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A weak-type inequality is proved for Bochner-Riesz means
at the critical index, for functions in LP(R?), 1 < p < 4/3.

1. Introduction.

For a Schwartz-function f € S(R?) let f(g) = [ f(y)e *¥4dy denote the
Fourier transform and define the Bochner-Riesz means by

Suf@ = o | (1 KEY Figperes ae

we set S* = S}. It is a classical theorem of Bochner that S* extends to
a bounded operator on LP(R?), 1 < p < oo if A > 1/2. The theorem of
Carleson and Sj('ilin [2] states that S* is bounded in LP(R?) if 0 < A < 1 and
3“/\ <p< i 2)‘ It is well known that the L? boundedness fails if p < < 3+2/\
and C. Fefferman [11] showed that S° is not bounded in L?(R?) if p # 2.

In this paper we are concerned with endpoint estimates for the critical
exponent po(A) = 57%5. In [4, 5] M. Christ proved that S* is of weak
type (po(A),po(A)) if 1/6 < A < 1/2 (for related results see also [6, 15]).
A combination of L?-variants of Calderén-Zygmund theory (as used first
by Fefferman [10]) and the L? — L? restriction theorem for the Fourier
transform (valid for p < 6/5 = po(1/6)) is essential in Christ’s analysis; this
accounts for the restriction A > 1/6. It had been an open problem whether
the weak type inequality for the critical index A(p) = 2(1/p — 1/2) — 1/2
is true for 6/5 < p < 4/3 (although for radial functions this was proved by
Chanillo and Muckenhoupt [3]).

Theorem 1.1. Suppose that 0 < A < 1/2. Then for all o > O there is the
weak-type inequality

| I,
{r e B : 9 @)]>al| < CZ0E, po= 5o,
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where C' does not depend on [ or a.

By scaling the same estimate holds for S3, uniformly in R, and a standard
argument gives that limg_,, Shf = f in the topology of the weak type space
LPo> provided that f € L (R?).

We shall also prove an L? endpoint version of the Carleson-Sjolin theorem.
Define

(1-1€P")%
1.1 = .
() ™M) = T gt - e

Theorem 1.2. Suppose that 1 < p < 4/3 and \(p) = 2 (-11; - %) — 5. Then

M)~y 18 a Fourier multiplier of LP(R?) if and only if v > %.

The necessity of the condition v > 1/p was proved in [14], the sufficiency
for p <6/5 in [15].

In what follows ¢ and C will always be positive numbers which may assume
different values in different formulas.

2. Strong type estimates.

For an interval I on the real line denote by I* the interval with same midpoint
and double length. Suppose J = {I;},>0 is a collection of intervals such that
I, C (1/4,4) and 277973 <|I;| <277 and such that
Lnr; = if 7 # 5"
For each j > 0 let ¢; be a C*-function supported in I; with bounds
[o] <2, e=o0,1,2.

Let n € Cg°(R?) such supp(n) C {{ € R? : [£ /6] <1071, & > 0}.
Define the operator T} by

(2.1) T, 1) = (&), (€ (&)

T; is a bounded operator on L' with operator norm O(2/2), and Cérdoba
[8] showed that the L*/® operator norm of T} is O(j'/*). We note that in
order to prove results such as Theorem 1.2 for p > 1 it is not sufficient to
derive sharp L? bounds for the individual operators T;. Our main result is

Theorem 2.1. Suppose that 1 < p < 4/3 and A(p) = 2 (;7 - %) —1and3,
T; are as above. Then there is the inequality

> Tfi)| <C (Z [22® ||fj[lp]p)

4

(2.2)
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In particular if

(2:3) m =3 27 Pan(€);(1¢))

then m is a Fourier multiplier of L? if {a;} € ¢* (simply apply Theorem
2.1 with f; = a;279*® f). It is easy to see that the multiplier m, , in (1.1)
is a finite sum of a smooth compactly supported function and rotates of
multipliers of the form (2.3), with a; = ¢j~. Therefore Theorem 2.1 implies
Theorem 1.2.

