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We study polynomials orthogonal with respect to an indef-
inite Sobolev inner product on the unit circle. We establish
the existence of such polynomials of large degree. Algebraic
properties and asymptotic behavior of such polynomials are
obtained.

0. Introduction.

The study of orthogonal polynomial with respect to standard inner product,
i.e.

(1) (f,g) = / ()@ du(z)

where T is a curve in the complex plane and p is a positive definite Borel
measure supported on I', constitutes an important subject of research in
several areas such as approximation theory, numerical analysis as well as in
other applied fields (signal processing, linear systems, ets.).

Recently, many people have been interested in the analysis of orthogonal
polynomials with respect to some nonstandard inner products. One of the
most important examples is related with Sobolev inner products.

In particular, much attention is now been paid to the case

2 9) = [ f@9@)dua(@) + [ 1(@)g' @) (a),

where po and p; are positive definite Borel measures supported on I and
J, subsets of the real line, respectively (see [10] for a survey of the subject
matter). But very few results are known when the support of the measures
is not contained in the real line.

A study of Borel measures supported on the unit circle has been initiated
in [3], where the case when the inner product is given by

(f.9) = F(2)g(2)dp + Mf'(a)g'(a),

|z|=1
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where p is a Borel measure on |z| = 1 and |a| = 1, is investigated and some
questions such as representation formulas and relative asymptotics for the
new sequence of orthogonal polynomial with respect to the standard one
are provided. A comparison with the usual applications of the standard
orthogonal polynomials, problems such as the location of zeroes, quadrature
formulas, relation with continued fractions, and rational approximation to
some integral transforms of measures need further studies.

Our present work can be focussed from two different points of view:

First, we perturb a standard inner product as in (1) on the unit circle
using the first derivatives in several points off the circle instead of using
higher order derivatives at only one point as in the direction pointed out in
some recent research when the support of measure is contained in the real
line (cf. [1, 8, 11]).

Secondly, we drop the requirement of positivity and Hermitian character
of the inner product and establish the existence of orthogonal polynomials of
large degree. When the measure p belongs to a wide class N (the analogue
of Nevai’s class, see the definition in §3), we obtain the relative asymptotics
of the two families of orthogonal polynomials associated to the measure u
and the nonstandard inner product, respectively. These extend the results
in [3].

The organization of the paper is as follows: §1 is devoted to some defini-
tions and basic facts; §2 collects some algebraic properties: §3 contains the
statement of our main results on relative asymptotics whose proofs are then
given in §4.

1. Notations.

Let du be a positive measure on the unit circle |z| = 1 with an infinite set of
support. Let z1,2s,. .., 2, be m fixed points in the complex plane C. Addi-
tional assumptions on the location of {z;} will be made later. Throughout
this paper, Z denotes the vector (zi,2s,...,2,). We will use P, to denote
the set of polynomials of degree at most n with complex coefficients.

Let ¢,(z) be the n-th orthonormal polynomial associated with du, i.e.,
en(2) = Kp2z™ +--- € P, with 5, > 0 and

_ 5,
/cpn(z)z’“du =2 k=0,1,...,n.

Kn

It is convenient to apply the following convention: For any function F'(z) of a
single variable z, we write F (Z) for the vector (F (z,),F (23),...,F (2m))-
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So we have, for example,

f(Z)=(f" (=), f (22) ..., f' (2m)) and
K(2,Z2)= (K (2,21),K (2,22),..., K (2,2m)),

if f(z) is differentiable and K (z,w) is a function of two variables z and w.
Define an indefinite inner product as follows

(3 (f,9)i= [ fgdu+ £ (2) A (2)",

where v denotes the conjugate transpose of a vector v, and A isam xm
complex matrix. Throughout this paper, matrices will always be denoted by
bold-face letters.

