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We show that separately harmonic functions and plurihar-
monic functions in C" can be characterized by a finite number
of mean-value conditions over boundaries of ellipsoids or dis-
tinguished boundaries of polydisks. This is a generalization
of the Delsarte-Lions characterization of harmonic functions
and of the Morera theorem for holomorphic functions.

1. Introduction.

Let us recall the converse of Gauss’s mean-value theorem as proved by Del-
sarte and Lions [11], it says that for any n > 2 there is a finite set H,,
1 € H,, such that if r; > 0,7 > 0 and ry/r, ¢ H, then any f € C(R")
satisfying

(1) Jio Wios) = f@), (=1%2€R)

is harmonic in R". Here S(z,r;) is the sphere of center z and radius r;,
do; is the normalized Lebesgue measure on the sphere.In fact, H; = {1}, so
that any two distinct radii are sufficient in dimension 3. In [9] this result is
extended to arbitrary non-compact irreducible symmetric spaces of rank 1.
Finally, from [7, 8] we conclude that in R™ there is a local version of this
theorem (in fact, this result extends to symmetric spaces of rank 1), namely
if f € C(B(0,R)),r1+r, < R, and satisfies (1), in the sense that (1) holds
as long as |z|+r; < R, then f is harmonic in the ball B(0, R) of center 0 and
radius R. On the other hand, we do not have such a satisfactory situation for
symmetric spaces of higher rank or the Heisenberg group (or other nilpotent
Lie groups for that matter). In the latter case, the results in [1, 2] are estab-
lished for LP-functions f. The reason for this difficulty is slightly different
in these two cases. In the case of symmetric spaces X of rank bigger than
one it is due to the failure of the Spectral Synthesis Theorem in C*(X) [6],
while in the Heisenberg group H™ we do not have yet a resonable effective
method to study this kind of problem in C°°(H"). In this paper we study
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the characterization of separately harmonic and pluriharmonic functions in
C"(n > 2) by means of mean-value properties. That is, by identities of the
type (1). As it will become clear later on, we have really a problem of the
type that arises in symmetric spaces of rank > 2. For a general perspective
on this kind of problems we refer to [13, 14].

This research was carried while the first author held a visiting Professor-
ship at the University of Maryland. He would like to thank the Mathematics
Department and the Institute for Systems Research for their hospitality.

2. Necessary conditions.

From now on we will be working in C™ with n > 2, the orientation of the
space is the usual one that makes the differential form

1
—_—d‘z‘l/\dzl/\---/\dfnl\dzn>0.

i)
We also recall that this form equals
n(n—1 n(n—1
D™= =D .
At = —td --ANdZ, Nd <o Adzy,.
@) ZAdz 2 Z1 A Z z A z
The notation d([k] = d(;A...AdCx_1 AdCy 41 A...AdC, will be used throughout.
Let us also introduce the following differential form

n(n—1 1 n

ST (= 1)F 1 (G — aw) dCTK) A dC.

v(¢—a)=(-1) Gri

k=1

A domain D C C" is called n-circular (or Reinhardt domain) with center
at the point a, if z € D implies (a; + (2, — a1)€™?, ..., an + (20 — a,)€'**) € D
for 0 <t; < 27,5 =1,2,...,n. Such a domain is called complete, if with each
point 2° € D, D contains the whole polydisk Q.(a) = {z:|z; —a;| <r;,j =
1,...,n}, where r; = [2? — q;|,j = 1,..., n. Henceforth the space C(D) shall
be the space of real valued continuous functions in D.

Theorem 2.1. If D C C” is a complete bounded n-circular domain with
center at the point a and f is a separately harmonic function in D (i"i"
harmonic with respect to each variable z;,j = 1,...,n) and continuous in D,
then

ﬂ.n
2 —_— / —a) = f(a).
2) it L, FOVC -0 = F@)
Also, if Q. = Q,(a) is a polydisk with center a, then for any function f,
separately harmonic in @), and continuous in @, one has

3) — [ JOMGIA A dG] = £

(2m)nry..rp
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where A, (a) is the distinguished boundary of the polydisk Q,(a), i.e., A,(a) =
{z:l|z; —a;}=r;,i=1,...,n}.

