
Pacific
Journal of
Mathematics

COMMUTATORS AND INVARIANT DOMAINS FOR
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We present an operator-theoretic approach to the problem
of invariant domains for the Schrόdinger evolution equation.
The results are applied to the Hamiltonian operators with
time-dependent potentials and electric fields.

1. Introduction.

This paper is concerned with the problem of invariant domains for the

Schrόdinger evolution equation

(1) ijtφ(t) = H{t)φ{t), ψ{s)=ψs

where H(t), t G M, is a family of self-adjoint operators acting on a Hubert
space Ή..

It is known that under suitable conditions on H(t) (see e.g. Kato [4], Reed-
Simon [9] and Yajima [11]), there exists a unique unitary propagator U(t, s)
on Ή, and a dense subspace V of Ή, which is invariant under the propagator
so that for each ψs (Ξ V, φ(t) = U{t,s)φs is strongly differentiate and
satisfies (1).

The problem considered here has been studied by many authors; see Faris-
Lavine [1], Prόhlich [2], Hunziker [3], Kuroda-Morita [5], Ozawa [6, 7],
Radin-Simon [8] and Wilcox [10]. Most of them dealt with the time-indepen-
dent case H(t) = H in which the propagator U(t, s) — exp [i(s — t)H] is given
by the usual one-parameter unitary group. In a recent paper [7], Ozawa
investigated the space-time behavior of £/(£, s) for the Stark Hamiltonian
H(t) = - Δ + E - x + V(x,t) on L2(Rn,dx). By using perturbation tech-
niques and space-time estimates for the free propagator exp [it(—A + E x)],
Ozawa established several results on the invariance property and smoothing
effect for t/(ί, s) in certain weighted Sobolev spaces. For earlier related re-
sults in the case E — 0, see Kuroda-Morita [5].

We denote the domain of an operator A by T>(A), and if N is positive
and self-adjoint, we denote its form domain by Q{N). Given a positive self-
adjoint operator JV, we are interested in conditions on H(t) for Q{N) or
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V(Nk), k — 1,2,..., to be an invariant subspace of U(t, s) for all t, s G R
We study this problem in a general operator-theoretic setting in Section 2.
Our approach is based on the commutator theorems of Faris and Lavine [1]
and Frδhlich [2]. In Section 3, we apply the abstract theorems of Section 2
to Hamiltonians of the form

with N — p2 + x2 or N — p2 , where p is the momentum operator — i V. Our
results are related to some of those in [5, 7].

2. Abstract Theorems.

Let H{t), t E E, be a family of self-adjoint operators acting on a Hubert
space %. Throughout this section, we will assume that f]tV(H(t)) 3 *D for
some dense subspace V of Ή , and that H(t) generates a unitary propagator
U(t, s) so that

i — U{t, s)φ = H(t)U{t, s)φ for all φeV.
at

We denote by B(Ή) the space of all bounded linear operators on % with the
usual operator norm || ||. For a positive self-adjoint operator N on % and
e > 0, we define Ne = ^(eTV+l)"1. Note that Ne e B{%) is positive and self-
adjoint. Concerning the invariance of the form domain Q(N) — I>(iV1/2),
we prove:

Theorem 2.1. Let N be a positive self-άdjoint operator so that
(i)V(N)Cf]tV(H(t)).
(ii) ±i [H(t), N] < c(t)N for some c <Ξ L}OC(R); that is,

±i{{H{t)φ,Nφ) - (Nφ,H(t)φ)} < c(t) (φ,Nφ) for allφ G V(N).
Then U(t,s) [Q{N)] = Q{N) for all t,s.

Proof. Fix s and set φ(t) = U(t, s)φ for φ € Ή. Then we have for φ € V

(d/dt)(ψ(t),NMt)) = (φ(t),i[H{t),Ne]φ(t))

= ({eN + I ) " V(ί), * [if (ί), JV] (eiV + 1)"

The hypothesis (ii) now gives that

\{d/dt) (φ(t), NMt)) I < c(ί) ({eN + irW(t),N(eN + 1)"

Integrating we obtain

(φ(t),Ntφ(t)) <
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Since V is dense in H and Ne is bounded, this estimate holds for all φ G W.
Now let φ E Q(N). Taking e -> 0, we find that φ(t) G Q(N) with

\\N^2φ(t)\\2 < \\N1/2φ\\2 exp I / c(u)du

This shows that Q(N) is invariant under U(t,s). Since U(t,s)U(s,t) = /,
we conclude that U{t, s) [Q(N)] = Q(7V). D

Now for any positive integer A;, we define (leaving aside the domain ques-
tions)

(2) Zk(t)=Nk-ι[H(t),N]N-k and Zk

e{t) - N*~ι [H{t),Ne]N-k.

