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In this paper, we proved a unicity theorem for meromorphic
functions with one sharing pair and a condition on deficiency.
An example shows that the condition on deficiency is best
possible. This result gives a general answer to the problem
due to C.C.Yang (1977).

1. Introduction.

In this paper, by meromorphic function we always mean a function which
meromorphic in the plane. Let f(z) be meromorphic. We shall use the
following standard notations in Nevanlinna theory:

T(r,f), m(r,f), N(rf),..

(see Gross [5]). We denote by S(r, f) any function satisfying
S(r, f) = o{T(r, f)}

as r — 400, possibly outside a set of finite Lebesgue measure. A meromor-
phic function a(z) is said to be a small function of f if

T(r,a) = S(r, f)-

In this case, we define

1

-—.—-N(Ta f—a)
6(a,f) =1- }_L%W?

and a(z) is said to be a deficient function of f if §(a, f) > 0.

Let g(2), a1(z) and az(z) be meromorphic functions. If the two functions
f(z) — a1(2) and g(2) — as(z) assume the same zeros with the same multi-
plicities, then we call that f and g share the pair (a;,a;) CM. In particular,
if a; = ay = a, then the word “the pair” is replaced by “the value” or “the
function” provided that a is a constant or a is a function respectively (cf.
Frank-Ohlenroth [4], Gundersen [6], etc.). In addition, if

N(Ta (f = al)A(g = 0'2)) = min{S(r, f)7 S(Ta g)} )
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then we say that f and ¢ almost share the pair (a;,a;) CM. Here, N(r, (f =
a;)A(g = ay)) is the counting function of those points which satisfy one of
the following three cases: (i) f = a; but g # a; (ii) f # a; but g = ay; (iii)
f = a; and g = a, but the multiplicities are not the same.

In 1977, Yang [9] proved the following result.

Theorem A. Suppose that F is a family of the functions which are of
the form oy(2)e*®) + ay(z), where u(z) is an entire functions with finite
order, a;(z) (j = 1,2) are meromorphic functions of finite order, oy # 0,
ay # const., the order of oy (j = 1,2) is less than the order of p. Let ¢
and cy be two distinct constants, and let f € F, g € F. If f and g share the
two values ¢; and ¢c; CM, then f =g or

(=255 (= =5) s

where A(z) is a nonconstant meromorphic function.

Based on this result, Yang [9] proposed the following problem.

Yang’s problem. Whether can we omit the restrictions on the order in the
family F?

It is easy to see from the hypotheses of Theorem A that, if f = a; (2)e*() +
ay(z) € F and g = as(2)e’® + a4(2) € F, then N(r, f—_sz) = o{T(r,f)}
and N(r,——) =o{T(r,g)}. Thus

g—4q

(1) 6(()!2,f) = 6(0&4,9) = 17

(2) 6(c0, f) = 6(o0, f) = 1.
These observations lead to our main result.

Theorem 1. Let f(z2), g(2), a(2), b(z), a(z) and B(z) be meromorphic
functions in the plane, where a(z) and a(z) are small functions of f, b(z)
and B(z) are small functions of g(z), a(z) #Z a(z), b(z) # B(z). Suppose
that f and g share the pair (a,b) CM and

(3) 6 =6(a, f) +0(B,9) + 6(c0, f) + 6(00,g) > 3.
Then either

@ e
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or

(5)

Remark 1. The number 3 in the inequality (3) is sharp.
For example, let P and Q be two nonzero polynomials, f = e?* — Qe?,
g= %g— Then one can check that f and g share the pair (P, Q) CM and
Q

1 1
6(0, f) +6(0,g) + (o0, f) + 6(00, g) :§+1+1+§=3.
However, JIQ % % and %%— £ 1.

Remark 2. Note that Theorem A needs two shared values. However, in
our theorem 1, we only need one shared pair.

Remark 3. The topic on unicity theorem concerning deficiency were studied
by Ozawa [7], Ueda [8] etc. The case that f and g are entire functions and
a(z) = b(z) = 1 was considered by Yi [10].