Proof. The equality (3) is obtained using that any function separately har-
monic in @, and continuous in @), satisfies the mean value property with

respect to integration over the distinguished boundary A,. In order to prove
formula (2) we use the following lemma, whose proof is immediate.

Lemma 2.2. Let R= (|¢; — a1]%, ..., |Cn — anl?) = (Ryy .oy Rn). The form v
satisfies the following identity

(4 (¢ 0) = iR A 7o
where
d¢ 8! dn
(—a G-a Cn = Gn
and

It follows now from (4) and the identity (3) that the formula (2) must
be correct up to a multiplicative constant. This constant can be computed
using f = 1 and applying the Stokes formula:

G "/
/au v(iz—a)= (27” dzNdz = - vol(D)
This concludes the proof. O

Let us recall that a domain D; C C” is called circular or Cartan domain
with center at the point a, if z € D, implies (z — a)e’ € D; for 0 < ¢ < 2.
Such a domain is said to be complete, if for each each point 2° € D;, D,
contains the whole disk {a; + (20 — a1)t,...,a, + (22 —a,)t : t € C,|t| < 1}.
An example is the ball B, = {z : |z — a| < p}.

Theorem 2.3. If D; C C" is a complete bounded circular domain wzth
center at the point a and f is a pluriharmonic function in D, (i.e., real part
of a holomorphic function) and continuous in D;, then

ﬂ.n

(5 oD Loy, OV~ @) = f(a),
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If Q! is a “circular polydisk™ with center at a, i.e., Q! = Q(a) = {2 :
07 (21 = ar) 4+ b7 (20 = @n)| < 75,5 = 1,...,n}, det ||bi|| # 0, then for any
function f which is pluriharmonic in Q! and continuous in Q! we have

(6) fla) = —_l__”/Al(a)f(()ld(bi(Q Ca)

(27)Pry...ry

+ b7 (Gn = @) A Ald(bn (G — ar) + -+ + B3 (Ga — an))]

where Al(a) = {z: |bj(21 — a1) + - -+ 0} (20 — @n)| = 75,5 = 1,...,n} is the
distinguished boundary of the circular polydisk QL(a).

Proof. A pluriharmonic function is obviously separately harmonic as well,
therefore formula (3) is valid for it and (6) can be derived from (3) by a
linear transformation (a linear transformation conserves pluriharmonicity,
because a function is pluriharmonic if and only if its restriction to each
complex line is harmonic). The proof of (5) requires the following lemma,
whose proof is contained in [4, Lemma 17.8]. All complex lines « passing
through @ and not lying in the hyperplane {z : z; = a;} can be written in
the form

a(v,a) ={z:2z; = a; +t, 29 = a3 + oty ..., 2, = Ay, + V1, ¢ € C}
where v = (vs, ..., v,). With this notation we have

Lemma 2.4.

(7) V(¢ —2) = %m%%/\ ((Q;Ti%dﬁ/\dv.

From this Lemma and the mean-value property for harmonic functions in
C we obtain (5) up to a multiplicative constant, which can be computed in
the same way as it was done in Theorem 2.1. O

Remark 2.5. Lemma 2.4 has appeared in work of Kytmanov (see [5]) and
in [12].

Remark 2.6. Formulae (2), (3), (5) and (6) in the particular case n =1
are the classical mean value theorem for harmonic functions.

Remark 2.7. It is easy to show that each of the conditions above is suffi=
cient for the corresponding class of functions, but we do not prove it here,
because stronger statements will be proved below.

'We are using this terminology and notation to distinguish it from a usual polydisk,
which is n-circular.
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Remark 2.8. It can be shown that in the formulae (2) and (5) the form v
can be replaced by the Bochner-Martinelli kernel (up to a +1)

o(c-at=a) = ¢ -a),

except that the constant in front of the integrals in the formulas correspond-
ing to (2) and (5) will be independent of the domain.

In the case of the ball the differential form v and the Bochner-Martinelli
kernel differ from the surface area element by constants. More generally, one
has the following two mean-value results.

