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SCALAR CURVATURE WITH INTEGRAL BOUNDS ON
CURVATURE

KAZUO AKUTAGAWA

Let Y1(n, po) be the class of compact connected smooth n-
manifolds M (n > 3) with Yamabe metrics g of unit volume
which satisfy

#(M,[g]) = po >0,

where [g] and p(M,[g]) denote the conformal class of g and
the Yamabe invariant of (M, [g]), respectively. The purpose of
this paper is to prove several convergence theorems for com-
pact Riemannian manifolds in Y;(n, zo) with integral bounds
on curvature. In particular, we present a pinching theorem
for flat conformal structures of positive Yamabe invariant on
compact 3-manifolds.

1. Introduction.

Let M be a compact connected smooth manifold of dimension n > 3. The
Yamabe functional I on a conformal class C of M is defined by

Sgdv
I(g) = ‘fﬁ_-%ﬁ for geC,
g9

where Sy, dv, and V, denote the scalar curvature, the volume element and
the volume vol(M, g) of (M, g), respectively. The infimum of this functional
is denoted by p(M,C), i.e.,

#(M,C) = inf I(g)

and called the Yamabe invariant of (M,C). The following so-called Yamabe
problem was solved affirmatively by the work of Yamabe [Ym], Trudinger
[T], Aubin [Aul] and Schoen [S1, SY2]:

Given a conformal class C on a compact manifold M of dimension n 23,
find a metric g which minimizes the Yamabe functional I on the conformal
class C'.
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We call a metric, which is a solution of the Yamabe problem, simply a
Yamabe metric. 1t is well-known that the scalar curvature of every Yamabe
metric is constant. Moreover, a Yamabe metric of positive scalar curvature
stisfies a volume estimate of geogesic balls from below (see §2). In [K1, K2]
and [S3], a differential-topological invariant u(M) of M was independently
introduced by Kobayashi and Schoen , which is defined as the supremum of
u(M,C) of all conformal structures C on M, i.e.,

u(M) = sup{p(M,C); C is a conformal structure on M}.

They also studied properties of u(M) and proposed some problems (for
recent remarkable developments see [L1, L2]). In particular, Schoen con-
jectured affirmatively the following problem. That is whether the posi-
tive constant curvature metrics h on non-simply connected quotient spaces
S™/T" of the standard n-sphere S™ acheive the supremum of u(S™/T',C), i.e.,
p(S™/T,[h]) = p(S™/T), where [h] denotes the conformal class of h.

On the other hand, Gromov and Lawson [GL] (cf. [SY1]) proved that a
irreducible oriented compact 3-manifold M? admitting a metric of positive
scalar curvature is diffeomorphic to a quotient space of a homotopy 3-sphere.
Moreover, if M3 admits a conformally flat metric, then M?3 is diffeomorphic
to a quoitent space of S® (cf. [Ku]). Under these situation, the following
naive problem arises naturally; for a quotient manifold X3 of a homotopy 3-
sphere which admits a metric of positive scalar curvature, is there a positive
constant curvature metric h such that p(X3,[h]) = p(X3)? It also should be
pointed out that, which was proved by Izeki [I], if a compact 3-manifold N3
admits a conformally flat metric of positive scalar curvature, then a finite
cover of N? is diffeomorphic to S3 or a connected sum k(S* x S?) of k-copies
of §* x S2.

Let A, denote the tensor field (A;jx) = (ViRi; — V;Ri) of type (0,3),
where (R;;) stands for the Ricci curvature Ric, of a metric ¢ and V the
Levi-Civita connection of g. We note that if (M, g) is a conformally flat
manifold of constant scalar curvature, then A, vanishes identically (i.e., h
is of harmonic curvature). Conversely, under the condition dim M = 3,
A, = 0 implies that (M, g) is a conformally flat manifold of constant scalar
curvature. Throughout this paper, we always assume that p,q and p, are
positive constants satisfying p > %,max{1,%} < ¢ < 5 and p, < n(n -
1) vol(S™(1))?/", where S™(1) denotes the Euclidean n-sphere of radius 1.
We also always denote by o = 2 — -;5(> 0) and =4 - 2(>0).

Let Vi (n, o) be the class of compact connected smooth n-manifolds M
(n > 3) with Yamabe metrics g of unit volume which satisfy

(M, [g]) > po > 0.
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Inspired by the above problems, we obtain the following convergence theo-
rem.

Theorem 1.1. Let {(M;, gi) }ien be a sequence in Y1 (n, puo) which satisfy
/ IR, | 2dv,y, < Ay, / |V A, |%dv,, < A,
M; M,

with some positive constants Ay, Ay, where |Ry | denotes the norm of Rie-
mann curvature tensor Ry, of g;. Then either of the following two cases must
be hold.

(1°) (M;,g:) converges to a point in the Hausdorff distance.