Proof of Theorem 2.1 By duality the inequality (2.2) is equivalent to

1
q

(2.4) (Z [2—”“">Hij||q]"> < Clfle  a>4

J

As in [8] one decomposes each ;(| - |) into pieces which are essentially
supported in rectangles of dimensions (c277/2,¢279). To this end let 8 €
C$°(R) be supported in (—1,1) such that Y02 B(s—v)=1forall s € R
Then define T} by

T7F() = B*6 - V)T F(©).
For n < j/2 let
3N ={(yv)ez: 212-n=1 |y — | < 29/,
Notice that T7f T]?"f =0 if (v,v') € 3} and n < 0. Therefore
(Z 2|13 )

J

Q=

2

2
1}
2

> TS

(u,V’)EB;‘

— E [2—21A(4')

j

2 T

(2.5) Si Z 9—2iA(d)

n=0 | j>2n

1
2

We shall show that for ¢ > 4 the n'® term in (2.5) is bounded by
C2~"(1/2=2/9)|| ||, from which (2.4) immediately follows. This is contained

m
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Proposition 2.2. For f,g € S(R?) let
Bi(f.9) = > TITg.

(vv')e3}

Then for q > 4 there is the inequality

(2.6) (Z[2‘2j*‘q')!ll3§‘(f,g)ll%]%) < 2D flL gl

j>2n

Proof. The inequality follows by complex interpolation for bilinear mappings
from the cases ¢ = 4 and ¢ = oco. The correct interpretation of (2.6) for
g = oo is of course

>, T}y

(v,v')€37

sup 27~/ < C27[ flloollglloo-

M

But this is immediate since each operator T} is bounded on L* with norm
independent of j and v and since the cardinality of 37 is bounded by C27/2 x
21/2=n — CQi=",

We shall now prove the required estimate for ¢ = 4 which is

1/2
(2.7) (Z IIB?(f,g)Ili) < Clifllllgls

jz2n

uniformly in n.

We first use Plancherel’s theorem and C. Fefferman’s basic observation
([12, 8]) that for fixed j the sets supp(T ”f) + supp(T" ) are essentially
disjoint; that is each ¢ € R? is contained in at most M of these sets where
M is independent of j. This yields the inequality
(2.8) SBHLQI; < C Y > T gl

j>2n j>2n (vp)E3?
It is crucial for this proof that a finer decomposmon can be made depending

on how far apart the supports of T”f and T"g are, that is, depending on n.
We define operators T;* by

TIRF(E) = BP6 — wTHF(€)

so that 1{;'“\]‘ is supported in a rectangle of dimensions (C2797", C277). Again
one can check that for fixed j and fixed (v,v') € 37 each £ € R? is con-

tained in at most M of the sets Ef,‘:w, = supp(T;*f) + supp(T} *g) where
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M is independent of j, v, v'. Each E;f,f,:,,, is contained in a rectangle of
dimensions (C'279%",(C'277). For fixed j, v, V' there are no more than
C"2li=2m) of these rectangles and they form an essentially disjoint cover of
supp(fl/’ﬁf ) + supp(T}'g), the latter set being contained in a rectangle of di-
mensions (C279/2,C279/2 ™). The disjointness property and Plancherel’s
theorem imply that

(2.9) Y UBfal <C Y Y S T Tl

jz2n J22n p.p' (v,v')E3T
For any integer « with |k| < 2™ let
Wi, ={p€Z:|2"p-2""k <27}
Then observe that

(2.10)
TfTY Y9 =0  if (v,0') €32, pe s, p' € Ws,, s~ K| >8.

7 n

Indeed, if p € 20%,, u' € 205, TY*f TV *g # 0 then |27y — 279/%| <
273241 and |2nIp! — 2792/ < 279/24If (v,') € 37 this implies that
[2r=3(p — p')| < 279/242 4 27 < 5.27" and therefore |k — k'| < 7, hence
(2.10). Moreover we note that for 4 € 20%, the support of I?Tf is essentially
a rectangle with eccentricity 2~™ such that the directions of its sides depend
on k but not on u.

