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The existence of a renormalized solution is established for the
Cauchy problem for the parabolic P-Laplacain equation in which
p is allowed to be close to 1 and the initial data are only assumed
to be locally integrable.

1. Introduction.

We shall be concerned with the existence of a solution to the following problem

(1.1a) %u —div (|[Vulf?Vu) =0 in Zr =RN x (0,7),

(1.1b) u(z,0) = ug(z) on RV

in the case where T > 0, 1 < p < 2, and uy € L}, (R"™). The restriction on p
makes the equation (1.1a) singular because the term |Vu|P~2, which measures
the modulus of ellipticity of the principal part of (1.1a), is unbounded at points
where |Vu| is 0. Thus we are dealing with a singular parabolic problem.

It is observed in [DH] that in the generality considered here an estimate of
the form

(1.2) IVu| € Li. (Br), g=1

is no longer possible. This suggests that solutions of (1.1a) display new phenom-
ena that cannot be incorporated into the classical weak formulation. To define
our notion of a weak solution, we follow the approach adopted in [X1]. Let
A = {6 € C(R) : 6 is a Lipschitz function whose derivative 0'(s) exists except
at finitely many points and 0'(s) =0 for |s| sufficiently large}. If a measurable
function v on X7 is such that 6(v) € L? (O, T; Wi? (RN )) for all € A, then we

can define a measurable function g : ¥ — R" so that
g = VPy(v) almost everywhere on {|v| < M}

for all M > 0, where Py(s) = min{|s|, M} sign(s). The function g is viewed as
the spatial gradient of v, and is also denoted by Vv. We are ready to present
our definition of a solution.

Definition. A measurable function u on X is said to be a renormalized
solution of (1.1) if:
1. weC([0,T}; L, (RY));
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2. For each 0 € A, 6(u) € L? (O,T WoP (RN)) and VO(u) = 6'(u)Vu
almost everywhere on ¥z, where 6'(u) is understood to be 0 if u €
By = {s € R : 0'(s) does not exist};

3. |VulP~! € L' (0,T; L%, (RV)) and

loc

—-/ / 0(s)dsgotdxdt+/ |VulP~2Vu (VO(u)p + 0(u) V) dzdt
Xr Jo Er

ug(z)
= / o(z,0) / 0(s)dsdz
RN 0

for all # € A and all p € Cg° (RN x (—00,T)).

The idea of a renormalized solution was originated in the study of the
Boltzmann equation; see [DL1, DL2] for details. An elliptic version of this
idea appears in [BGDM)]. The definition here is a slight modification of that
in [X1}; also see [X2] where it is evident that the notion of a renormalized
solution is the correct notion of solution for p-Laplacian problems. The
objective of this paper is to show that there exists a renormalized solution
to (1.1).

If ug > 0, the existence and uniqueness of a solution to (1.1) are established
in [DH]. In [X1], the sign restriction on u, is removed, but R is replaced
with a bounded domain 2. The stationary problem is considered in [X2] and
references therein. The question of existence and uniqueness of a solution to
(1.1) in the case where uy may change sign was proposed as an open problem
in [DH]. In this paper, we solve the question of existence, while the question
of uniqueness remains open.

It is interesting to note that we obtain a renormalized solution to (1.1)
without imposing any growth condition on u,. This is in sharp contrast
with the case p > 2 [D]. Also, it is easy to infer from the argument in
[D, p. 188-192] that if uy € L*(RY),s = N(2 —p)/p, 1 <p < 2N/(N +1),
and N > 2, then the renormalized solution u constructed here will extinct
in finite time, i.e., there exists a positive number 7™ such that u(z,t) = 0
for all t > T™.

The main gap between the case uy > 0, and the case where ug may change
sign, is that in the latter case an estimate of the type

/ / 1+|u| T e dzdt < 0o, s€(0,7),e >0,R>0
{lz]<R}

is no longer available. To overcome this difficulty, we develop an analysis
that combines the best features of the arguments in [DH] and [X1] with a
compactness theorem of Simon [S].
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This work is organized as follows. In Section 2, we prove a comparison
principle for classical weak solutions of (1.1a). This result is used in Section 3
to prove the existence of a renormalized solution.