(2°) There ezist a subsequence {j} C {i}, a compact connected metric
space (M, do,) with positive diameter and a finite subset S = {z1,...,zx} C
M, (possibly empty) such that:

(2°.1) (M, g;) converges to (My,,ds) in the Hausdorff distance.

(2° 2) My\S has a structure of smooth n-manifold and a CP N
LB =2 metric go of positive constant scalar curvature S, such that
Joo 1S compatible with the distance do, on M, \S and that

0< po < S, < n(n—1)vol(S™(1))¥/".

(2°.3) For each compact subset K C M., \S, there exists an into dif-
feomorphism ®; : K — M; for j sufficiently large such that the pull-back
metrics (®;)*g; converges to g, in the C*?' topology for B' < B and weakly
in the L?"9/("=29) topology on K.

0 H —

(2°.4) jll)r{.long = Sq..-

(2°.5) Foreveryz, € S(a=1,...,k) and j, there exist z, ; € M; and

positive number r; such that:

(2°.5a) B.(z,;) converges to B.(z,) in the Hausdorff distance for
alle > 0.

(2°.5Db) lim rj = 00.

(2°.5¢) ((M 7i9;), Ta ;) converges to ((Na, ha), Tac0) in the pointed
Hausdorff distance, where (N,,h;) is a complete noncompact, scalar-flat,
non-flat C* Riemannian n-manifold which satisfies

Sulehal <oo, 0< / 'Rhaln/zdvha < 00,
N. N.
and
vol(B,(z);ha) > (5-2"(n— 1))~ n/2( _ )n/2u'(')‘/2rn

for z € N, and r > 0. In particular, when n = 3 (resp. n = 4,5) each
(Na, ha) is conformally flat (resp. of harmonic curvature).
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(2°.5d) For every r > 0, there exists an into diffeomorphism ¥; :
B (2400) — M; for j sufficiently large such that (U;)*(r;g;) converges to
he in the CY° topology for o < 1 and weakly in the L** topology for s > n
on B, (24 ).

(2°.6) It holds

k
lim |jo.|n/2 dvg, 2/ (R, " dv,_ + Z/ | Ry, | 2duy, .
M, Moo a=1"Na

Jjoroo

Remark 1.2.
(1) Theorem 1.1 is a generalization of Theorem 1.2 in [Ak].

2) Since the metric go, is of class C# N L2729 then its curvature
C

lo
; i e/ (n—29)
tensors K,_,Ricy, and S, make sense in L,/ .

(3) It would be conjectured that only the second case (2°) holds, and when
n = 3 each conformally flat, scalar-flat 3-manifold (N, h,) in (2°.5¢) is
asymptotically locally Fuclidean (cf. [BKN]). However, when solving
them, a technical difficulty arises in obtaining volume estimates of
geodesic balls from above. Moreover, when n = 3 and M; is a quotient
3-manifold M?® of a homotopy 3-sphere for all 7, then it would be also
conjectured that S = ¢ (see [B, AC1] for reconstruction of manifolds).

The following result includes a pinching theorem for flat conformal struc-
tures of positive Yamabe invariant on compact 3-manifolds (see Remark
2.2).

Theorem 1.3. For given positive constants s(> %) and A, there exists a
positive constant €5 = €o(Ho, 1, p, s, A) such that if a compact Riemannian

n-manifold (M, g) € Y1 (n, uo) satisfies

[ IR <, [ VA ldu <,

M M

then M admits a Yamabe metric h of harmonic curvature with
Vh = 1, IU(M, [h]) > Ho > 0.

In particular, when n = 3 (M?,h) is conformally flat, and a finite cover of
M3 is diffeomorphic to S® or a connected sum k(S* x S?) for some k € N..

In §2 we give basic known facts on Yamabe metrics and the Hausdorff
distance. These contain a geometric inequality for Yamabe metrics of pos-
itive scalar curvature, which plays a key role in our proofs. In §3 we give
the notion of L?? harmonic radius. We then summarize convergence results
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for manifolds and a priori estimates for L?? harmonic radius, which were
developed mainly by Anderson [An2, 3, AC2]. The proofs of our theorems
are essentially based on these results. For the proofs of Theorem 1.1 and
Theorem 1.3, we also give another a priori estimate for L»? harmonic radius.
In §4, using these results, we prove compactness and pinching theorems for
Yamabe metrics of positive scalar curvature, and we also prove Theorem 1.3.
Finally, in §5 we give the proof of Theorem 1.1.

Acknowledgment. I would like to thank Professors A. Kasue and S. Nay-
atani for useful discussions. I would also like to thank Professor A. Treibergs
for his kind hospitality while I visited to the University of Utah in summer
1993, when part of this work was carried out.

