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This paper studies almost Hermitian, J-symmetric repre-
sentations of *-algebras on Il;-spaces. It applies the results
obtained to the theory of *-derivations § of C*-algebras im-
plemented by symmetric operators S.

1. Introduction and preliminaries.

The work on representations of groups and algebras on spaces with invariant
indefinite metric was strongly motivated by various applications to relativis-
tic quantum mechanics and differential equations. Gelfand and Yaglom [9],
Gelfand and Vilenkin [8], Naimark [27], Zhelobenko [44] and Ismagilov [12]
investigated representations of the Lorentz group on Il;-spaces. Representa-
tions of Lie groups were considered in a number of papers (see, for example,
(4, 7, 10, 26]) in relation to the study of massless particles. The Gupta-
Bleuer triplets for indecomposable representations of groups were introduced
and studied by Araki [1]. Rawnslew, Schmid and Wolf [39] investigated the
indefinite harmonic theory of groups. Ismagilov [13] considered representa-
tion theory on II;-spaces for central extension groups.

Phillips [34-36] initiated the work on operator algebras on indefinite met-
ric spaces. He applied the obtained results to the problem of extension of
dissipative operators commuting with an operator algebra and to hyperbolic
systems of differential equations.

Simultaneously with the growth of the area of applications of the theory,
the process of its internal development has been taking place. Much work
has been done on the investigation of the structure of operator algebras and
of representations of Lie groups on IT;-spaces (for extensive bibliography on
this subject see Naimark and Ismagilov [29], Naimark, Loginov and Shulman
[31] and Loginov and Shulman [25]).

The interrelation between representations on indefinite metric spaces and
unbounded *-derivations § of C*-algebras {{ was initially observed by Ota
[33] and by Jorgensen and Muhly [15]. Using Phillips’ results, Jorgensen
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and Muhly proved that if { is commutative, J is implemented by a symmetric
operator S and at least one of the deficiency indices n_(S) or n,(S) of S is
finite, then S extends to a maximal dissipative operator which implements
0. They applied this to study the Weyl canonical operator commutation
relations.

In [17] it was shown that, for every pair (4, 5), the deficiency space N(S)
of the operator S is a Krein space and that there is a J-symmetric representa-
tion 7§ of the domain D(d) of § on N(S). If & = min(n4(S)) < oo, then N(S)
is a Il;-space. Many questions about the pairs (4, S), such as the values of
n+(S) and the existence of maximal dissipative operators which implement
d, can be better understood and answered in terms of these representations.

Arveson [2], Powers [37] and Powers and Robinson [38] studied the case
when ¢ is the generator of a semigroup «; of endomorphisms of B($)) and
—14S5' is the generator of a semigroup of isometries which intertwine ¢;. In
this case S is a maximal symmetric operator, N(S) is a Hilbert space and
7} is a *-representation. They introduced and investigated various notions
of the index of «; in terms of the representation ﬂg.

The general case when N (S) is not necessarily a Hilbert space was stud-
ied in [15-21, 31]. Jorgensen and Price [16] defined the V-index as the
dimension of the Krein space of operators V : § — N(S), satisfying VA =
S (A)V,A € D(J). In [19] a sextuple of integers ind(d,S) was associated
with every pair (4,S) and its stability under some perturbations of § was
shown. The representational indices of derivations were introduced in [20]
and their uniqueness was studied in [21].

This paper considers non-degenerate, almost Hermitian, J-symmetric rep-
resentations of *-algebras on II;-spaces. Theorem 4 establishes the similarity
of these representations to *-representations. (Almost Hermitian representa-
tions constitute probably the largest class of representations for which such
similarity exists.) The most decisive step for proving Theorem 4 is the result
obtained in Theorem 3: irreducible, uniformly closed J-symmetric operator
algebras on II;-spaces contain the algebra of all compact operators.This last
result was announced in [24] and its proof is based on Cuntz’s theorem [6]
and on some techniques developed in [41].

It is well-known that not every bounded representation of a group on a
Hilbert space is similar to a unitary one. It was established in [40] that the
similarity problem for bounded representations of groups on Hilbert spaces is
equivalent to the similarity problem for bounded J-unitary representations of
groups on Krein spaces. From this it follows that there are bounded J-unitary
representations of groups which are not similar to unitary representations.
However, for Il;-spaces the similarity problem is still open.In other words,
it is unknown whether for every bounded representation of a group which
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preserves a quadratic form with a finite number &k of negative squares, there
always exists an invariant positive quadratic form. For k& = 1 the positive
answer was obtained in [42] with the use of methods of hyperbolic geometry.
Making use of Theorem 4, we show in Theorem 7 that the problem has
a positive solution for groups with almost Hermitian group algebras; the
authors do not know examples of groups which do not possess this property.
Since all the domains D(d) of derivations § of 4 are Hermitian algebras,
it follows from Theorem 4 that their non-degenerate representations on II;-
spaces are similar to *-representations and, therefore, extend to bounded
representations of {{. This allows us in section 5 to improve substantially on
the results known previously (see [16-19, 31]) about symmetric implemen-
tations of 4. If, in particular, Y has no finite-dimensional representations,
then, for every symmetric implementation S of §, either ny(S) = oo or
k = min(ny(S)) = 0, so that S is maximal symmetric. If { has finite-
dimensional representations, then § may have symmetric implementations S
such that 0 < & < oco. In this case there are finite-dimensional representa-
tions {m;}7, of U such that k = Y, dim; and all the results obtained in
[15, 18] about the existence of maximal dissipative operators which extend
S and implement §, and about the Weyl commutation relations, are valid.