Remark 4. From the proof of Theorem 1 we see that the word “share” can
be replaced by “almost share”.

As an application, we obtain the following

Corollary. The answer to Yang’s problem is affirmative.

2. Some Symbols.

For the sake of convienence, we shall use some symbols introduced by Chuang
[1] and Chuang-Hua [2].

For meromorphic function f(z) and a point z, according as z is a pole of
f or not, we denote by w(f,z) the multiplicity of z or 0 and by @(f, z) the
value 1 or 0. For three meromorphic functions f, g and h, we divide the
set of the poles of f and g on {|z| < r} into five pairwise disjoint subsets as
follows:

Vi=: {z: f(2)#00, g¢g(2)=o00},

Vo= {20 fl2)=o0, g(2) £},

Va=: {z: f(2) =00, g(2) =00, h(z)=o00},
Vi=: {z: f(2) =00, g(z) =00, h(z)#0,00},
Vs=: {z: f(2)=00, g(z) =00, h(z)=0}.
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Furthermore, for each j € {1,...,5}, we denote by n;(f) and n;(g) the
number of the poles of f and g in the set V; respectively, with due count
of multiplicity. The corresponding counting functions are denoted by N;(f)
and N;(g) respectively. Obviously,

(6) N(r, f) = Na(f) + Ns(f) + Na(f) + Ns(f),
(7) N(r,g) = Ni(g) + N3(g) + Na(g) + Ns(9)-

3. One Basic Lemma.

For the proof of our results, we need the following lemma which can be found
in Chuang-Yang [3, p. 39] or Gross [5, pp. 70-73].

Lemma 1. Let f; (j =1,...,n > 2) be n linearly independent meromorphic
functions. If fi + ...+ fo = 1, then we have

n

T(r, i) <Y N (r, ) + N(rW)—N (T’ %)

i=1
n

Z (r, f3) +S(r, f1) + ... + S(7, fn),

Jj=2

where W = W (z) is the Wronskian of fi,..., fa.

4. Proof of Theorem 1.
Let
F=: {z:a(2) =0} U{z:b(z) =0} U{2:a(z) =0} U{z: B(z) = o0},
F=: {z:a(z) = a(2)}U{z:b(2) = B(2)}.

Set
F = Fl U F2,

the corresponding counting function is denoted by Np(r). Put

_. f(&) —a?)

Since a(z) and b(z) are small functions of f and g respectively, we know that
h(z) # 0, co. Let z, be a pole of h with z, ¢ F. Since f and g share the
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pair (a,b) CM, we have 2z, € V> U V3. If z, € V,, then w(h, z,) = w(f, 2,); If
z, € V3, then w(h, z,) = w(f, z,) — w(g, z,). Thus

(9)

Ny (f)+ N3(f) —N3(g9) = Np(r) < N(r,h) < No(f) + N3(f) — Na(g) + Np(r).

Similarly we have

(10) N (r5) < il) + Nolg) = M) + Ni(r).

Let b
SRS R

Then

(11) N (r, %) <N (7‘, 7 i a) + Ng(r),

(12) N(n%):§N<n%)+AG&L

(13) N(r,h) — Ng(r) < N(r, f3) < N(r,h) + Ngp(r).

From (8) it is easy to see that any zero of A which is not in the set F is not
a zero of f,. Thus

(14) N (r, %;) <N (T’giﬂ) + Ng(r).

Now for any pole z, of f, with z, ¢ F, we know that z, is a pole of g or A.
If z, € Vi, then w(g, 2,) = w(},2,), and so, w(fz,2,) = 0; If z, € V,, then
w(f2, 7o) = wlh,z,) = w(f,2,); If 2, € V3, then w(h, z,) = w(f, 2,) —w(g, 2,),
and so, w(f2,2,) = w(g, z,)+w(h, z,) = w(f, 2,); If z, € V4, then h(z,) # 0,00
and w(f2,2,) = w(g,2); If 2z, € Vs, then w(3,2,) = w(g, 2,) — w(f,2,) and
w(f2y20) = w(g, 20) — w(3, %) = w(f, 2). Combining all these facts we get

(15) No(f) + N3(f) + Na(g) + Ns(f) — Np(r) < N(r, f2)

< No(f) + N3(f) + Nu(g) + Ns(f) + Np(r).