In our applications, these operators are defined on certain dense subspaces
and extend to bounded operators on %. We also define

(^dN)H(t) = [N,H(t)] and (ad#)*#(*) - [N, (adJV)*"1^*)] .

As a preparation for our next theorem and further applications, we prove
the following:

Lemma 2.2.

(a) Zk
€{t) = {eN+l)-"ΣU (kγ)(^yzk^(t). In particular, ί/Z^t),...,

Z\t) G B(H), then Zk(t) G B{U) and \\Zk{t)\\ < Σ,to (YJ

(b) { ' }

Proof. Part (a) is obvious for A; = 1. The general case follows by induction
on k:

= Ne(eN + l)~k

j=o V 3 )

= (eJV + I)"*" 1 Σ ί* ~ ^ (eN)iNZk-i(t)N-1 (1 + eiV)
j=o V •? /

= (eN + I)-"'1 Σ, (k T X ) {(eJV)^^1-^*) + (cN)*1 Z*-*(t)}
j \ 3 1
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where we have used the identity (k }) + (Λ_J) — (k). The last statement of

~*part (a) follows from the fact that || (eN + 1)~* {eN)j\\ < 1 for 0 < j < k - 1.
Part (b) can also be proven by an induction argument. •

Theorem 2.3. Let N be a positive self-adjoint operator, and define ZJ(t)
as in (2). Suppose that Zj{t) <Ξ B{%) with \\Zj{-)\\ E L}OC(R) for each j =
1, 2,. . . , k. Then t/(ί, s) [V(Nk)] = V(Nk) for all ί, s.

Proof As in the proof of Theorem 2.1, set φ{t) = U(t, s)φ for ^ G ? ί . Then
we have for φ E ϋ

(d/dt) (N?<p(t),Nt<p(t)) = (φ(t),z[H(t),N?k] ψ(t))

2k-l

3=0

k-1

Σ (N?-*-1 [H(t),Ne] N>φ(t), Nkφ(t))
3=0

where we have used

2k-l

[A,B2k] = Σ BJ[A,B]B2k-i-\
3=0

Since ZJ(t) is bounded and \\Zj(-)\\ E L]OC(R) for 1 < j < fc, Lemma 2.2

(a) implies that Zc

j(ί) is bounded for 1 < j < k and that 2 ^ = 1 | | ^ ' ( ί ) | | <

const. Σ J = i | | ^ J ( t ) | | Ξ fk(t), where fk E ̂ ^(M) and is independent of e. It

follows that

(d/dt)\\Nkφ(t)\\ Σ\\Nk-J-l[H(t),Ne]Niφ(t)\\\\Nkφ(t)\\
3=0

k-1

3=0

<fk(t)\\Nkφ(t)\\\

Integrating we obtain

< \\N?<p\\ exp \f iu

We can now pass to the same argument as in the proof of Theorem 2.1 to
conclude that U(t, s) [V(Nk)] = V{Nk). D



SCHRODINGER PROPAGATORS 87

3. Applications.

In this section we want to give some applications of the results of Section 2
to the Schrόdinger equation

(3) ijtψ{t)=H{t)ψ{t)i ψ{s) = Ψs

where H(t) is the time-dependent Hamiltonian acting on the Hubert space

H = L2{Rn,dx).

We first consider Hamiltonians of the form

H(t) = -Δ + E(t) x + V(x, t).

We will restrict attention to electric fields E(t) : R -> Rn and potentials
V(x, ί ) : R n x R 4 » obeying :

(i) E(t) is differentiate.

(ii) IVZV^J;,^)! < f(t)(\x\ + 1) for some continuous function /.

(iii) the mapping t H-» (x2 + l ) " 1 ^ ^ , * ) G L°°(Rn,dx) is continuous.