2. Irreducible uniformly closed J-symmetric algebras on
II;-spaces.

We shall start this section by providing some information about J-symmetric
representations on II-spaces.
Let H = H_ & H, be an orthogonal decomposition of a Hilbert space H
-10

with a scalar product (z,y). The involution J = [ 0 1} defines an indefinite

form [z,y] = (Jz,y) on H and, with this form, H is called a Krein space.
Let k. =dim Hy. If k = min(k_, k;) < oo, H is called a II-space.

A subspace L in H is non-negative if [z, z] > 0; positive if [z, z] > 0,z # 0;
uniformly positive if there is r > 0 such that [z,z] > r(z,z) and neutral
if [z,z] = 0, for all z € L. Non-positive, negative and uniformly negative
subspaces are introduced analogously. We shall call uniformly negative and
uniformly positive subspaces uniformly definite.

If L is a subspace in H, the subspace

LW ={yeH:[z,y =0 forallze L}

is the J-orthogonal complement of L. If H is a II;-space and LN LY = {0},
then (see [23]) H can be decomposed in the direct and J-orthogonal sum

(1) H = L[+] LM
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For bounded operators B on H define an involution #:
B# = JB*J, ie., [Bz,y]= [z, B*y], T,y € H.

Then ||B#|| = ||B||. A subalgebra B of B(H) is J-symmetric if B € B implies
B# € B. Uniformly closed, J-symmetric subalgebras of B(H) are Banach *-
algebras.

A representation 7 of a *-algebra A on a Krein space H is called

J — symmetric if n(a*) = m(a)¥, a € A, and

non-degenerate if m has no neutral invariant subspaces.

If a subspace L is invariant for 7, LI is also invariant for 7. By 7, we denote
the restriction of 7 to L. If L is uniformly definite, it is a Hilbert space with
respect to the scalar product

z,y € L.

(z.4) —[z,y], if L is uniformly negative,
.’B, = . . . o,
v [z, ], if L is uniformly positive,

The norm ||z, = (z,z)Y/? is equivalent to the original norm on L and 7 is

a *-representation of A on L with respect to (,);. If H = N[+]|P where N
and P are respectively uniformly negative and uniformly positive invariant
subspaces, then H is a Hilbert space and 7 is a *-representation of A4 with
respect to the scalar product

(2) (@1[+]y1, T2 [+y2) = (21, 22)N + (y1,¥2)p, T €N, y; EP, i =1,2,

and the norm || - ||; = (,)/? is equivalent to the original norm on H. Let Q
be the projection on N along P and J = 1y — 2(Q). Then J is an involution
on H with respect to (,), i.e., 3* =J and 32 = 15, J|y = —1n, J|p = 1p
and

(3) [z,y] = Oz,y), =z,y€H.

Let L be a neutral subspace in a Il;-space H, K be the orthogonal com-
plement of L in H and M = LI © L. Then dimL = dimK <k, M is a
I1,,-space, n = kK — dim L, and

(4) IM=LeM and H=LoM&oK.
0 0J,

With respect to decomposition (4), J has the form J = | 0 J, 0 |, where
J; 0 0

Jr = J3, J1Js = 11, J3J; = 1k and J; is an involution on M. Let 8 be
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the orthoprojection on M. If L is a maximal neutral invariant subspace of a
J-symmetric algebra of operators B, then the algebra Bs = {B3: B € B}
of operators on M is Jy-symmetric and has no neutral invariant subspaces.

The following lemma considers some simple conditions on normed spaces
to be complete.

Lemma 1. Let (X, - ||) be a normed space and L be a subspace of X of
finite codimension, i.e., there is a finite subspace K in X such that X is the
direct sum of L and K.

(1) If (L, || - |) is complete, then (X,|| -||) is complete.

(ii) Let |-| be another norm on X. If (X,|-|) and (L,|-|) are complete and
the norms || - || and | - | are equivalent on L, then they are equivalent on X.