By (2.9) and (2.10) we obtain that
> IBF(f 913

jz2n
: 3’
<oLT £ (£ ) | £ s
i>2n K Py weWs v peqps’ v
|&'—k|<8 o 2
3 5)°
<oLs £ (g sm)| || £ s
ji>2n &k g weWs;, v wexs vV
|k ~k|<8 4 m 4
1t 3
SIS (DM 5
j>2n kK ye‘lﬂ;.‘n v 4}
1A\ 2

> 2 ( > ZIT,-”“gP)E

j>2n k peEWS v
in 4
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Therefore the desired estimate (2.7) follows from the case ¢ = 4 of the
following lemma.

Lemma 2.3. For q > 2 there is the inequality

Qe

1119
2

(2.11) > ( > ZITZ"flz) < Clfll,

i>2n & pews, v
q

where C does not depend on n.

Proof. It suffices to prove (2.11) for ¢ = 2 and ¢ = co. Let h}* be the Fourier
multiplier defining 7.

For fixed p and j there are at most three v such that 7;* # 0 and since
the supports of the functions 1; are disjoint it follows that each ¢ € R? is
contained in at most 6 of the sets supp A5”. Moreover for fixed 1 and j there
are at most two « such that 4 € 20%,. Now (2.11) for ¢ = 2 is an immediate
consequence of Plancherel’s theorem.

In order to check the required estimate for ¢ = oo we consider for a fixed
a = {a,,} € ¢>(Z?) the multiplier

my (€)= D D anhi* ()

REWT, v

and denote by KJ* its inverse Fourier transforrn

Let ef = (27"k, V1 — 2727k2) and e§ = (—v/1 — 272"k2,27"k) and let L"
be the symmetric linear transformation in IR2 with L7 el = 2] ey, L}, e5 =
29~"e5. Then h[*(L%,-) is supported in a cube Q" of sidelength 10 and for
fixed ] the cubes Q”“ have finite overlap, uniformly in 7. Moreover it is easy
to see that for p € 207,

Since the Sobolev-space L2 is a subspace of L' we obtain that

s ]| <o el

oo

VB = 22 R () )l

<c Y Za"“aga [}w (L%, )]

laj<2 1l v

<c (Z IauuP) 2

784
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where C' does not depend on j, x and a. This implies

sup sup (Z Z]T;’“j’[z)
j>2n K ueﬁﬂ;‘n v

= supsupsup sup |KI®x f(z)]

j22"’ K (EER:Z ”u”52(32)gl

<supsup sup JE"LlIflle < Cliflle

ji22n K ”allg2(7g2)sl

which is the desired estimate for ¢ = oo. 0

Remarks.

(a) For ¢ = oo the inequality (2.11) is closely related to an estimate on
square-functions with respect to an equally spaced decomposition, see e.g.
[9, 13]; in fact it can be obtained from these estimates.

(b) A variant of the above proof can be used to obtain the known sharp
L* bound ||Tj|| s 24 = O(j%/*) without making use of the sharp L? bounds
for Kakeya-maximal functions. o

(c) The observation concerning the overlapping properties of supp 7" f +

supp Tj"'“ "g can be used to improve on some bounds for sectorial square-
functions in Cérdoba [9]. This has been observed by A. Carbery and the
author.

(d) The decomposition in terms of the bilinear operators B} is related to
a decomposition used by Carbery [1] in his work on weighted inequalities for
the maximal Bochner-Riesz operator S2. The techniques above can be used
to prove new weighted inequalities for S2.

3. Weak type estimates.

Let J be a family of disjoint intervals as introduced in §2 and let T; be as in
(2.1). Define
Tf =Y 27T f.

320

We shall prove the estimate

Ir1e 4
o PS3

(3.1) (= € R ¢ [T ()] > a}l <C

where A(p) = 2(1/p — 1/2) — 1/2 and C does not depend on f or a. Of
course Theorem 1.1 is a consequence of (3.1).
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As in [5] the proof is based on an interpolation. The argument uses
Theorem 2.1 and known estimates previously obtained in the proof of weak-
type (1,1) inequalities (see [4, 7, 15]).

Let f € LP(R?) where 1 < p < % and let & > 0. In order to estimate
the quantity on the left hand side of (3.1) we apply the Calderén-Zygmund
decomposition to |f|? at height o?. We obtain a decomposition f = g + b
where ||gllc < Ca, lgll, < Clifllp, & = X b, suppbg C Q, the squares
@ are pairwise disjoint, HbQHp < Ca?lQ, YR < Ca™™||f||p; and as a
consequence a?||gll2 + [b]2 < CILfIl.