Proposition 2.9. If f is separately harmonic in the n-circular ellipsoid
Q= {Z : bllzl - allz + bn,zn - an|2 < Tz}

and continuous in 2, then

®) 3 1€ 4s() = 1@

Proof. For the proof we can assume a = 0. Then, observe that 9Q and the
area measure are invariant under the action of the group G = S x --- x §1,
whose normalized Haar measure dy is (27)™"df, ---d6,,. As f is separately
harmonic, if (¢?,...,¢?) is a fixed point of 92 then

[3 FE@CC, ..., e%¢0) du(6) = £(0).

Therefore, replacing ¢ by €’ - ¢ (with the obvious meaning of this product)
in the left-hand side of (8) and integrating on G against the measure du, we
obtain the desired identity. O

Proposition 2.10. If f is pluriharmonic in the circular ellipsoid
0 = {z Y bilei(zr —a1) 4 G (2n — aa) P < rz}
Jj=1
and continuous in Qy, where det ||c5|| # 0, then

(9) W / S0 ds(0) = f(a)

Proof. The proof is similar, just use that pluriharmonicity is invariant under
linear invertible transformations. O
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3. Sufficient conditions in terms of the mean-value property for
the whole boundary.

Let us recall that the Fourier transform of the normalized area measure of
the unit ball in C” is given by j,_; ((zf 4t zz)%), where, in terms of
Bessel functions we have

2@ =10 (2) 0.

The set H,, of the introduction is the set of positive quotients of zeros of
Jn-1(¢) — 1. (For R™ just replace n = m/2.) In this section we will consider
mean-value properties with respect the following n-circular ellipsoids with
center at the point a:

Djy(a) = {z sbilzr — g 4 B2 a,|* < rf-yk}
where k = 1,2, j=1,...,n,all bé» > 0.

Theorem 3.1. Let f € C(C") be such that for each a € C" the 2n
conditions obtained by setting in (2) D = D;x(a), 1 =1,..,nand k = 1,2,
hold. If no r;,/r;. belongs to Hs,, and

(10) det ||1 /8| #0
then f is separately harmonic in C".

Proof. Fixing j, consider the change of variables w; = bé-z,. Then the family
of ellipsoids D; x(a) is transformed to a family of balls B(a, r;x), @ = \/;J;a,.
The function f(ws, ..., wn) = f(z1, .., 20) = f (wl/\/g, vy Wy / /07 ) satisfies
the following condition

ﬂ.n

n vol(B(a,r;x))

[ fwy e evto - ) = f@).
OB(a,r; k)

Using the notation w — @ = £ + 17 it can be shown that (see [5, p. 24])

n(n—1 n

N -1)7> ne : e :

Re v(w - )= TS~ (1) dels] A dn + (1) nyde A dnfs]).
Jj=1

In other words, in the integral we are averaging f with respect to the volume

form on the sphere dB(a,r; ). According to the Delsarte-Lions mean-value
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characterization of harmonic functions [11], f is harmonic, i.e., for each
zeCn

925 (
0= Z 32,82, (21/\/:, - z,,/\/b_”) Z bl’ 8218

where 2 = ( b]1~ 21y /0F z,,). Because z is arbitrary, Z is arbitrary as
well. In other words, for all z € C"

1 92f(2)

11 — =0.
( ) =1 b.l7 82{82{

In particular, f is real analytic. Since (11) holds for every j = 1,...,n, it
follows from (10) that

1) _,
827[821 -

i.e., f is separately harmonic in C”. ]

We have already mentioned that there is a local version of the Delsarte-
Lions two-radii theorem, the same argument in [8] shows that the same is
true for the two-radii theorem we used in the last proof. This is the reason
of the first condition imposed below.

Theorem 3.2. Let a domain Q be the union of ellipsoids {z : b}|z; — a,|* +

o+ b7z — an|? < r?} of radii r strictly bigger than i 1+r1 2. Let f € C(R)
and assume that for each point a € Q such that D,, ,(a) C Q (k either 1 or
2) the mean value condition holds (2) holds, where D = D, ,(a), with the
corresponding value of k. Assume further that for each 2 < j < n there is
a closed ellipsoid E; of the form {z : bi|zy — a; | + -+ - + b}z, — a;n]* <
(rj1+1r;2)?} contained in Q (for a convenient choice of the point a;). If the
corresponding pair of mean value conditions (2) hold for all D,,, (a) C E;
then f is separately harmonic in €.