We say a polynomial 1, (z) € P, is (left-} orthonormal with respect to the
indefinite inner product (-,-) if

(Yn,2*) =0, k=0,1,...,n—1,

and

(%, ¥n)| = 1

[2]. If A is a Hermitian positive-definite matrix, then the existence
and uniqueness of such polynomials is always guaranteed. In general, we
can see that if such a polynomial exists then deg, = n, and in this case
we will always assume the leading coefficient of ¢, is positive and denoted
by .. Even with these conventions, the uniqueness of 1, is still unknown;
nevertheless, under the assumption that A is non-singular, we will show that
such polynomials exist for n sufficiently large. In the sequel, we will use ¥,
to denote one of such polynomials. The theory is a natural extention of the
results for the real line (cf. [8]).

2. Algebraic Properties.

We list some useful relations between {¢,(2)} and {9,(2)}. Let

n-—1
z¢) =Y ¢i(2)p; ()
Jj=0
Then K, is the reproducing kernel in P,,_, : for f € P,_;

[F O K @0 du () = 1.
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Put
KD ( Zw(” 6, =0,1,2,...

Then for f € P,,_1,
[ 1 OKS (2,0 du () = £9).

Note also that K9 (z,¢) = K9 (¢, 2)..

Formula 1. If 9, exists, then
bal2) = Lon(z) — v, (2) AKPD (2, 2)'

where v* denotes the transpose of a vector v.

Proof. Note that
¥n(2) = Tpn(2) € Pacy,

SO

@ [ (5000 = Zpn(©)) Ko (1) it (O) = hal2) = Ln(2),

n

by the reproducing property of K,. Now using the orthogonality of ¢,, we
can write

[ (#2© = 200(0) K 2.0 (O = [ (€) K (210) s €).

Further, on using the orthogonality of 1, with respect to th inner product
(-,-) defined above, we can rewrite the right side of the above equation as
follows:

<¢na Kn(za )> - d);L (Z) AKr(zO,l) (Z, Z)t = _d)’n (Z) AKSLOJ) (Z, Z)t :
This together with (4), establishes Formula 1. M
Consequently, we have the following.

Formula 2. If v, exists, then

W, (2) — l‘-cp'n( ) = —, (2) AK(Y (2,2)'

Proof. This formula follows from differentiating Formula 1 with respect to z
on both sides. O
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Formula 3. If ¢, exists, then

S <wn,wn>§’l — . (Z) Ap, (2)".

Kn n
Proof. Consider different ways to calculate

[ #n(2)en@ldu(z).

Writing ¥,,(2) = (Vn/6n) @n(2) + lower degree terms, and using the orthog-
onality of ¢,,, we have

/% 2)n(2)du(z) =

K:n

On the other hand, writing ¢,(2) = (kn/Yn) ¥n(2) + lower degree terms,
and using the orthogonality of v, we have

[ #n2onEdu(2) = (has 00) — ¥ (2) A, (2)"
= () 7 = ¥4 (2) A4, (2)",

n

which implies Formula 3. O

Formula 4. Let w,(2) := [}, (1 — Z;2), then there exist two polynomials
p(2) € Pay, and g(2) € Payn_1, uniquely determined by 1, such that

W (2)¥n(2) = @n(2)p(2) + #},(2)q(2)-

Proof. From [6], we have
Priom = PnPom + @5 Pom-1 + 2" Pn_am_1.
So, there exist p € Ps,n, ¢ € Pamm—1 and r € P,_y,_1 such that
W (2)9a(2) = 0a(2)p(2) + 9}, (2)a(2) + 27 (2).

It remains to show r = 0. Multiplying 2°™r(z) and integrating with respect
to du gives us

/% (w,(2))* r(2)dp = /wn p*(2)r(z)dp +
/‘Pn (2)2q(z Z)d,u-f—/h‘ )| dp,
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where we have used the fact that h}(z) = 2*h(z) for |z| = 1. Now, by
the orthogonality of ¢, and 1, it then follows that [ |r(z)|>du = 0, which
implies 7 = 0. O

Remark. 1. We emphasize that the two polynomials p(z) and ¢(z) in
Formula 4 depend on w,,(z) and %,(z), although the dependence is not
given explicitly in the notation.