(i) If T is a linear mapping from X into a finite-dimensional Banach
space Y and X is complete with respect to the norm |z| = ||z|| + || Tz||y,
then the norms || - || and |- | are equivalent, (X, || - ||) is complete and T is
continuous on (X, | - |)-

Proof. Let (L,|| - ||) be complete. Since K is finite-dimensional, (K, || - ||) is
also complete. For z =y + 2, y € L and z € K, set

lzlly = llyll + =1l

If there is a sequence =, = Yy, + 2n, Yo € L, 2, € K, such that z,, = 0
and ||z,]| = 1 as n — oo, then, since K is finite-dimensional, there is a
subsequence {z,, } which converges to z € K and ||z|| = 1. Hence ||y, + 2| <
1Zn, |l + |2 — 2o, || = O so that y,, & —z € K. Since L is complete, we have
a contradiction. From this it follows that there is C > 0 such that

llzll < Cllz||, forz=y+2, y€ L and z € K.
Therefore ||y|| = ||z — z|| < (1 + C)||z|| and

lzll = lly + 2|l < lyll + ||zl = llzll, and flz[: = |ly]l + |2l < (1 +2C)]|z]I.

Thus the norms || - || and || - ||; are equivalent. Since (%, || - ||1) is complete,
(%,]l - |) is also complete. Part (i) is proved.
Since (L, | - |) is complete and the norms || - || and | - | are equivalent on

L, (L,]| - |) is complete and there is C; > 0 such that |y| < Ci|lyll, v € L.
By (i), (X,]l - |I) and (X,]| - ||l) are complete and the norms || - || and || - ||
are equivalent. Since all norms on K are equivalent, there is C> > 0 such
that |z| < Cy]|z||, z € K. Let C = max(C},Cs,). Then, forz =y +2, y € L,
z€ K,

|lz| < lyl + 12l < Cllyll + lizll) = Clizlh.
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Hence the identity operator from (X, || - ||;) onto (X,]|-]|) is bounded. There-
fore the inverse operator is also bounded, i.e., there is D > 0 such that

llz|l; < D|z|, z € X. Thus the norms || - ||; and |- | on X are equivalent.
Hence the norms || - || and | - | are also equivalent on X. Part (ii) is proved.
The mapping T' is bounded with respect to | - |. Hence Ker T is closed
and, therefore, complete with respect to | - |. Since ||z|| = |z|, for z € Ker T,
and since Ker T' has finite codimension in X, it follows from (ii) that the
norms || - || and | - | are equivalent on X. Thus (X, || - ||) is complete and T is
continuous on (X, || - ). N

A Banach *-algebra (A, || - ||,*) is called C*-equivalent if there is another
norm | - | on A equivalent to | - || such that (A,]-|,*) is a C*-algebra.

Theorem 2. Let (B, ||-||, #) be a uniformly closed J-symmetric commutative
algebra of operators on a Il -space H.

(i) If B has no neutral invariant subspaces, then it is C*-equivalent.

(i1) If B has no non-trivial finite rank operators, it is C*-equivalent.

Proof. Assume that £ = k_ and let B have no neutral invariant subspaces.
By Naimark’s theorem [28], B has a k -dimensional non-positive invariant
subspace L. The subspace L N LM is neutral and invariant for B. Since B
has no such subspaces, L N Lt = {0}, so that, by (1), H = L[+]L"). From
the discussion before Lemma 1 it follows that B is a *-algebra with respect
to the scalar product (,) defined in (2) as well as a J-symmetric algebra and

B# = B*. Since the norm || - ||; = (,)!/? on H is equivalent to the original
Bz|s

norm, the new norm |B| = sup,cy on B is equivalent to the original

1
norm on B. Hence (B, |- |, #) is a C*-algebra, so that the algebra (B, || - ||, #)
is C*-equivalent. Part (i) is proved.

Let B have no non-trivial finite rank operators and let it have neutral
invariant subspaces. Let L be a maximal such subspace. Then decomposition
(4) holds. Since Bg = Bf is a non-degenerate commutative J-symmetric
operator algebra on M, we obtain as in (i) that M = N[+]|P where N and P
are uniformly definite subspaces invariant for Bg. Therefore (see (2) and (3))
there are a scalar product (,) and an involution J, on M such that NV and
M are orthogonal, Jy|xy = —1n, Jo|p = 1p and [z,y] = (J22,y), =,y € M.