Let 1(Q) be the sidelength of @ and B; = 3 5, g)=2ibo if j > 0 and
By = 3 0.4(g)<0 bo- Then

{IL' S R2 : |T)‘(p)f($)] > a} C Ql UQQ U Qg U Q4 UQ5

where ; is the union of the double squares Q* and

0, = {2: € R : |T*Py(z)| > %}

03 = {a; ER: DN 27PPTB;_(z)

>0 j>s

>g}
>g}
>9}.

Q4 = {z € R2 : Z2~j)\(p)TjB0(.’II)

720

Z 2 2—j/\(p)Tij+U ($)

>0 >0

ot

Q5:{$€R2\Qll

By the disjointness of the squares ) we have

| < ZIQ | < CHfII

and Chebyshev’s inequality and the L?-boundedness of 7% imply

2 P
< IV & o lblE I

Next we choose r such that p < r < 4/3. We shall show that the following

estimates hold with e = (£ —1).
P

T

(3.2) > 2 AOITB; | < C27a P |Ib)E, s>0,

i>s

r
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(3.3) 27O T Boll; < G279 | b|I7, 720,
p
(3.4) > 2 AMTB, ., <c2eblr, o >0.
720 LP(R?\2)

From (3.2-3.4) it follows by applications of Minkowski’s and Chebyshev’s
inequalities that

bllP »
0]+ 10 + ] < 0 < TN

af
In order to prove (3.2-4) we use analytic interpolation (i.e. the Phragmen-
Lindelof principle) similarly as in [5]. For Re (z) € [0, 1] define

B,.(z) = |B;(x)[""~**/" sign(B;(x))

and

Since 27771+ Ty is a bounded operator on L! with norm independent of
7 we obtain

(3.5)
Y 27UEITB; il SO IBjmsrrirlls < Cl0IIE
Jj>s 1 i>s
(3.6) 12770 DT By 14y [l < ClIBolly < C'[jB.
From estimates in [7] (or [15]) it follows that
2
(3.7) Sontrnrp < o2 arb
ji>s 2
(3.8) 1277+ By gy |l < C2792)0017
and also that
(3.9)
D 27 EITB i < C27° Y ||Bjtosirlls < C'277Ib]I2.
720 L1(R2\Q1) 120
Using the inequality ||F||, < CHFHI%_1||F||§_§ we get from (3.5), (3.7) and
from (3.6), (3.8) that
(3.10) Y2 HEITB | < C27F o b)fp

i>s

r
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r—1

(3.11) 12777 OHIT By 1y 7 < C2777 o270 b2

Now by Theorem 2.1 it follows that

(3.12)
Y 2B, |l <O Bl < ClBIE
ji>s r i>s
(3.13) 12797 By ir I} < CllBoir I < Cl10IE
(3.14)

T

< CY Bjsoirlly < ClIBIIE.

j20

22T By i

i20

T

Now let h be arbitrary function in L?, p’ = p/(p — 1), with |||l < 1 and
define
h.(z) = |h(z)|*"/" sign(h(z)).

Moreover let g be an arbitrary function in L” with ||g||,» < 1. We then apply
the Phragmen-Lindel6f principle to the functions

2 Wi,(2) = / S 2B, (z)g(x)de
i>s
2 Wos(e) = [ 27O, By (0)g(w)do
2z Wi, (2) = /Z2‘77(Z)7}Bj+,,)z(m)hz(x)dx
=20
and estimate these functions at z = 6 chosen such that 1/p = (1 —0) + 0/r.
From (3.10), (3.12), from (3.11), (3.13) and from (3.9), (3.14) it follows that
[W1,,(6)] < Car P27 26D b7
[Way(0)] < Car—r2m 5602
(W30 (8)] < C27°GDblp

and an application of the converse of Holder’s inequality yields (3.2), (3.3)
and (3.4).

Remark. Endpoint versions for more general classes of multiplier transfor-
mations have been formulated in {15]. By combining arguments in this and
the present paper one can prove similar results for radial Fourier multipliers
of L7(R?), for the full range 1 < p < 4/3.
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