2. Formula 4 can be used to produce reccurence relation and determinantal
representation for 1,. The following integral representation is just one of
various other possibilities.

Formula 5. If 2| > 1, j =1,2,...,m, then

1 e@rQEAE -wh @),
0 =5 L G T <L

and

o) 0n ()P (0) )
=52 | aom @ e A<

Proof. Using Formula 4, on substituting z by 1/Z;, we have

. o(2)=-(20) (2) - 10m
(6) ¢ (é):—(g—p)(é)]_lzm

Now, Formula 5 follows from an application of the Hermite formula of inter-
polation (see, for example, [4, p. 68]). [l

3. Relative Asymptotics.

We now assume the matrix A in (3) is non-singular. Denote the leading

coefficient of ¢, by k, > 0 as before. We need some assumptions on the
measure dy. If

~(0

lim Pnll) (0)

n—oo K,

=0,

we say that the measure du belongs to class N and write du € N. This is
analogous to the Nevai’s class of measures supported on the real line R, (cf.
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[11]). A well known result of Rakhmanov (cf. [14]) says that any measure
dp with ¢’ > 0 a.e. on |z| = 1 belongs to class V.

We now state our main results on relative asymptotics, their proofs are
presented in the next section.

Theorem 1. If the points 21 ...,2m (2; # 2k for j # k) all lie outside the
unit circle, the matriz A in (3) is non-singular, and du € N, then there exists
a positive integer ny such that for each n > ny the orthonormal polynomials
with respect to the indefinite inner product (-,-), ¥, exists.

Recall that 7, > 0 denotes the leading coefficient of v, and |(¥,,, ¥,,)| = 1.

Theorem 2. Under the same assumptions as in Theorem 1, there hold

. Tn 1
7 lim — = wm .
™) t e VNP
and
(8) im 22 B2, 2> 1,

n—00 p,(2)

where A = |B(0)| /B(0) and B(z) =
[TiL, (1 = Z52) .) The convergence in (8
in |z| > 1.

w? (2)/wm(2). (Recall that w,(z) =
) is uniform on every compact subset

Corollary 3. Let p := min{|z;||j =1,2,...,m}. Then under the same
assumption as in Theorem 1 we have

. en, /! _
lim p™,, (2;) =0,
for every e € (0,1) and j =1,2,...,m.

Corollary 4. Let p(z) be defined as in Formula 4. Under the same as-
sumption as in Theorem 1, we have

lim p(z) = dwm(2)wy, (2) = Awy, (2) B(2),

n—oo

uniformly on every compact subset in the complex plane C.

4. Proofs of the Relative Asymptotics.

We first establish some auxiliary lemmas.
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Lemma 5. For points z1, ..., zm (2; # 2z for j # k) outside the unit circle,

the matriz ) m
T, = (_————)
Zizk =1/ ;44

Proof. This result is known and follows from Cauchy’s result that

det ( 1 ) _ s (o5 — ax) (b = be)

is non-singular.

a; + bj H;,k:l (aj + ak)
(see, for example, [13, Problem 3 p. 92]. See also [7, Lemma 4]. O
Lemma 6. For points z1,...,zm (2; # 2 for j # k) outside the unit circle,

let B(z) = w},(2)/wm(2), then there ezists a unique set of non-zero complex
numbers ry,...,Tm such that

Proof. See [7, Lemma 5]. O

Lemma 7. If du is a positive finite measure on the unit circle with infinitely
many points in the support, then for every compact subset K in |z| > 1 there
exists two positive constants d = d (K) and e = e (K) independent of n such
that

Pn(2)

d<
npn(z)

<e

forall z € K.