As for N, we take N = p2 + x2, where p = — iV. Note that the operator
TV > 1 and is self-adjoint on V(N) = V(p2) Π V(x2). By Theorem 4 of
Faris-Lavine [1], condition (ii) implies that H(t) is essentially self-adjoint
on <S(Mn), the space of C°°-functions on Rn rapidly decreasing at infinity,
with domain V{H(t)) D V{N). We remark that by the construction of the
form domain, Q(N) = V(\p\) ΠV(\x\). Also, one can prove that V{Nk) =
V(p2k) Π V{x2k) by integration by parts.

Given two Banach spaces X and ^ , we denote by B(X,y) the space
of all bounded linear operators with domain X and range in y. For a
multi-index a = ( α 1 ? . . . ,α n ) , where each otj is a nonnegative integer, and
x = (a?i,... ,xn) G Kn, we put |α| = aλ + + α n, rrα = x"1 x"n and
Vα = & = (βfτ)αi (af:)α n ^ t BZQBP) be the space of all m-
times continuously difFerentiable functions ψ on Mn with bounded derivatives
{•§^)aφ for 0 < |α| < m. Our result is:

Theorem 3.1. Let H(t) = - Δ + J5(ί) x + V(a:,i), w;Λere E(t) and V(x,t)
obey conditions (i)-(iii) above, and let N — p2 + x2. Then there exists a
unique unitary propagator ί/(ί, 5), t, s E M, 50 ^Λαί:

(a) /or eαcΛ y?5 G T>(N), ψ(t) = U(t,s)φ8 is strongly differentiate and
satisfies (3).

(b) I7(ί, s) leaves Q(N) and V(N) invariant
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//, m addition, V( ,t) G B™{Rn) with | |(£)αF(z,-)||oo e L}OC{R) for
0 < \a\ < 2k, then U(t,s) leaves V(Nk) invariant.

Proof. To prove the existence of the propagator, we define for φ G V =
V(N), \\φ\\v = |M| + UPVII + IkVII Then (V, || \\v) forms a Banach
space which is continuously and densely embedded in Ή. From (ii), we have
\V(x,t)\ < \f(t)x2 + f(t)\x\ + \V(0,t)\. It follows by the continuity of E, V
and / that on any compact interval [ — T,T], there are constants a and b so
that \E(t) • x + V(x,t)\<ax2 + b for all ΐ E [-T,T]. Since

HPVIΓ + \\cx2φ\\2 < UP2 + cx2)φ\\2 + 2cn|M|2 for φeV,

we see that if c > α, then E(t) x + F(a;,i) is (p2 + cx2)-bounded with
relative bound less than one. Thus, by the Kato-Rellich theorem, H(t) -\-cx2

is self-adjoint on V for all ί G [ - T,Γ]. Now, take S(t) = H{t) 4- ex2 + i.
Then S'(t) G iB(ΐ>, H) is an isomorphism with S(t)H(t)S{t)~ι = iϊ(ί) + G(ί),
where G(ί) = 2cz(p x + x • p)S{t)~ι G B(H). By (i) and (iii), the mapping
£ ^ S'(t) G i?(X>, Ή) is strongly differentiate. Also, a simple computation
gives that

\\G(t) - G(u)h(H) < \\G(t)\\Bm\\H(t) - Hiu

\\H(t)-H(u)\\B(VM<\E(t)-E(u)\

+ \\(X2 + I ) " 1 [V(x,t) - V(X,U)] \\L-(Rn,dx)

Thus, by (i) and (iii), the mapping t >-> H(t) G B{V,U) and t H-> G(t) G
B(H) are norm continuous. It follows from a classical result of Kato ([4],
Theorem I) that there exists a unique unitary propagator [/(£, s) leaving V
invariant so that (a) holds.

Next, we show that U(t, s) leaves Q(N) invariant. We have seen that
V(H(t)) 2 V(N) for all t. So by Theorem 2.1, it suffices to show that
±i [H(t),N] < c(t)N for some locally integrable function c(t). We compute

±i[H(t), N]

= ±i{[P\x2] + [E(t) • χ,p>] + [V(x,t),p>]}

= ±{2(p-x + x-p)- 2E(t) -p-ip VxV(x, t) + VxV(x, t) • p)}

< 2 (p2 + x2) +P

2 + \E(t)\2 +p2 + \VxV(x,t)\2

<{4+\E(t)\2+4f(t)2}N

as required, where we have used condition (ii) and the fact that N > 1.