We conclude this section by making some remarks on notation. Let R > 0,
and we denote by Bp the ball centered at the origin with radius R. Fix
R > r > 0. We say that £ is a cut-off function associated with R and r

2
if{EC(‘]”(BR),OSfSl,f:lonB,,and|V§|5R . Let E be a

measurable set in RVN*1. We use |E| to denote the Lebesque measure of E.

2. Preliminaries.

In this section we consider the problem

(2.1a) -g—tu —div (|[VuP~2Vu) =0  in Zr,

(2.1b) u(z,0) = up(x) on RN

in the case where uy € L2 (R") and 1 < p < 2. A function u on X7 is said
to be a classical weak solution of (2.1) if:

(i) u € C ([0, T); L, (RM)) N L7 (0, T3 Wiy (RM) );

(ii) — [, wpedzdt + [5_ |VulP~>VuVedzdt = [gn p(z,0)uo(z)dz for all
0 € C (RN x (—o0,T)).

Let u be a classical weak solution to (2.1). Then we can easily deduce
from (ii) that for each p > 0,

(2.2) u € L7 (0,T; W (B,))

(2.3)
g — div (|VulP~2Vu) = 0in  W™'* (B,) for almost every t € (0, T).

Here and in what follows p' = p/(p — 1).

Lemma 2.1. Let u be a classical weak solution of (2.1). Then uy €
Le (RN) implies u € L* (0,T; L, (RN)).

Remark. If uy > 0, then this lemma is a direct consequence of Theo-
rem 111.6.2 in [DH].

Proof of Lemma 2.1. We modify a device in [DH]. Fix R > 0. For n =
0,1,2,..., define

pn=R(1+2"),B, =B, kn=M(2-2""),
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where M 2> ||uo||p(p,,) Will be selected later. Let &, be a cut-off function
associated with p, and p,4;. Then we can derive from the chain rule [X1]

1 2
that the function ¢t — 3 / [(u - kn)+] &Pdzx is absolutely continuous on
B

[0.T], and i

4 43 [ [w=k)*] eds = (u (w - k)" €2)

almost everywhere on (0,7,
where (-,-) denotes the duality pairing between W~1#' (B,) and W,? (B;).

Keep this in mind, use (u — k,)* €2 as a test function in (2.3), thereby obtain

%% . [(“ - kn)+]2§71dw + /Bn IV (u — kn)+|p ¢ da
"~

=—/B,. IV(u—kn)Jr

1 +¢p p-1 [P ? p(n+1)/ —_ +]?
55/]3" IV(u—kn) I{nd:n+2 (R) 2 A [(w— k)] da.

Consequently,

(2.5)

max [(u -k )+]2§”da: +
0<t<T Jp_ " n

V (u—ka)" (u— k)" pt2 ' Vénds

[v (u — kn)+‘p§§da:dt

B, x(0,T)
p
S (£> 2P(n+2) [(U _ kn)+]pdxdt.
R Bnx(0,T)

This, in conjunction with the Gagliardo-Nirenberg-Sobolev inequality, im-
plies

M
/ [(w— k)" & ™ dade
B, x(0,T)

9 &
<o (g, [ [0k el )

' /B,.x(o,'r) IV ((u - kn)+ fn) Ip dzdt

o (2521), .
<qg _——Rﬂﬁwﬁz /B,.x(o,T) [(u — k) ] dzdt

Here, and in what follows, ¢;,z € {0,1,2,...}, denote positive constants
depending only upon p, N. We estimate

/ [(u - kn+1)+]p dzdt
Bn4+1%(0,T)

N+p
N
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(2.6) < /an(o n [(u —kppr)t En]f’dxdt