Define a new scalar product on H :

{Z1+y1 + 21, T2+ 12 + 22}
= (21,%2) + (y1,¥2) + (21,22), =z €L,y €M, 2z € K.
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Then

(1 + 41+ 21, To + Y2 + 2] = (J(21 + 91+ 21), T2 + Y2 + 22)
= (J321, 22) + (Say1,92) + (121, Z2)
= {Jsz1, 22} + [Y1, 9] + {J121, 22}
= {J3z1, 22} + (Jay1, ¥2) + {121, 72}
={3(z1 +y1 +21), 72 + y2 + 22}

where J = . Therefore, for B € B(H),

So o
oo
oo

[Bz,y] = {JBz,y} = {Jz,IB*Jy} = [z, B*y], so that B¥ =IB*J

where B* is the adjoint of B with respect to {, }. Since the norm (,)*/?> on M
is equivalent to the original norm, the new norm {, }}/2 on H is equivalent
to the original norm and

H = L{+}N{+}P{+} M.

Since L and L1 are invariant for B, since N and P are invariant for Bg
and J;|y = —1y and J2|p = 1p, we have that with respect to the above
decomposition of H

By, By By3 By 0 0 0 J;

| 0 By, 0 By _10-1500
B = 0 0 Bay By |’ forevery Be B, andJ= 0 0 1p0
0 0 0 By Js 0 00

If B33 = 0, B is a finite rank operator. Since B has no such operators, the
mapping B — Bs3 is a #£-isomorphism of B onto B, = {yBy = B33 : B € B}
where <y is the orthogonal projection onto P. Set

T(B)=(1z©7)B(1r©7)-

Then T is a linear mapping from B into a subspace of operators on a finite-
dimensional space L{+}N{+} M.

Together with the usual operator norm ||- || on B we consider the following
norms on B :

1Bll: = | Bssll + | Busll + 1 Bsall, || Bll2 = [| Bss]|
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and

|B| = |1 Bas|| + [ Busl + || Baall + IT(B) = 1Bl + I T(B)II.

Then B is a normed space with respect to all of them and a Banach space
with respect to || - ||. Since ||B|| < |B| < 4||B||, (B,|-|) is a Banach space.
Hence, by Lemma, 1(iii), the norms |-] and ||-]|; are equivalent, B is complete
with respect to the norm || - ||; and T is continuous on (B, || - ||1) . Therefore
(KerT, | - ||l1) is complete and there is C' > 0 such that

1Buall < IT(B)]} < Cl|Blls.-
Let B € KerT and let A = B¥B = (JB*J)B. Then
By =Bp=A4,=4,=0, 1<i<4,
B4 = Bys = Byy = Byz = Byy = Agz = Ay = Agz = Ay =0,
and
A3 = J1B3;Bss, Ay = J1 B3y Bas, Asz = B33Bss, Asy = B3;Bas.
Therefore

Il Avall = 1|1 B354 Bsall = || Bsal®
<ClAlL = C(||Ass| + [| Al + l| As4l])
= C(||B33Bss|| + ||J1 B34 Bss|| + || B33 Ba4l|)
< C(IBssll® + 2[| Bss |l [| Baall) -

For B # 0, Ba; # 0. Hence t = || Ba4||/|| Bas|| satisfies the inequality
t*-2Ct—-C <0.

Therefore t < D, where D = C + (C? 4 C)'/?, so that || Bs4|| < D||Bss]|. In
a similar way, considering BB¥, we obtain that ||B;3|| < D||Bss||. Thus, for
B eKerT,

I1Bll2 = [|Bssll < 1Blly = [|Bssll + | Busll + | Baall
< (1+2D)||Bssll = (1 4 2D)|| B2,

so that the norms ||-||; and || - ||, are equivalent on Ker T'. Since Ker T has a
finite codimension in B and since (B, || - ||;) and (Ker T}, || - ||;) are complete,
it follows from Lemma 1(ii) that the norms || - ||, and || - ||, are equivalent



DERIVATIONS OF C*-ALGEBRAS 419

on B, so that the norms || - || and || - ||» are equivalent on B and (B, || - ||2) is
complete. For B € B,

| B#||, = | B3]l = |Basll = | Bl
and
|B* B||, = | B33 Bssll = || Bss||> = || BIf3-

Therefore (B, || - ||z, #) is a C*-algebra, so that (B, ] - ||, #) is C*-equivalent.
1

Making use of Theorem 2 we shall now prove the following main theorem
of this section.

Theorem 3. An irreducible, uniformly closed, J-symmetric operator alge-
bra on a Il -space H contains the algebra C(H) of all compact operators.