Proof. Denote ¢ := min{|z|; z € K} and C := max {|z|; z € K}. Then 1 <
¢ < C. To obtain the lower bound, write

1 G
”‘P" z{ ~ ¢l |Z—Cj|2},

where (;’s denote the zeroes of ¢, which are allin |z| < 1, cf. [15, Th. 11.4.1.].
Then

Pnl2)

LHESYE TR W (¢
npa(z)| = 2T

3
j=1 |z—(:]| ni= |z = ¢l
el =Gl -1

j=1 |Z_CJ| (C‘|‘1)
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The proof of the upper bound is easier. O

Remark. Lemma 7 and its proof are parallel to those of Lemma 3 in [5].
Lemma 8. Ifdu € N, then

9) lim P (2) =2z

% (2)

uniformly on every compact subset of |z| > 1. Furthermore,

K& (2,4) 1
10 SRR T — ,
19 w0 of () () 26 — 1
and
(11) Kr(ll’l) (Za C)__ 1

im === = —— ,
noe gl (2)e (€) 261
uniformly for (z,() on every compact subset of |z| > 1 and |(| > 1.

Proof. If du € N, then by [12, 14]

1im (pn+1 (Z) —

uniformly on every compact subset of |z| > 1. As in [5, Lemma 4], note
that

Pny1(2) _ @n(2) ((Pni1)’ 2 Pnt1(2)
13) ity = ag(5) @ 2

Now (12) implies
lim (fﬁﬂ) (2) =1,

n—o0 (pn

uniformly on every compact subset of |z| > 1. On the other hand, by Lemma
7,
(14) lim ‘f,"—@': 0,

n—eo o (2)
uniformly on every compact subset of |z| > 1. Thus, on taking the limit as
n tends to oo on both sides of (13), we obtain

/
hm (Pn;}—l(z) —
noo @ (2)
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uniformly on every compact subset of |z| > 1. This proves (9).
In order to prove (11), we need the following limit relations:

im Pal2) _
19 M ) O
and
ez _
1o i Gy =

uniformly on every compact subset of [2| > 1. Relation (15) is established
in the proof of Theorem 4 in [12], while relation (16) folows from (14), (15)
and the identity

* ! * ! *
(pn(z) (pn(z) (pn(Z)
Now, using the Christoffel-Darboux formula (cf. [15, Th. 11.4.2.]) and by
straightforward calculations, we have

KUY (2;¢) = (5(;2 ( 05 (2)n (Cl):zﬁpzn(z)‘Pn (C))
A O A A A IR A O A (R A O
1-2( (1 - zZ)2

e (2)es' () _fngz)wnl Q= | ¢nz)en (€) — fns(Z)son ©) (1+7%¢)
(- (1-)

= 11+I2+13+I4.

o~
+

It is easy to verify that
L 1 n () (e (O 1
en(2)en (€) 1—2<< n(2) (wn(4)> 1) T -1

L 1+% (w;(z)m_l) son<Z>(¢_n<_<_>)ﬁo,

and

ADen @) (1-2)" \@nle) \en ()

as n — 0o, by (14), (15) and (16). Also, on writing

L = (soz'(z)(mc)son(o)_(%(o))
o (2)¢l (C) (l_zg)z @i (2) \on (€) 95 (€) ¢, ()/))’
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we get, by (14), (15) and (16)

I
en(2)e, ()

as n — oo. Similarly, we can obtain

— 0,

I3
©n(2)e}, (€)

— 0,

as n — oo.
Note that all above limit processes are uniform for compact subsets in

|z| > 1 and || > 1. So (11) holds.
The proof of (10) is similar to that of (11), so we omit it. O

Proof of Theorem 1. We first claim that there exists a positive integer ng
such that

(17) det (A“l + Kﬁ}’”) £0, n > no,

where

Kf(ll’l) (21,21) Kr(ll’l) (22,21) -.. K‘r(ll,l) (2m, 21)
KD (21,2) KD (22, 22) - K (2, 22)