< |Bp X (0,T) N {u > kpyy }| 772

N

' (/ [(u - kn+1)+ én]p+ dxdt)
B x(0,T)
L)
.<_ 02 p(N+p
R

hes
. ( / [(u— kn)+]‘° dxdt> .
B, x(0,T)

B x (0,T) N {u > gy }| 75

Observe that

/ [(u - Is:n)+]p dzdt
B, x(0,T)

> / (Knys — kn)? dzdt
B, x(0,T)N{u>kn41}

= MP27P+D) | B (0,T) N {u > kny1 } -

This, together with (2.6) shows that

/ [~ )] dadt
B,.,+1X(0,T)
2 P _
ol BB+ R e
< / u — ka)*|" dodt .
PR My \Ub.xo) [( ) ]

According to a result in [LSU, p. 95], lim, , [5_, o) [(u — Is:n)"L]]'J dzdt =
0, provided we can select M > ||uo| ;e (p,,) SO that

_Nt2
C3 P

2.7 / w— M)Pdadt < [ — B
N e < pro Mrﬁfff)
(p+p2+20) -(%32)°
. (2——(7v-+—2)—->
S C4R(N+p)M2.
This can be easily done, and hence

/ [(u — 2M)*] dedt < lim [(w— £.)*]” dadt = 0.
Bgrx(0,T)

BRX(O T)
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To see that u is also bounded below, note that v = —wu is a classical weak
solution of the following problem

o _ div (|[VoP?Vv) =0 in Zr,

ot
v(z,0) = —up(z) in RM.

This completes the proof of the lemma.

Before we continue, let us recall the following lemma from [O, pp. 145-147].

Lemma 2.2. Let z,y be any two vectors in RN and p € (1,2]. Then,

2

(a) (jel*2z — [yP~y) (e — y) = (p — 1) (piTab=
(b) llz[7~*z — [y~*y| < V5B|z -yl

Lemma 2.3. Let ug, vy be two functions in LZ, (RN). Assume that u
and v are classical weak solutions of (2.1a) with initial conditions ug and vy,
respectively. Then ug < vy implies u < v.

Proof. Fix R > r > 0. Let £ be a cut-off function associated with R and r. By
Lemma 2.2, u,v € L* (0, T; L, (RN)). Thus foreach ¢ > 1, [(u —v)*]"¢2 €

loc

L (O,T; Wy? (BR)). We can conclude from (2.3) and the chain rule [X1]
that

2.8)
G w07 s
+ /B ) (IVu[P2Vu — |VulP~2 Vo) ¢ [(u — v)*]" V(u — v)¢2d
- / (VP [o Vo) [(u — v)*]" 2% Ved
<z 2 - /B [V~ (Vo [(u - v)*]" ed.
Set

A = {x s (u(z, t) —v(z,t)t —}—22?; < %q IV (u(z,t) — v(a:,t))+| 5(3;)} .

We compute, with the aid of Lemma 2.2, that

2
R—r

/ [|VulP2Vu — |Vo|P2Vo| [(u — v) ]! édz
Bgr
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< ! IVulP~2Vu — |VoP2Vo| [V(u — v)*| g [(u — v)*]" " 2d
2 BrNA;

/ V5|V — Volp™! [(u — v)¥]* eda
Br\A:

R—r

< %/Bﬂ (IVulP~2Vu — [VuP2Vo) V(u — v)q [(u — v)*]"" 3dz

RZ_ - /;R V5 (—q(R4— 7 (u— v)*’)p«1 [(u —v)*]? dz.