Proof. Let B be a uniformly closed J-symmetric algebra on a Il;-space
H,k # 0, and let it be irreducible, i.e., it has no closed invariant subspaces.
Suppose that B has no non-trivial finite rank operators. Then any uniformly
closed J-symmetric commutative subalgebra of B also has no non-trivial fi-
nite rank operators. By Theorem 2, all these subalgebras are C*-equivalent.
Cuntz [6] proved that a Banach *-algebra is C*-equivalent if the closed com-
mutative *-subalgebra generated by any selfadjoint element of the algebra is
C*-equivalent. Applying this result to the algebra B, we obtain that it is C*-
equivalent. Then it follows from [40] (cf. [18]) that H = N[+]|P, where N
and P are respectively uniformly negative and uniformly positive subspaces
invariant for B and dim N = k. This contradiction shows that B must have
non-trivial finite rank operators. Therefore it follows from Barnes’ theorem
[3] that B contains all finite rank operators. Since B is closed, C(H) C B
and Theorem 3 is proved. O

3. Almost Hermitian J-symmetric representations on Il;-spaces.

A representation 7 of a *-algebra A on a Banach space is Hermitian if, for
a =a* € A,Spn(a) C R It is almost Hermitian if, for a = a* € A and
e > 0, there is b = b* € A such that

(5) |m(a) —7(b)|| <e and Spw(b) CR

A *-algebra is Hermitian if all selfadjoint elements have real spectrum. We
say that a Banach *-algebra is almost Hermitian if selfadjoint elements
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with real spectrum are dense in the real part of the algebra. Clearly, all
*-representations of Hermitian algebras are Hermitian and all continuous
*_representations of almost Hermitian algebras are almost Hermitian.

A dense *-subalgebra A of a unitial Banach *-algebra il is a Q-subalgebra if
1 € Aand Sp,a = Spy a, for all a € A. The following theorem describes the
structure of almost Hermitian non-degenerate representations on Il;-spaces.

Theorem 4. Let A be a *-algebra with identity.

(i) A has no almost Hermitian, J-symmetric irreducible representations
on Hy-spaces, k # 0.

(ii) Any almost Hermitian, J-symmetric and non-degenerate representa-
tion m of A on a ll}-space H has decomposition H = N[+]P, where N and
P are respectively uniformly negative and uniformly positive invariant sub-
spaces, and, therefore, w is Hermitian and similar to a *-representation . If
in addition, A is Q-subalgebra of a Banach *-algebra, then 7 is automatically
bounded.

Proof. Let m be an almost Hermitian, J-symmetric and irreducible repre-
sentation of a *-algebra A on a Il -space H = H_® H,, k # 0. Choose
e€ H ,fe H, and |le]| =||fll =1. Let T € B(H) be such that

Tz = (z,e)f —(z,f)e, z€ H.

If L is the subspace of H generated by e and f, then T|, = [(1) —01 and

T|r+ =0, L is invariant for the involution J and J|, = _01 (1) . Therefore

T is a finite rank operator, T# = T and SpT = {0, +1}.

The uniform closure B of the algebra m(.A) satisfies the conditions of The-
orem 3. Hence T € B and there are ¢, € A such that n(c,) — 7. Then
n(c) = n(c,)* = T# = T. Set a, = (¢, + ¢)/2. Then a;, = a, and
m(a,) — T. Since 7 is almost Hermitian, it follows from (5) that there are
b, = b, € A such that n(b,) = T and Spw(b,) C R.

Let B be a Banach algebra, z € B and z,, — z. Newburgh [22] showed that
if W is a non-empty open and closed subset of Sp(z) and V is a neighbour-
hood of 0 in C, then there is a positive N such that Sp(z,)N (W +V) #£ @
forallm > N, where W +V ={y+2z: y € W,z € V}. From this result it
follows that there is m such that, for n > m, Spn(b,) contain A, for which
|i — An| < 1. Hence A, € R. This contradiction proves part (i).

Let now 7 be a J-symmetric, non-degenerate representation on H. Ismag-
ilov [11] obtained the following decomposition of H :

H = N[+]H'[+]--- [+]H™[+]P,
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where all the summands are invariant for 7. The subspaces N and P are
respectively uniformly negative and uniformly positive. All the subspaces
Hi 1 < j<m,are IIx,-spaces, k; # 0, and the representations my; are J-
symmetric and irreducible. If 7 is almost Hermitian, all 7g; are also almost
Hermitian. From part (i) it follows that g = 0. Thus H = N[+]P.

Since x and 7p are *-representations of A with respect to (,)n and (,)p,
for any a = a* € A, wy(a) and 7wp(a) are selfadjoint. Hence Spmy(a) C R
and Sprp(a) C R Thus Sp n(a) = Spry(a) USpmp(a) C R and 7 is
Hermitian.

From the discussion at the beginning of Section 2 it follows that = is a
*.representation of A with respect to the scalar product (,) on H defined in

(2). Since the norm || - ||; = (,)'/? is equivalent to the original norm || - ||
on H, the identity operator from (H,|| - ||) onto (H,|| - ||;) is bounded and,
therefore the representation = on (H,|| - ||) is similar to the *-representation

mon (H,| -|1). We also have that
I7(@)lli = lIr(a*a)ll: = r(r(a*a)) < rala”a),

where r and r4 are the spectral radii on B(H) and A respectively. Let
A be a Q-subalgebra of a Banach *-algebra Y. Then r4(a*a) = ry(a*a) <
lla]|®>. Therefore = is bounded on (H, || - ||1), so that = is also bounded on

(H, Il -1D- O

The following example shows that the condition in Theorem 4 that the
representation m is almost Hermitian is absolutely essential.

