally isometric to a Lie group endowed with a left invariant metric. It
is easy to remark, from the above list of Cartan triples, that if (h,T',Q) is
maximal Cartan triple with dimb = 1, then &(h,T', Q) has a 4-dimensional
Lie subalgebras g, with gnh = 0. a

We obtained also:

Theorem 3.1. Any 4-dimensional geometry in the sense of Thurston, with
5-dimensional total isometry group has either a de Rham decomposition
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M x E', where M is one and only one of the following 3-dimensional ho-
mogeneous Riemannian metrics:
e (SLy,g5), X € A of Proposition 2.2, A, = )y, with gy given by (2.14),
e (S3,g)), A € S of Proposition 2.6, d, = 4.
o (Nil’, g) with g given by (2.17),
or is isometric to one and only one of the following de Rham indecomposable
Riemannian homogeneous spaces:
e (Sol3, ge.»), with g, given by (3.12), r>0>¢c, orr >0, c>0r #c,
e F! a>0.

Remark 3.1. Actually Theorem 3.1 gives a complete metric classifica-
tion of simply connected homogeneous Riemannian spaces with nontrivial
isotropy, since other such spaces either are of constant curvature, or have
a de Rham decomposition in factors of constant curvature, or are Kahler
surfaces of constant holomorphic curvature [6, Theorem p. 327].

Corollary 3.2 [17, Table 1]. Any mazimal geometry with nontrivial isotropy
is equivalent to one of the following

Isotropy Geometry
SO(4) ST E°, H*
U(2) P2C, HC
S0(2) x SO(2) | S?x 82, S>x E?, S? x H?, E? x H?>, H? x H?
S0O(3) S® x E', H® x E!
50(2) Nil® xE', Sol3, SL, x E!
(512 F

Proof. The first four lines correspond to geometries whose total isometry
group is at least 6 dimensional, and they follow from [6, Theorem, cases I-V,
p. 327). Using the same idea as in §2, one may obtain the remaining lines
from Theorem 3.1. O

We end the paper by the remark that, in dimension 5, examples of 1.h.R.s.
spaces that are not locally isometric to a homogeneous space already exist.
Such an example was given by Kowalski [6], and we reprove his result by
using Cartan triples, in a natural way.

The idea is to look for nonclosed n-dimensional Cartan triples, starting
from nonclosed Lie subgroups of SO(n), which is impossible for n = 3 and
n = 4, due to the Corollary 2.1, 3.1.

Suppose n = 5, and let h = Rf, where f = F? + rfi. Then

b_L :Span(rflz_f:;iaff’ff,fls,fgvf;’fg,f35’f45)'
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After some short computations one finds out that for each pair of reals
(b,d), there is a Cartan triple C; 4 = (h,T, Q) defined below:

L(e:) =bf;, T(ex) = —bf7,
L(es) = df;, T(es) = —df?,
(3.22)
T(es) =0,
Qler,e2) = — (2r~'bd + b*(1 +7r3)7Y) f,
Qes, eq) = — (2bd + d*r(1 +7*)71) f,

Q(e;,e;) =0, for other pairs (i, ) in increasing order.

Proposition 3.1. If r is irrational and b,d are positive numbers such that
b > d > rb, then the Cartan triple C, 4 is not closed.

Proof. Due to (1.1), (1.2), (1.5) - (1.7), (3.22), it follows that &(C, 4) is the
direct sum of the subalgebras

g1 = Span(e;, e;, 2b(df — es))
g2 = Span(es, eq, 2d(bf — es5))

end each of these subalgebras is isomorphic to 0(3). Moreover the adjoint
action of f on &(C, 4), with respect to the basis

(61; €2, €3, €4, 2b(df —_65)’ 2d(bf _85))

has the form:

01
, Wwhere J= .
rJ (_1 0)

0

Let K be the simply connected group of Lie algebra ¢(C, 4) and let H be
the connected subgroup of K tangent to §. Since ad(H) is nonclosed in the
toral subgroup of ad K, generated by Span(F?, F3) and as K is semisimple,
it follows that H is not closed in K. O
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