Use this in (2.8) to obtain
(2.9)
q+1 V5(q + 1)2%~1 / 41a+p-1
<L~ T — .
/ [(u S B =1) Joexon [(u—v)*] dzdr

Now we are ready to employ an argument in [DH]. Fix p > 0, and set

= (zn: 2—.1') p, Bn=B,,

=0

+

A, = sup [(u-—v)"’]q+1 dz (n=0,1,2,...).
0<T<t /B,

We can infer from (2.9) that

op(n+1)

A <c [(w~ )] dadr

PP JBayix(0,0)

—p , L= p(n+1)
< o3 o) VIR AT 2

3— 2rn {etp—1)
= clt*gﬁﬁ————-—l\ (kD
_(2-p)N n+1
p” (a+1)

1
\n gs;p-;—)qz 2—-p
S 6An+1 + (2p ir") 6(6) (pi_g;—pw *
q+1)

F

Here § > 0 is arbitrary. This implies

(3-p+4q) gt—; +1
(2.10) Ao < 6" An + —e(6) | A sl 3 (52P¥#)i
. 0= " 6 pp_ ?q_-:l;v i=0 '
Now we select § > 0 and g > 0 so that

P =2 and  (g+1p-@-pN >0,
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We conclude from (2.10) that

3-p+ 2-p
t @)
(g+l)p—(2-p)N
q+1

sup [(u—v)*]" M dz <c (
p

0<r<tJB,

-0 as p — 0.

This proves the lemma.

An easy consequence of Lemma 2.1 and Lemma 2.3 is that
“'U,(~, t)“L""(RN) < “u()“Loo(RN)
for each ¢t > 0.

3. Existence.

The main result of this section is:

Theorem 3.1. Assume that uo € L, (R"), and 1 < p < 2.

ezxists a renormalized solution to (1.1).

Proof. If k € {1,2,...}, define

(3.1) fu(@) = min {ug (2), K}
ge(z) = min {ug (z), k} .

For each k, consider the approximating problem

(3.3a) = —div ([Vu? Vi) =0 on 3,
(3.3b) u(z,0) = uk(z) = f —gr  in RV,

Then there

The existence of a classical weak solution to (3.3) can be inferred from a
result in [DH, D]. Since ug; € L* (R"), Lemma 2.3 asserts the uniqueness.

The remaining proof is divided into several lemmas.

Lemma 3.1. For each p > 0, there ezists a c(p) > 0 such that

(3.4) max /B luk(z, t)| dz < c(p),

0<t<T

(3.5) / V[P  dzdt < c(p) (k=1,2,...).
B, x(0,T)

O
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Proof. For each k, let v, be the classical weak solution of the following
problem

(3.6a) —g—tvk — div (|Vo"* Vo) =0 in T,

(3.6b) ve(z,0) = fr(z) on RV,

and w;, be the classical weak solution of the following problem

(3.7a) -gt-wk —div (|Vwk|"‘2 Vwk) =0 in Xp,
(3.7b) wi(z,0) = —gr(z) on R".
In light of Lemma 2.3, we have

(3.8) wy < up < v almost everywhere on X

for all k. Since f; > 0 on RV, we can invoke a result in [DH, p. 260] to
obtain that there exists a ¢, (p) > 0 such that

. < = R
(3.9) Jnax s, vi(z,t)dr < ¢1(p) (k=1,2,...)
Note that z; = —w; is the classical weak solution of the problem

0 . - .
e i div (IVzk|p 2 Vzk) =0 in Xy,
z(z,0) = gi(z) on RY.
Thus, we can find ¢;(p) > 0 with
(310)  m <T/ lon(z, )| de < o) (k=1,2,...).
We see that (3.4) is a consequence of (3.8), (3.9), and (3.10). To see (3.5),

for each ¢ > 0 define

—L_ if s >0,

1—
— (1+s)
(3.11) P(s) {_¢E(_3) if s <0.

Let £ be a cut-off function associated with 2p and p. Then using ¢, (ux) €?
as a test function in (3.3a), we derive from a standard argument [X1] that

(3.12)
ug(z, t)
%/B / s)ds&?(z da:—(—/ &, (ug) |Vu|” £Pdz
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—- /B Ve P2 Ve, (us) p€*-'Veda.

Note that .

¢. = A and  |¢| <1
and that
(3.13) ab<oa® +o 5K, a>0,b>0, o> 0.