Proof. The first part of the proof of Theorem 3.1, the geometric condition on
2, and the possibility to localize the two-radii theorem allows us to conclude
f satisfies (11) for j = 1 in €, and thus it is real analytic everywhere.
The other conditions guarantee that f satisfies the j-th condition (11) in a
neighborhood of the point a;. It now follows from the connectedness of 2 and
the real analyticity of f that all the conditions (11) are satisfied everywhere:
Therefore, f is separately harmonic in €. O

Remark 3.3. Theorems 3.1 and 3.2 demand that the identity (2) must
hold for n pairs of ellipsoids. These theorems are not true if we impose
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conditions on only (n — 1) pairs. In fact, if we had only (n — 1) pairs, we
would obtain a system of equations like (11), but consisting only of (n — 1)
equations. Such a system has a nontrivial solution

0*f(2)

(12) (921621 -

where some ¢; # 0. Any solution of the system (12) satisfies our conditions
for (n — 1) pairs of ellipsoids, but it is not separately harmonic.

Consider now the following circular ellipsoids with center at the point a:

D”, (a) { Zb EAE et (20 — an)]? <rj~’,k},
bj>0;]:1,...,n; k=1,2,p=1,...,n

Let ldh.1l, (I, m = 1,...,n) be the inverse matrix of ||c],|| for p fixed. Let
= llgps.tll, (pys = 1,...,m; k,1 = 1,...,n) be the n? X n* matrix with the
following entries B
Gpo k1 = di o .

Theorem 3.4. Let f € C(C™) so that for every a € C" the conditions (5)
hold for Dy = D% (a),j = 1,...,n;k = 1,2;p = 1,...,n (2n conditions). If
rj1 and r;, are chosen as in Theorem 3.1, det ||1/b’|| # 0, and det Q # 0,

then f is pluriharmonic.

Proof. Fixing p, we can consider Df,(a) as an affine image of D;(0), where
the matrix of the linear map is ||d . From the condition (5) and the
reasoning preceding Corollaries 2.9 and 2.10, we conclude that the function

(Wi, ey wy) = f(dYywy + -+ -+ dl Wy, oo, dbywy + -+ - 4+ dEwy,)

satisfies all the conditions of the Theorem 3.1 and, therefore, it is separately
harmonic. Hence taking derivatives, we obtain

0*f
d; =0.
klzl ks 138 kazl
Since det @ # 0, we get

P’ _
8zk8,z'1 -

This means that f is pluriharmonic. O
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Remark 3.5. In this theorem we are considering images of the family
of ellipsoids from the Theorem 3.1 under n complex linear transformations.
The only restriction on them is the condition det ¢ # 0. In particular, no
more than one of these transformations can be unitary. In the case n = 2
and one of them is the identity (say when p = 1), the condition on the other
is :

Im (dfld?zd%dgz) # 0.

Remark 3.6. Theorems 3.1, 3.2 and 3.4 can be rewritten using formulas
(8) and (9).

We leave to the reader the statement of local theorems corresponding to
Theorem 3.2.

4. Three circles theorem on the plane.

Theorem 4.1. Let ¢ be a continuous function on C. Suppose that
(13) ’\(¢a 2, 7”1) = /\(¢v 2, rZ) = A(¢, 2, T3),Z € C

where \(¢, z,7) = 5 02” d(z + re®)dd. If w = 0 is the only solution of the
system

Jo(rw) = Jo(rw) = Jo(raw)

then ¢ is harmonic.

Proof. Clearly, A(¢,z,7) = ¢ * x,(2), where x, € £'(R?) is the following
distribution of compact support:

1 27 .
P ﬂ/(; P(re'®)ds.