Next we rewrite (8) in the form

(16) f1+f2+f3=1.
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Without loss of generality, we suppose that there exists a set I with infinite
measure such that

(17) T(r,g) <T(r,f), rel.

(Otherwise, we only need to consider T'(r, g) instead of T'(r, f) in the follow-
ing discussions.) Thus Np(r) = S(r, f), r € I.
In the sequel, we always let » € I. Now we prove the following lemma.

Lemma 2. f,, fo and f3 are linearly dependent.

Proof. Suppose on the contrary that the f’s are linearly independent. By
lemma 1,

T(r, f1) Sg ( )—{—N(r W) — N(r,%)—N(r,ﬁ)—N(r,f;;)
+ S(r, fL) + S(r, f2) + S(r, f3)

where W is the Wronskian of f,, f, f3, i.e.,

f1f2f3 f/f/

=\fi fo f3| =~
nopn o £ 1J3
1 J2 J3

by (16). Now by (10), (11), (12) and (14),

2 1 1
;N( 7)<V (rr=2) +¥ (525)
+ Ni(g) + Ns(g) — Ns(f) + 4Ng(r).
In addition, by the inequalities on the left hand sides of (9), (13) and (15),
N(r, fa) + N(r, f3) = 2Nz (f) + 2N3(f) + No(f) + Ns(f) — Na(g) — 3Nr(r).
Combining the three inequalities above we get

T6,5) SN W)= (157) + 8 (1 775) + 8 (n575)
+ Ni(g) + Ns(g) + Ns(g)

— 2N, (f) = 2Ns(f) — Na(f) — 2N5(f)
+ TNp(r) + S(r, f1) + S(r, f2) + S(r, f3)
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1 1 1
W)= (g )+ (r g+ (n55)
+ Ni(g) + Ns(g) + Na(g) + Ns(g)
— 2Ny (f) — 2N5(f) — 2Na(f) — 2N5(f)
— Nu(g) + Nu(f)
+ 7Ng(r) + S(r, f1) + S(r, f2) + S(r, f3)-

Substituting (6) and (7) into the above inequality and using the facts that
Nu(f) = Nulg), T(r.f)=T(r, f) + S(r, [),

T(r,a), T(r,b), T(r,a), T(r,B)=S(rf),
NF(T)7 S(T7 f]) = S(T,f), (.7 = 17"'53)

we obtain
T(r, f) SN<r,f_a> +N< ; 15) + N(r,W) - N(r,%)

(18) +N(r,g) — 2N(r, f) + S(r, f).

Next we estimate the term N(r,W) — N (r Since

? W)
(19) W =—(fifs — i f3),
from the expressions of f; and f; we see that the poles of W only occur at
the poles of f and the points in F. Let 2z, be a pole of f with 2z, ¢ F.

If z, € V,, then near z = z,

fi= {24+ Ol =)}, o= ———gray 0+ Oz — 20)}

(z — 2zg)wfr20) (2 — 2g)w(Fr20)

where z and y are nonzero constants. If w(f,z,) > 2, then

118 = s (U 20 (@l 20) + ey + Ol = 20}
113 = oy {20 () + Doy + Ol - )}
and so,

1
[ A 2 I A
f1 3 1f3—O{(z__ZO)2w(f,zo)+2}‘
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If w(f, z) = 1, then

e —2zy - O()
fifs = (z = 2)5 + = 20)° e
T o)
1f3= (z — 70)° + (2 = 2)F + sy
and so, 1
fifs = fi'fs '—'O{mo)—s}
Thus
w(W, z) < {Zw(f, 2) +2, %f w(f,2) > 2
3’ if w(fa ZO) =1
S 3w(fa ZO)-

If zo € V3, then w(g, z) > 1 and w(f, 20) > 2. Thus, by (19),
w(W, z0) < 2w(f,20) + 3 — w(g,20)

< 2(4)(f, ZO) +2< 3w(f7 ZO)'
If 2y € V4, then w(f, z) = w(g, 20), and so, w(f3,20) = 0. By (19), we get

UJ(VV, ZO) S w(f’ zO) +2 S 3w(fa zO)'
If zy € Vi, and if 2, is a pole of W, then by (19),
w(W, 20) < w(f,20) +2

S 3w(f7 ZO)‘

Combining all the cases above and noting (6), we deduce that
N(r,W) <3N(r, f) + Np(r).