We deduce from (3.12) that

(3.14)
|V |” €P

ux (z,t) £
Esds"a:d:z+—-/ ——————dzdT
I ey A v

</ ) / M b (s)dse?(a)

1-p b4
+ (5) (3) / (1 + Jug) T+ dzdr.
2 p/) JBy,x(0,)

Observe that [;***" ¢,(s)ds > 0 on Sr. Then select £, > 0 so that
(l+e&)(p-1)=1.
It follows from (3.14) and (3.4) that there exists a ¢(p) > 0 with
)
/B o ——————(1 -ll-v|::|l)1 T dzdt < c(p)-
We estimate that

o1 |V |P~!
/ V[P~ dodt = / V(1 u]) P dad
B,x(0,T) B,x(0,T) (1 + I'U'k') I’y

< _0/ |Vl
2 J,x01) (1 + Jug)'

1-p
+ (fﬂ> / (1 + Jug|) P grdy.
B, x(0,T)

dzdt

2

This implies (3.5). o
Lemma 3.2. For k€ {1,2,...}, there hold

1 (p)
3.15 / —————— |Vui|P dzdt < =< (e > 0),
(3.15) Box(0,1) (14 |ug|)'** Vel do ( )
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(3.16) |Vug|? dzdt < Mc(p) (M > 0)

/Bpx(o,T)ﬁ{luklﬁM}
for some c(p) > 0.

Proof. Let p > 0 and € be a cut-off function associated with 2p and p. Use
oe (ur) € as a test function in (3.3a) to obtain

€
— |V, |Pdzdt
/B,,x(o,n (1 + fug])'** IVl

1 _
< / luo ()] dz + = / VP~ dadt.
B3, P B2, x(0,T)

This, together with (3.5) implies (3.15). To see (3.16), for M > 0 let Py(s)
be given as before. Then use Py (ux) € as a test function in (3.3a) to get

/ PL, (us) |Vue| dzdt < M / luo| dz + 2L V|~ dad.
B, x(z,T) B, P JBs,x(0,T)

This completes the proof. O

Lemma 3.3. There ezists a subsequence of {uy}, still denoted by {u},
and a function u € L} (RN x (0,T)) with

(3.17) uy — u almost everywhere on Y.

Proof. Fix p > 0, and let £ be given as in the proof of Lemma 3.2. We
conclude from (3.3a) that

(3.18)

T a )
/0 (6 1+ 2&)) b + Ba x(OT)Ivuklp * Vu, Vépdzdt

+/ Vi |P 2 VurtVdzdt
B2, x(0,T) 1+u2| ¢l Ve

2uy
Tk |V |? Epdzdt = 0
/Bz,,x(oT) 1+ k)zl " &p

for all p € C§° (B,, x (0,T)). Here, (-,-) denotes the duality pairing between
W-1# (B,,) and Wy* (B,,). We infer from an argument in [X1] that

0 1 0
( U T {(p) (b_t (€ arctan uy) , (p) almost everywhere on (0,7).
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This, combined with (3.18) indicates that

0 ) 1 _
(3.19) E(fa.rctanuk) —dxv(l +u%§|vuk|l’ 2Vuk)
— 2uk
+ VP2V VE — ——— £ [V [P = 0
l Ukl u V€ (1+u%)2§| 'U'kl
in D' (B,, x (0,T)).
Now set
] 1 -2
Fk = div (1 +u§§|Vuk|P VUk) 3
2u
Gr = — |V 2 Vi VE — ——5 _£|Vu|’.
k | Uk| (VS (1"'“%)25' Ukl

It is easy to verify from (3.5) and (3.15) that
{G:} is bounded in L' (Bs, x (0,7T)),
{F,} is bounded in L? (O, T, W~1¥ (B2,,)) ,
{¢ arctanuy} is bounded in L? (O, T; Wy (Bz,,)) .
This puts us in a position to invoke Lemma 4.2 in [BM] to conclude that
{¢arctanu,} is precompact in L, (B;, x (0,T)).