Kg’l) =
KO (21, 2) KO (22, 2m) - K (20, 2)
Assume the validity of this claim for the moment. Define
$alz) i= pa(2) - 01, (2) (T + AKID) T AKSY (2,2)', n 2 mo.
It then follows that
4. (2) = ¢, (2) (1 + AKED)
Thus, for k < n,
(o) = [ dueuE)du+ 4, (2) A, (2)"
~ [en@erGidn - ¢, (2) (T + AKSY) " 4 [ KD (,2) () dp

-1
+9,(2) (I+AKSY)  Agl (2)"
=0.
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Similarly,
(18) (G o) = [ Bn(VonGVs + 8, (2) A, (2)"
—1+¢,(2) (I+ AKSD) Ay, (2)".

Now, from the matrix identities

(zmxm @, (zf’) (A—‘ + K —g, (Z)H)

Oem 1 ¢n (2) 1
(AT KD 46,(2)" 6 (2) O
¢n(2) !

and

AT+ K~ (Z) (L (A7 Kff’”)_l ¢, (2)"
¢, (2) 1 01xm 1

A+ KO 0.1
- ( 0 (2) 146, (2) (A7 +KEY) g, (Z)H) !
we get the following determinant identity
det (A7 + KO +4],(2)" ¢),(2)) =
det (A7 + K() (1 +¢,(2) (A7 + Kff’l))_l o (Z)H> .

Note also that
K =K +9,(2)" ¢, (2),
so there holds
det (A‘1 + Kflﬂ;ll’)
det (A7 + K()

-1
1+¢,(2) (A7 + K)o, (2)"

This together with (18), gives us
det (A7 + K(1Y)
det (A7 + K

#0, n > ne.

(Pny o) =

Therefore, a (left-) orthonormal polynomial 1, exists and equals

 4(e)
Vale) =ty ey
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where 7,, is a number of modulus 1 such that the above polynomial has a
positive leading coeflicient.

It remains to prove our claim (17). Assume, to the contrary, that there is
an infinite subsequence of positive integers, say £, such that

(19) det (A‘l + Kf}’l)) =0, for all n € L.
Let
1
e (1) ... 0
0 —... 0
An = <,/J"(22) ,
1
O 0 e m
and
KD (z1,21) KD (22,21) K3V (2,,,21)
o (z1)0h(z1)  @h(z2)h(z1) ~ 7 @h(zm)eh(21)
K,(ll'l)(zl,zz) K,(‘I’l)(zz,zz) K (z,,,22)
T i= | 9n(2)00(22) 94(22)00(22) ~77 @L(zm)en(z2)
K,(ll’l.).(z-l,zm) Kf.l'l')iz.g,zm) K,(ll’l;(.z,,.,zm)
@ (21)@h (2m) Ph(22)0h(zm) * " 0h(zm)eh(2m)

Then we can write

AT KD = AT (B AT A + T ) AL
Taking the determinant on both sides yields
(20) det (A A" A + Tpn,n) =0, foralln € L,

according to (19). Now, using (9) in Lemma 8, we have

1

lim ———=0, 7=12,...,m,
N P (zj)
and thus
(21) lg{.lo A, =0;
while using (11), we get
(22) lim Ty = T
n—ro0

Thus, if we let n € £ and n — oo in (20), we would have detT,, = 0,
contradicting Lemma, 5. So, the claim (17) must be true. O
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Proof of Theorem 2. Let ng be defined as in Theorem 1. Assume n > n,
in this proof. Our proof exploits the information obtained in the proof of
Theorem 1. Let z = z;, j = 1,2,...,m, in Formula 2,

'(b;z (zj) - gﬂ(p'n (Z]) = —,(p:z (Z) AKr(zl‘l) (zj7Z)ta J=12,...,m.