Ezample. Let A be the algebra of all complex 2 X 2 matrices, H be the
-10

2-dimensional Hilbert space and J = ( 01

) be an involution on H. Set

[z,9] = (Jz,y), z,y€H, and A* =JA"J, A€ A,

where A* is the adjoint of A. Then H is a II;-space, # is an involution on
A and the identity representation 7 of the *-algebra (A, #) is J-symmetric
and irreducible. For A = (1)_01 ,A#* = A, so that A is selfadjoint with
respect to # and Sp (A) = {—1,1}. Thus 7 is not Hermitian and, since A is
finite-dimensional, it is not almost Hermitian.

4. J-unitary representations of groups with almost Hermitian
group algebras.

In this section we make use of Theorem 4 to show that all bounded contin-
uous J-unitary representations on II.-spaces of locally compact groups with
almost Hermitian group algebras are similar to unitary representations .
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A representation T : g € G — T'(g) € B(X) of a group G on Banach space
X is bounded if there exists C' > 0 such that ||T(g)|| < C for g € C.

The following lemma is a simple corollary of Johnson’s theorem ([14],
Theorem 3.4).

Lemma 5. Let T(g) be a bounded representation of a group G on a reflezive
Banach space X and let L be a closed subspace in X invariant for T. If
dim L < oo or codim L < oo, then L has an invariant complement.

Proof. Let M be any subspace of X which complements L, so that X = L+ M.
Since X is reflexive and dim L < oo or codim L < oo, the Banach algebra
B(M, L) of all bounded operators from M to L is reflexive. Let @ be the
projection onto M along L. With respect to the decomposition X = L + M

we write
7(9) = (*g") j%) . geq,

where X is the restriction of T' to L, u(g9) = QT (9)Q is a representation of
G on M and £(g) € B(M, L). Define a representation p of G on B(M, L) by

the formula:
P(9)Z = Xg)Zu(g™'), Z e B(M,L).

Since T is a representation of G,

£(gh) = Mg)é(h) +&(g)u(h),  g,hEQG.

Set n(g) = &(g)u(g™"). Then (g) is a bounded mapping from G into B(M, L)
and

n(gh) = &(gh)p ((9h)™") = [M9)E(h) + E(g)n(h)u(h™)u(g™)
= p(g)n(h) +n(g)-

Thus 7(g) is a bounded p-cocycle. It follows from Johnson’s theorem [14]
that 7(g) is inner, i.e., there is Z, € B(M, L) such that n(g) = p(9)Zo — Z,.
Hence

£(g) = M9)Zo — Zop(9), 9€G,

so that the subspace F = {—Zyz + 2 : € M} is an invariant complement
of L. 0

A bounded operator U on a Krein space H is J-unitary if U has a bounded
inverse and [Uz,Uy] = [z,y], =,y € H.

Lemma 6. Let T(g) be a bounded J-unitary representation of a group G
on a Ii-space H and let L be a mazimal invariant neutral subspace in H.
There are invariant subspaces R and M in H such that
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(i) H = (L + R)[+]M is the direct sum of L,R and M, and dimL =
dimR < k;

(ii) the restriction of T'(g) to the subspace L = L + R is similar to a
unitary representation of G,

(iii) the restriction of T(g) to M is non-degenerate.

Proof. As in (4), H = L) @ K, where dim L = dim K < k. Since T is J-
unitary, Lt is invariant for T' and codim LIt = dim K < co. By Lemma 5,
LM has an invariant complement R in H. Hence dim R = dim K = dim L.
The subspace £ = L + R is invariant for T' and £ = LI 0 R,

Let z € LN LM, Then z = z + y where z € L and y € R. Since z € LI*]
and L C LM, we have that y = 2 —x € LN R = {0}. Thusy = z — 2 = 0,
so that z = z € LN RM). Since R is a complement of LI,

{0} = HWY = (LM + R)[” - (L[“)“I NRY = LnRW.

Thus z = 0. Hence LN LM = {0} and it follows from (1) that H = L[+]£M.
Since T is J-unitary, £t is invariant for 7. Suppose that £ has a neutral
subspace N invariant for 7. Then L+ N is a neutral invariant subspace larger
than L. This contradiction shows that M = L[] has no neutral invariant
subspaces, so that the restriction of 7" to M is non-degenerate.