In particular, we can extract a subsequence of {u;}, still denoted by {u},
such that

arctanu; converges almost everywhere on B, x (0,T).
Note that u; = tan (arctanu,). We may define
u(z,t) = klim uk(z,t) for almost everywhere (z,t) € B, x (0,T).
—00

To conclude that {ux} converges almost everywhere on B, x (0,T), we must
show that Ju| < oo almost everywhere on B, x (0,T"). However, this is an
easy consequence of Fatou’s lemma and (3.4). Since p > 0 is arbitrary, we
can appeal to the classical diagonal argument to conclude the proof. O

Lemma 3.4. There ezists a subsequence of {uy}, still denoted by {u},
and a measurable function F(z,t) on T such that

(3.20) Vuy - F almost everywhere on L.
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Proof. Fix p > 0, and let £ be given as in the proof of Lemma 3.3. Assume
(3.17) holds. According to Egorov’s theorem, for each n > 0 there exists a
measurable set E, C B, x (0,T) such that

|B, x (0,T)\E,| <n and u;—u uniformly on E,.

We may assume that {u;} is bounded in L™ (E,), and thus by (3.16),
(3.21) / Vuy|” dzdt < c(n, p).
E,

For 6 > 0, we can find a K () with
(3.22) |luk —um| <6 on E, forall m,k> K(J).

Let P; be defined as before. We can derive from (3.3a) that

d uk (z,8) —um(z,t)

° / / Py(s)dst (z)dz +

dt JB,, Jo

/ (10" Vg = [Vt~ Vit ) Vet = Vi) E(2) P (s — )
B;,

- / (Ve Vg — [Vt V) VE() P (s — ) diz
B,

6 p—1 p—1
< L (vl 4 1VunP ) de,

for k, m sufficiently large. Thus,

(3.23)
/ (quklp_2 Vg, — [Vt [P Vum)
szX(O,T)
- (Vug — Vuy,) €(z) Ps (ur — up,) dzdt
< / / e Ps(s)dsdz + g (IVuk|p_l + IVuml”_l) dzdt
Bs, Jo

p B2p X (O)T)
< c(p)d

for k,m sufficiently large. We estimate, with the aid of (3.21), (3.22), and
(3.23) that

(3.24)
/ [Vug, — Vu,, |’ dzdt
E'l
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—_ P 2—-p)p
- / [V = V| = (V] + Vi) 57 dgt
E

(IVue| + [Vun|)

(Vg — V| : .
= (fE (|wm|+|wk|)2"’dxdt) (/E (Viml+ [Vl dmdt)

< e(n, p) ( /B - (1Y~ Vs, = [V Vi)

B
2

2—p
2

- (Vug, — Vuy,) €(z) Ps (ug — Ur) d:vdt)

< ci(n, p)dt

for k,m sufﬁc1ently large. We see that {Vu;} is a Cauchy sequence in
(L? (E,))". In particular, we can select a subsequence of {u;}, still denoted
by {u}, so that

Vuy converges almost everywhere on E,.

This is true for each n > 0, and so {Vu} converges almost everywhere on
B,x(0,T). The lemma. follows from the classical diagonal argument. W

Lemma 3.5. {IVukl'"—2 Vuk} is precompact in L' (B, x (0,T)) for each
p>0.

Proof. Note that the function G(z) = |z[P~%z is continuous because
limy;|_,o |z|P~%z = 0 = G(0). Thus, we may assume that

(3.25) {quklp -2 Vuk} converges almost everywhere on B, x (0,T).