Rearranging the terms in the above equations, and then putting them into
a matrix form, we get

To1,1,...,1) =, (Z2) AKCVA, + 9, (2) Ay,

K’n
where A,, is the same as in the proof of Theorem 1, Rewrite the above
equation further as

(1,1,...,1) = %«ﬁ; (Z) [AA T + A,

where T, ,, is as in the proof of Theorem 1. Using (20), (21) and (22), we
obtain

. Kn A1
nl}}Tolo %T/)n (Z) AA,
-1
= lim “24}, (Z) AL, [T + Ar AT AL [T + AT AL

B0 [Tt A A

=(1,1,...,1)T;} = B(0) (11,72, -, Tm)

where the last equality is according to Lemma 6 when z = 0.

Write A = (a%, a,...,al)) witha; = (a1;,as5,...,0m;) (j =1,2,...,m),
then we have
. Kn — .
(23) nli)r{.lo ;—"/)n (Z) a';(pn (zj) = B(O)’rja ] = 1327 ceey .

Now, by Formula 3,

(s ) (7) ~ 1= 2 (2) (@ a0l 61 (27

thus

2 m
lim () (’“—) =1+ Jim Y- 29 (2) a7 )
j=1 '

n
n—00 Yn n—oo 4

:1+§f0_)irj:1+§(_07{3(0)—%]

i

IBO)".
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Therefore lim,,_, o, (¥, %,) = 1 and

1
lim = = |B(0)] = Tl
nTroo Yp j:l |ZJ'
This completes the proof of (7).
We now prove (8). From Formula 1,
KOV (2,Z

’ltb’n(z) — l (Z)A (Z ) .
on(z)  Kn pn(2)

Recall that KV (2,2) = (K®Y (2,21),..., K%V (2,2,)). Using A =
(a%,...,al ) and expanding the product on the right-hand side in the above
equation, we have

K(O Y (Z,Zj)

<Pn(2)(P;l (2.1) -

Letting n — oo on both sides in the above equation yields

Pn(2) _In N
on(2) =k §¢n( ‘pn (ZJ)

1
2z; — 1’

) 1 &
o)~ o PO

by (7), (23) and (10). It follows from Lemma 6 and the definition of A that
the right-hand side in the above equation is AB(z). So (8) holds, and the
proof of the theorem is completed. |

Proof of Corollary 3. From (23) and (7),

— B(U)
where 7 := (r{,72,...,7y) . So
1 Z AA—I — (0) ,
where lim,,_,, f,, = 0,,. Thus
' B(O) A AL A A1
Z)= ——7rAA mAnAT,

and so lim,_, o, p"¢!, (Z) = 0,,, according to (9). O
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Proof of Corollary 4. Denote

1 (1
an,j =D ('z_:) ) a'nd ﬂn,j =Pp (%) )
J J

for j = 1,2,...,m. Choose )\, such that p(z) — A\ w? (2) € Py,_;. Since
deg 1, = n for n > ng, by comparing the leading coefficients in Formula 4,
we find that A, = I=.

Recall the formula of the (0,1) polynomial Hermite interpolation (cf.
[9, p. 300]): for a differentiable function f,

(24) Hom1 (2 _‘; (= )sj(z)+§:f’ (5)u@

is the interpolating polynomial of the degree at most 2m — 1 satisfying

o ()1 (1), s () -1 (2).

for j = 1,2,...,m, where the polynomials s;(z) and ¢;(z) are given by
1
50 = 0@ LE 46 = (2 - =) LEP
j

for j = 1,2,...,m. When f is a polynomial of degree < 2m — 1, formula (24)
reproduces f. In particular, for f(z) = p(z) — A w2 (2),

(25) p(2) = Mwh(2) =Y anjsi(2) + ) Bnjti(2)
j=1 j=1
On the other hand, using (5), (6) and (25), we see that

) a0 =-3 2 (L) ans()