Therefore, the condition (14) can be rewritten as

¢* (Xrl - sz) = d)* (XTQ - XT:‘I) = 0

Consider the closed convolution ideal in £’'(R?) generated by the radial distri-
butions x,, —Xr, and X,, — Xr,. Our aim is to show that the Laplace operator
A (considered as the distribution Ady) belongs to this ideal. (Because any so-
lution of Laplace equation in the sense of distributions is autoga\tically a har-
monic function.) Translating this statement into the space £'(R?) of Fourier
transforms, we have to prove that £2+n? belongs to the closed ideal generated

by Jo (rvVEE+ 12) — Jo (rov/E2 +12) and Jo (rov/E + 7%) — Jo (rav/€ + 7).
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According to [10, 9], it is enough that Jo(riw) —Jo(rsw) and Jo(row)—Jo(raw)
have w =  as their only common zero. O

Remark 4.2. The correspondent statement for only two radii is false. On
the other hand, let us show that for almost every choice of distinct ry,r,, ry
our conditions hold. In fact, fixing ry/r; # 1 we have a discrete set of
solutions Jo(w) = Jo(wry/ry) and for each such a w, we have a discrete set
of exceptional values of r3/ry such that Jo(wrs/rs) = Jo(w). Hence, we have
at most countable set of exceptional values of r3/r, for each fixed ro/r; # 1.

5. Sufficient conditions in terms of the mean-value property for
distinguished boundaries.

Theorem 5.1. Let ry,ry, 13 be such that they satisfy the conditions of
Theorem 4.1. Let py, ps > 0 such that pi/p2 ¢ Hs. If a continuous function
f € C(C") satisfies

1 ) .
(14) @) /[0 - flay 4+ Rie™, ... a, + Ru€)dty .. . dt, = f(a)

for every a € C™ and any choice of R, such that
Rl € {rh T2, 7'3}7 l= 17 ey 19 Rn € {/)1’/’2}
then f is separately harmonic.

Remark. We are considering 2 - 3"~! polydisks at each point.

Proof. We proceed by induction on n. When n = 1 it is Delsarte-Lions’s
theorem [11].

For n > 1 consider the auxiliary function
(15)

F(z) = :

W /[0 ] f(Zl, ay + Rze“’, ceey Qn Rneit")dtg ...dt,
2 n—1
with ag,...,a,, Rs, ..., R, fixed. By virtue of (14) we have

(16)
MF, z1,1m1) = AMF, 21,m9) = MF, z1,73) = f(21,09,...,a,), Yz €C.

Therefore, by Theorem 4.1, F is harmonic and so

(17) MF, z1,m1) = F(z1) = f(z1, 00, ..., an).
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Hence, f is harmonic with respect to the first variable. Fixing 2z, for a
moment, consider the function

g(ZZ"'- ,Z,,) :f(zlaz%--- ,Zn).

From (15) and (17) we observe that g satisfies all the conditions of the
theorem. Hence by the induction hypothesis g is separately harmonic with
respect to the variables z,,...,2,, and thus f is separately harmonic with
respect to all variables. O

Consider the following circular polydisks
Qp(asR)={z:|y(z1—ar1)+ -+ (2 —aa)| < Rj, j=1,...,n}

forp=1,..,n,R; € {r1,rs,rs}, j=1,..,n—1,and R, € {p1, p2}. Further-
more, let

Ap(a;R) = {z: | (21— a1) + -+ (20 — an)| = Rj, 5 = 1,...,n}
be its distinguished boundary. Let () be the same matrix as in Theorem 3.3.

Theorem 5.2. Let ry,ry, 13, p1, p2 be as in Theorem 5.1, det Q # 0. Let
f € C(C™) be such that for anya € C*,p=1,...,n and any posible choices
of R; we have

O o oy FOMEG = @) 4 (G = ) A

c A (G —a) + e+ B (G — an)))-

fla) =

Then f is pluriharmonic.

Proof. It is based on Theorem 5.1 and a reasoning similar to that in Theorem
3.3, so we omit the details. O

Remark 5.3. A natural question is whether it is possible to diminish
the number of polydisks in Theorems 5.1 and 5.2. There is a reasonable
expectation to obtain an analogous to the Theorem 5.1 result with only
(n + 1) polydisks at each point. The analytical difficulties in doing so are
similar to those of studying the Pompeiu problem in the case of symmetric
spaces of rank > 1.
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