This and (18) give

(20) T(r, ) < N (r, }i—a) +N (r, E_i—é) + N, f) + N(r, g) + S(r, f).

Now by the definition of deficiency, for € = % > 0, where ¢ is the sum in
(3), there exists r, > 0 such that

N (r5=5) < (1 =df) +aT( ),
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N (=) <1 =58,9) +9T(r9),

g-
N(r, f) < (1 —=6(c0, f) +€)T(r, f)
and
N(r,g) < (1 —d(c0,9) +€)T(r,9)
hold for r € I and r > r,. Substituting all these inequality into (20) and
noting (17), we get § < 3, which contradicts our hypothesis. This completes

the proof of the lemma.
Now by Lemma 2, there exist three constants ¢;, ¢, and c¢; with

(21) lei] + |ez| + |es| # 0
and
(22) cafi+cfrtefs =0.

If ¢ = 0, then c;e3 # 0 and f, = —2f;. This leads to g = ffb(z) +
(1 - %;*) B(z), which contradicts the assumptions that b(z) and ((z) are

small functions of g. Thus, ¢; # 0. We may suppose ¢; = —1, and (22) reads
fi = ¢2fa + c3f3. Combining this and (16) we obtain

(23) (I+e)fz+(1+c)fs =1

Next we consider two cases.
(i) 14+ ¢, =0. Then 1+¢3 # 0 and (1 +¢3) f3 = 1. It follows from (8) and
the definition of f; between (10) and (11) that

ca+a _ _c3a+a
f 1+C3 —f ata 1+ 3
1 a—aq cza+ «
24 = —b -
(24) <1+c3)b~ﬁ(g )+a 14+ c¢s
1 a—a

If ¢ # 0, then w # a. By the Nevanlinna “three-functions theorem” we
deduce that

T(r,f)gN(r,f)-f—N(r, ia>+N< T ;ajﬂ)—i—S(r,f)

f 1+4c3

:N(r,f)+N( fi )-I-N( giﬂ)-i—S(r,f).
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This is impossible by the same reasoning as in the proof of Lemma, 2. There-
fore ¢; = 0 and (24) reads

This is what we need.

(i1) 1 4+ ¢y # 0. It follows from (8), (23) and the definitions of f, and f;
between (10) and (11) that —(1 +c;) 4= + (1+c) =L = f—:—z, which can be
written as

(25) f_c2a+a:((c2—c3 )g(a_a)(b 6)

2 l4c3 c2—c3 A"’
1+C2 1+Cg) 1+62b 12+02’6

If ¢; # 0, then 92“—+—°‘ # «. By the “three-functions theorem”, we have

7, £) < N )+ N () +N< = ii) + 80 f)

I+4co

<N )+ N (rm ) + Nirg) + 5031).

f

By the same reasoning as in the proof of Lemma 2, we can get a contradiction.
Thus ¢, = 0, and (25) reads

(a —a)(b-p)
—(1+ec3)b+ s

(26) f-a= —ng

If ¢ = —1, then
(f—a)(g—B) =(a—a)(b-p),

as asserted. If c3 # —1, then gi_cﬂ # « and (26) can be written as

a+c3a:~< 3 ) (a — a)(g = B)

/- 14+c;3 l+cs/ g—(1+c)b+esf

Thus, the “three-functions theorem” gives

T(, ) < NG )+ N (r 7= )+N( = ;m)w(r,f)

<N(f)+N (r, ﬁ) N (r, g—i—ﬁl)ﬂl S(r, f).

By the same reasoning as in the proof of Lemma 2 we obtain a contradiction.
This completes the proof of the theorem. Il
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