1
Now for each ¢ € (0, g), we can choose gy > 0 so that ¢ = 71 p. We
0
deduce from (3.4) and (3.15) that
(3.26)
/ Vaug|? dzdt
B, x(0,T)
1 (1+e )2
Vug|” (1 4+ |ug 7 dxdt
/ % (0,1) (1 + |uy |)(1+5°)1 [Vul” (1 + o]

L

L e |V |” dzdt
B x(0,1) (1 + |ug|)
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' / (1 + |ue)) "+ dadt
B, x(0,T)

(r=9)

P

< c(p) (/B o) (1 + Jukl) da:dt) < ¢(p)-

(p—9)

P

Since0<p—-1< g, there exists a g € (p -1, g) such that

/ |Vug|? dzdt < c(p),
B,x(0,T)

at least for k large enough. This implies that {IVuklp -2 Vuk} is uniformly
integrable. This, in conjunction with (3.32) and Vitali’s theorem, yields the
lemma. a

Lemma 3.6. {u;} is precompact in C ([0,T]; L* (B,)) for each p > 0.

Proof. For 6 > 0 let

1 ifs>4
O5(s) = s if |s| <4,
-1 ifs< -4

and £ be given as in the proof of Lemma 3.2. We can conclude from (3.3a)
that

(3.27)
ur (z,t) —um(z,t)
/ / 05 (s)dst (z)de
B, Jo

+ (IVuel™* Vg = [Vt~ Vi)

Bz‘, X (O,t)

- (Vug — Vuy,) €(z)05 (ur — up) dzdr
uok (Z) —uom (2)
- / / 85 (s)dst (z)dz
B2, JO

- / (192t Vi, ~ [Vt Vi) 05 (11 ~ ) Védrdr.
szX(O,T)
Observe that the second integral in (3.27) is nonnegative. Hence, we obtain

/B e (2, ) — um(z, £)| dz
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1 _ _
< / |uor — Uom| dz + = .IVuklp >V, — |Vun,|” 2 Vuml dzdt.
B2, P J Bz, x(0,T)
Then the lemma follows from Lemma 3.5. O

Lemma 3.7. Let E C R" x (0,T) be bounded and measurable. Assume
that there exists an M > 0 such that

|lug| < M almost everyshere on E  for k sufficiently large.
Then {Vu,} is precompact in (LP(E))" .
Proof. Let p > 0 be such that
B, x (0,T) D E,

and let ¢ be given as in the proof of Lemma 3.2. We conclude from (3.39)
that

uk (z,t) —um (z,t)
/ ¢(z) / Pone(s)dsdz
Ba, 0

+ IVukl”_z V’U.k - IVuml”_z Vum)

szX(O,T) (
- (Vug — Vuy,) Py, (ug, — Up) €(z)dzdT

= {(:z:)/ " mPngdsdx

B;,

- /B o (IVukp’—2 Vuy — [Vum|p—2 Vum) Popt (ur — upm) VE(z)dzdT.
2p X(0,
Subsequently,
/ (Ivuklp_z Vuk - Ivumlp—z VUm) (VUk —_ Vum) dmd'r
E

_<_ 2M/ |’U,0k - u0m| dx
Bz,

L Vs~ Vg = [Vt P Vit i,

p Bz,, X (O,T)

A calculation similar to (3.24) yields

/ Vg — V| dedt
E

< o(M, p) ( /B lttor — Uom| dz

P
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o).
B3,

This implies the desired result. O

£
P72 Vg — |V P Vuml d:z:dt) )

Now we are ready to conclude the proof of Theorem 3.1. Let {v;}, {ux}
be given as before. Note from Lemma 2.3 that

Vg < Vg4 on Xr forallk,
Wy > Wiy on Xp forall k.
Define
v(z,t) = lim vi(z,1),
k—o00
w(z,t) = klgilo wy(z, t).
Consequently,
(3.28) w<u <v almost everywhere.

By a result in [DH], there holds

(Zt
//B lzl_'_l)predar:dtSc(rs,s,p),T>.s>0,e>0,p>0,

where z = w or v. The remaining proof is entirely similar to that in [X1].
The only difference is that in (3.23) of [X1] we require

0 € CP (RN x (~00,T)) .
This completes the proof.
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