Let V(g) = T(g)|c be the restriction of T to L. Then V is a bounded
finite-dimensional representation of G. It is well-known that V is similar to
a unitary representation. O

Theorem 7. Let G be a locally compact group with almost Hermitian group
algebra L'(G). Then every bounded continuous J-unitary representation of
G on a I -space is similar to a unitary representation of G.

Proof. By Lemma 6, H = L[+]M where £ and M are invariant for 7', the
representation V(g) = T'(g)|. is similar to a unitary representation and the
representation U(g) = T'(g)|r is non-degenerate. Then (see [23], [34-36))
M is a II,-space, n < k, and U is a J-unitary non-degenerate represen-
tation of G on M. The representation U of G extends to a J-symmetric
non-degenerate representation 7 of the group algebra L'(G) on M. Since
L'(G) is almost Hermitian, 7 is almost Hermitian and, by Theorem 4(ii), it
is similar to a *-representation . Therefore U is similar to a unitary repre-
sentation , so that T is also similar to a unitary representation. ]
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5. Closed derivations on C*-algebras implemented by symmetric
operators.

At the beginning of this section we consider briefly the link between *-
derivations of C*-algebras implemented by symmetric operators and J-sym-
metric representations of *-algebras on Krein spaces.

Let 4l be a C*-algebra of operators on a Hilbert space $) and let § be a
closed *-derivation from { into B($), i.e., § is a closed mapping from a dense
*-subalgebra D(4) of il into B($)) such that

§(AB) = 6(A)B + AS(B) and &(A*) =58(A)*, A Be D).

Then D(d) is a Banach *-algebra with respect to the norm ||A|s = ||A] +
[[6(A)II-
An operator S on § implements § if D(S) is dense in §) and

AD(S) € D(S) and  §(4)|p(s = i(SA — AS)[n(s)-

If T extends S and implements §, then T is a d-extension of S. If S is
symmetric and has no symmetric d-extensions, it is a mazimal symmetric
implementotion of é.

Let S be a symmetric operator, S* be its adjoint, N.(S) be the deficiency
spaces and n.(S) = dim N.(S) be the deficiency indices of S. Then D(S*)
is a Hilbert space with respect to the scalar product

(z,y) = (z,y) + (572, 5"y), =,y € D7),
and it is the orthogonal sum of the subspaces D(S), N_(S) and N, (S) :
D(S*) = D(S) < + > N(S), where N(S) = N_(S) <+ > N.(95).

Let Q and Q. be respectively the projections on N(S) and N, (S) in
D(S*). Then J = 2Q, — Q is an involution on N(S) and N(S) is a Krein
space with respect to the indefinite form

[z,9] = (Jz,y), =,y € N(S).

It decomposes into a J-orthogonal and orthogonal sum of uniformly positive
and uniformly negative subspaces N, (S) and N_(5). If £ = min (n4(S)) <
oo, then N(S) is a II;-space.

If a symmetric operator S implements a *-derivation ¢, then D(S) is invari-
ant for all operators A € D(6) and D(S*) is also invariant for all A € D(9).
We define a representation 7% of D(8) on N(S) by the formula:

75(A) = QAQ, A€ D(8), ie.,ni(A)z=QAz, z € N(S).
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Theorem 8 ([17]). The representation n of the Banach *-algebra D(5) on
N(S) is J-symmetric and bounded:||n%(A)|| < ||Alls. There is a one-to-one
correspondence between closed symmetric d-extensions of S and neutral sub-
spaces in N(S) invariant for &. There is a mazimal symmetric 6-extension

T of S and the representation n3. is non-degenerate.

An operator R is dissipative if (Rz,z) + (z,Rz) < 0, z € D(R), and
mazimal dissipative if, in addition, it is not a proper restriction of any other
dissipative operator. A closed operator generates a strongly continuous semi-
group of contractions if and only if it is a maximal dissipative [34].

Making use of Theorem 4, we shall now prove the following theorem.

Theorem 9. Let i be a unital C*-algebra of operators on a Hilbert space
$ and § be a closed *-derivation from U into B(5)). Let S be a symmetric
implementation of § and n = min (n4(S)) < co.

(1) If n # 0, Y has irreducible *-representations {m;}™, such that n =
Y dimm;. If i has no finite-dimensional representations, thenn =0, i.e.,
S is a mazimal symmetric operator.

(i1) For all mazimal symmetric d-extensions T of S, the representations
7} of D(8) on N(T) are J-equivalent, similar to *-representations of D(6)
and extend to bounded *-representations of 4 on N(T'). For every T, there
are mazimal dissipative operators R and W, R* = W, such that the operators
tR and —iW extend T and implement 6.