Finally, we prove the last statement of the theorem. Let

Γ = Llc(R,dt;B(H)).
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By Theorem 2.3, it suffices to show that if V(Ίt) E B™(Rn) with
II ( £ ) ° V(x, Olloo 6 Llc(R) for 0 < \a\ < 2k, then

Zj = Nj-x[H(-),N]N-j EΓ

for 1 < j < k. We prove this inductively. Let D=p x + x-pbe the dilation
operator. Since

= -2il[D-E(t)-p-VxV(x,t)-p+l-AxV(x,t)^N-1,

the case k = 1 follows easily from the closed graph theorem and the hy-
potheses on E and V. Now consider the case of general k > 2. By the
induction hypothesis, we have Zj E Γ for 1 < j < k — 1. So, we need
only prove that Zk G Γ. By Lemma 2.2(b), it is sufficient to prove that

#(•)} N~k e Γ. We compute on S{Rn):

X + V*V<<X' ^ ' X + \Δ2

xV{x, t) \

where we have used the following basic identities:

[N, D] = 4i(x2 - p2), [N, E(t) • p] = 2iE(t) • x, [N, E{t) • x) = -2iE{t) • p,

[p2, W(x)] = -2iVW • p - AW, [x2, VW(x) • p] = 2iVW • x,

[p2, VW(x) • p] = -2i f; (v~) • PPj ~ V (AW) • p.

By repeated application of these formulas, we find that (adiV) H(t) is a
linear combination of operators of the form:

p2 - *2(or L>), E{t) x (or E(t) - p) and \(γ

where 0 < \a\ < 2k, \β\ < k/2 and |7| < k. Since xβpΊN~k is bounded on
Ή. so long as \β\ < k and |7| < fc, the hypotheses of E and V now imply that
{(adiV)* #(•)} N~k e Γ. This completes the proof. D

Corollary 3.2. In Theorem 3.1, if V(-,t) is a C°°-function on Rn with
bounded derivatives and \\ (£)V(α;, -)l|oo € ^ L W for all a φ 0; then U{t, s)
leaves S(Rn) invariant.

Proof. The corollary follows immediately from the fact that

Γ) = Π™=1V(Nk).
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D

In the remainder of this section, we want to give an application to Hamil-
tonians of the form

We will assume potentials V(x,t) : Rn x K -> R obeying:

ί (i) for each t,V( ,t) is Δ-bounded with relative bound less than one.

(ii) the mapping t *-» ^~(χ^t) E L°°(Rn,dx) is continuous.

Notice that condition (i) and the Kato-Rellich theorem imply that H(t) is
essentially self-adjoint on S{Rn) with domain V(H(t)) = V(A). Correspond-
ing to Theorem 3.1, we have:

T h e o r e m 3.3. Let H(t) = — Δ + V(x,t), where V(x,t) obeys conditions (i)
and (ii) above. Then there is a unique unitary propagator U(t,s), ί , 5 G R ,
leaving V(A) invariant so that for each φs E ^ ( Δ ) , φ(t) — U(t,s)φs is
strongly differentiate and satisfies (3). Moreover,

(a) If\VxV(x,t)\ < f(t) for some continuous f, thenU(t,s) leaves Q(—Δ)
invariant.

(b) IfV( t) eB%(Rn) with ||(^)QV(a;, )||oo e L ^ R ) /or 0 < |α| < 2Λ,
then U(t,s) leaves V(Ak) invariant.

Proof. The proof of the existence statement closely parallels the proof given
in Theorem 3.1 except that we choose V — V(A), S(t) = H(t)+i and define
ll^ll^ = \\φ\\ + ||p2^|| s o that S(t)H{t)S(t)-1 = H(t). Then one proves that
the mapping t *-> S(t) E B(V^H) is strongly differentiate and that the
mapping t \-+ H(t) E B(V,Ή,) is norm continuous as before. To prove (a)
and (b), we take N = — Δ + 1. In case (a), since

< P2 + |VxF(α;, t) | 2 < {1 + f{t)2} N,

Theorem 2.1 implies that U(t,s) leaves Q(JV) = Q(—Δ) invariant. In
case (b), the computations similar to those used in Theorem 3.1 show that
(ad TV) H{t) is a linear combination of operators of the form:
[(^) a F(x, t ) ]p 7 , where 0 < |α| < 2k and |-y| < k. Thus by hypothesis,
we have

{(adN)kH(-)}N-k e Llc(R,dt;B(H)).

Again, following the proof of Theorem 3.1, we conclude that U(t, s) leaves
V(Nk) = V(Ak) invariant. D
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