= e
() @ e 2 @)norn

Substituting (25) and (26) into Formula 4 yields

W Wnle) = Ao (Dpute) + 3 [eute) = b 2 ()] ansn(2)

n

+ 3 [oel) - i 2 ()] et - en) (2) () et

*
Jj=1 <pn
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Note that, by the Christoffel-Darboux formula,

e Pn (1Y Kin(z2,2) (ZFz—1)
onle) = wn(z)a <%> - ©n (%) '
So » - ,
wm n z Z] sz —_ ol
Pn )= +,~—§ en(2)en (%) @n35;(2)
z ZJ (ZJ (pn n l . t(z
+Z on(Z)om (z]) 67»1 J 21 on ( ) (Z) n,iti(2)-

Taklng arbitrary 2m distinct points in |2| > 1, say (;,(s,...,{2m, and then
letting z = (4, £k = 1,2,...,2m, in the above equation, and finally putting

the obtained relations into the matrix form give us

Un (anan) n
where Oy 1= (an 1)0n2,- .- 7an,m) y ,Bn = (:Bn,la ﬁn,2> e aﬁn,m) ;
w2 Py,

v = (“’f" () = Ay (G) s 220 (o) = Doy (Gam))

n

and
8 (¢1) 31(G) --- 31 (Cam)
82 (C1) 32(¢2) -+ 52(Com)
V. = Sm (Cl) Sn.), (C2) §Am (.CZm)
™ 7{1 (¢1) 721 (¢) .. t (Cam)
ty (C1) t2(G2) -+ t2(Cam)
bn (1) i (G3) - m (Gom)
with
A K, (2,2) (Z2 — 1) , __90_:12 $n 1 z
@) 5= T IS - 22 (22) () 6o,
and
(28) i) = Kel2on G2 1))

on(2)en (25)
Note the limit relations (cf. [7, Lemma 1])
K, (Z,Zj) (Z{Z _ 1)

) e e
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for |z| > 1, and (cf. [12, (3.10)])

lim 22 (w) =0
n--+00 (p;
and consequently
* 1 " !
(30) lim £» (:) =0 and lim (f_) (w) =0,
n—0o Y, \W n—00 (p;‘l

for |w| < 1. So, using (29) and (30) in (27) and (28), we have

lim 3;(z) = s;(2) and lim £;(2) = t;(2).

n—00 n—oo

Therefore, ,
limV,=V

n—oo

with

51(C) s1(G2) -+ $1(Cam)
52 (1) 82(C2) -+ 82 (Cam)

5 (1) 5 (G2) - 5 (Gom)
t1 (&) (&) --- i (Gom)
t2 (G1) t2(C2) --- t2(Com)

b (1) tn (G2) - s (G

It is easy to see that det V' # 0 since {s;} and {t;} are linearly independent
and form a basis of P,,,,_;. Also, using Theorem 2, we have lim,, ,,, v, = v
with v :=

. A ey A
<)\wm (1) wy, (G1) — ﬁ’wm (C1) 5.5 Awg (Com) Wy, (Com) m m (C%n)) .

So, letting n — 00 in (@n,Bn) = v,V 1, we get

(31) lim (an,Bn) = vV L

n—0o0

Now, note that Aw,w}, — Aw?, /B(0) € Payn—1. Thus, (24) implies

N (2) i, (2) = st () = Y aas(2) + 341,
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(Actually, o; =0, and 8; = M), (1/Z;) w}, (1/7;), = 1,...,m.) Substitut-
ing z by (&, k=1,2,...,2m, we can obtain

'v=(a1,...,am,ﬂ1,...,ﬂm)V.

This and (31) give
nll)rglo (anaﬂn) = (al, cee ’amaﬁl, ree 7/Bm) .

Using this limit relation together with (25) and (29) we get

) A m m .
ll)m p(z) = =—=w? (2) + Zajsj(z) + Z,Bjtj(z) = M, (2)w), (2).
nmee B(0) j=1 j=1
This completes the proof of the corollary. O
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