Proof. By Theorem 8, 7% is a J-symmetric representation of D(d) on the
II,,-space N(S). Let L be a maximal neutral subspace in N(S) invariant
for 74 and L be the J-orthogonal complement of L in N(S). By Law
of inertia [23], dimL < n. By Lemma 2.5 [21], L = LI/L is a I;-
space, k = n — dim L, and the quotient representation 7% of D(8) on L
is J-symmetric and non-degenerate. It was proven in [22] that D(J) is
a Q-subalgebra of Y. Therefore D(§) is a Hermitian algebra and it fol-
lows from Theorem 4 that 7 is bounded with respect to the norm on Y
and that L = N [+]P, where N and P are respectively uniformly nega-
tive and uniformly positive subspaces invariant for #%. The representations
(7§) v and (7), of D(8) on N and P are *representations and extend to
*-representations of {{. By Law of inertia, & = min(dim N, dim P). Hence
there are irreducible *-representations {m;},_; of { such that

)4
k=) dimm;
=1

Let (%), be the restriction of 7§ to L. In [5] (cf. [22]) it was shown
that 1 € D(§). Hence there is a nest {0} = Lo c L, C --- C L, = L
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of subspaces invariant for (%) ., such that the quotient representations of

D(6)on L;/L;_,, 1 < j < g, are irreducible and non-trivial. It follows from
Theorem 6 [22] that these representations extend to bounded representations
of il similar to *-representations 7; of {I. Hence

q q
dimL =) dim(L;/L;_;) = ) _dim;.
j=1

=1

Setting 7; = m,4; and m = p + ¢, we obtain that

n=k+dimL:im~.

=1

Part (i) is proved.

Any derivation implemented by a symmetric operator S has infinitely
many maximal symmetric implementations 7" which extend S. In general,
the corresponding representations 7. are not J-equivalent. However, it was
shown in [21] that if min (n4(S)) < oo, then all the representations 7§ are
J-equivalent.

We have that k = min (n4(T')) < min (n4(S)) < co. By Theorem 8, 75 are
J-symmetric, non-degenerate representations of D(§) on the IT;-spaces N(T').
Since D(6) is a Q-subalgebra of 4, it is a Hermitian algebra. From Theorem
4 it follows that 3. are similar to *-representations and bounded with respect
to the norm on Y. Therefore they extend to bounded *-representations of iU
on N(T); this is exactly the sufficient condition of Theorem 3.2 [18] for the

maximal dissipative operators R and W to exist. O

The Weyl canonical commutation relation [43] for unitary one-parameter
groups {U(t) : t € R} and {V(s) : s € R} on $ is the operator identity:

Ut)V(s) =e*V(s)U(t), tseR

Jorgensen and Muhly [15] considered the infinitesimal Weyl relation in the
strong sense for U(t) and for a densely defined symmetric operator S :

U)D(S) CD(S) and (SU) - U®)S)ns) = tU(D)los), tER

If S is selfadjoint, this is equivalent to the Weyl relation for U(t) and for
the unitary one-parameter group V(s) = e~*S. However, if S is not self-
joint, it can easily fail to have any selfadjoint extensions satisfying the
Weyl relation with respect to U(t) even when S has equal deficiency indices
([15, Th. 2]). Using Phillips’ rtesult {36}, Jorgensen and Muhly showed
that if min (n4(S)) < oo, then S has a maximal dissipative extension R
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which generates a strongly continuous semigroup of contractions {R(t)}:>0
on $) such that

U(t)R(s) = e**R(s)U(t), forall —oo<t<ooand0<s< oco.

Let Ay be the commutative C*-algebra generated by the group U (t). The
expression o(U(t)) = itU (t) defines an unbounded *-derivation o on Ay and
the operator S implements o.

Suppose now that § is a *-derivation of an arbitrary C*-algebra of opera-
tors 4 on ). Set

G = {U € D(d) : U is invertible in 4 and §(U) = A(U)U, A(U) € C}.
If U € G, it follows from Theorem 5 [22] that U~' € D(4). Then
U =-UU)U =-NU)U,
so that U~! € G. For U,V € G,
SUV) = US(V) + 8(U)V = (AU) + AV)UV,

so that G is a group. One can easily show that G is a normed group with
respect to || - ||s and that A is a continuous character on G.

If a symmetric operator S implements § and min (n4(S)) < oo, it follows
from Theorem 9(ii) that there is a maximal dissipative operator R such that
iR extends S and implements 4. Let {R(t)};>o be the strongly continuous
semigroup on §) generated by R. Then Theorem 4.2 [18] holds and we obtain
the following generalization of the result of Jorgensen and Mubhly.

Corollary 10. Let an element U € D(6) be invertible in U. The operator
R + 6(U)U! generates a one-parameter semigroup T(t) of operators and
UR(t) =T(t)U, t > 0. If S(U)U~* commutes with R, then

UR(t) = R(t)e® @'y,  t>0.

In particular, UR(t) = e* Y R(t)U, for U € G and t > 0.
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