2. Preliminaries.

In this section, first we shall give several known properties for Yamabe met-
rics. Let M be a compact n-manifold. Since a Yamabe metric g on M is a
minimizer of the Yamabe functional I : [g) — R, then the first variational
formula shows the following equation (cf. [Au2], [LP]):

(2.1) Sy = u(M, [g])V;** = const..
Moreover, the following inequality is due to Aubin [Aul].
(2.2) (M, [g]) < n(n — 1)vol(S™(1))*/".

Now let ¢ be a Yamabe metric of positive scalar curvature on M. The
Yamabe invariant u(M,[g]) is rewritten as

42=1 [, |Vul dvg + [y Squtdu,
)(ﬂ—z)/n !

(2.3) p(M,[g]) = inf

etz (1, W
where L»?(M) denotes the Sobolev space of functions on M with L? first
derivatives (cf. [Au2, GT]). It then follows from (2.1), (2.3) and the posi-
tivity of u(M,[g]) that

(2.4) ( / |u|2"/<""’>dug)("—2)/"< 1 / IVl dv, + —r / Wdv,
M T g M Velr Im

for u € L'*(M), where ¢; = 32=34(M, [g]) > 0. By the Sobolev inequality
(2.4), we can prove the following geometric inequalities for Yamabe metrics
of positive scalar curvature (cf. [Ak]). In particular, the first inequality
(2.5) is of essential use in the proofs of our theorems.
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Proposition 2.1. Let g be a Yamabe metric of positive scalar curvature
on M. Then

2/n
(2.5)  vol(B,(z)) > (5-2""2)""/202/27"" for € M and r < Z ,
g
VZ/n
(2.6) diam (M, g) < 2(5 - 2"~ 2)"/? 0
9

where B,(z) = B,(z;9) denotes the geodesic ball of radius r centered at x
and vol(B,(z)) = vol(B,(z); g) the volume of B,(z) with respect to g.

Remark 2.2. Let M;(n, o, p,So) (resp. M;(n, o)) denote the class of
compact Riemannian n-manifolds (M, g) of unit volume which satisfy

WOLG) 2 o >0, [ (SDrdv, < S,

(resp.  u(M,[g]) > po > 0),

where S} = max{S,,0} and p > 2. For an element (M, g) € M;(n, uo, p, So),
Kasue and Kumura [KK] proved geometric inequalities similar to (2.5) and
(2.6). In Theorem 2.3 below, if we replace Y, (n, o) by My (n, fo, p, So), then
the same conclusion holds. We can also prove convergence theorems for Rie-
mannian manifolds in M;(n, pg, p, So) with integral bounds on curvature,
similar to those in this paper. In particular, if we ounly replace Y, (n, uo) by
M (n, o) in Theorems 1.3 and 4.1, then similar conclusions hold.

Next, we recall the definition of the Hausdorff distance on the set MET
of all isometry classes of compact metric spaces introduced by Gromov [Gr]
(cf. [F]). Let X and Y be compact metric spaces. A map f: X — Y
(not necessarily continuous) is said to be an e-Hausdorff approzimation if
the following two conditions are satisfied.

The e-neighborhood of f(X)in Y is equal to Y.
ldx (z,y) —dy(f(z), f(y))| <e forz,ye X.

The Hausdorff distance dg(X,Y) between X and Y is defined to be the
infimum of all positive numbers ¢ such that there exist e-Hausdorff approx-
imations from X to Y and from Y to X. Unfortunately dg(:,-) does not
satisfy the triangle inequality. However the inequality (2.7) below holds and
then shows that it gives a metrizable complete uniform structure on the set
MET. Thus we treat dy(-,-) as if it is a distance function.

(2.7) du(X,Z) < 2{du(X,Y) +du(Y, 2)},
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for X,Y,Z € MET.

For noncompact metric spaces, we also recall the definition of the pointed
Hausdorff distance. Let (X, z) and (Y, y) be pointed metric spaces (possibly
compact). A map f: (X,z) — (Y,y) is said to be an e-pointed Hausdorff
approzimation if

f(z) =y,
f(Bi/e(2)) C Buye(),
f1By,.(x) : Bije(x) — Biye(y) is an e-Hausdorff approximation.

The pointed Hausdorff distance d, g((X,z), (Y,y)) between pointed metric
spaces (X, z) and (Y,y) is the infimum of all positive numbers € such that
there exist e-pointed Hausdorff approximations from (X,z) to (Y,y) and
from (Y,y) to (X,z). d,u(:,-) also defines a distance on the set MET,
of all isometry classes of pointed metric spaces whose metric balls are all
precompact.

By (2.2), (2.5) and (2.6), we can prove the following precompactness the-
orem for Yamabe metric of positive scalar curvature (cf. [Ak]), which is also
of use in the proof of Theorem 1.1.

Theorem 2.3. The set Y;(n, po) is precompact in MET with respect to
the Hausdorff distance.

3. L?>? harmonic radius.

In this section, we first give the notion of L?? harmonic radius (cf. [An2, 3],
[AC2]). Let (M, g) be a complete Riemannian n-manifold (without bound-
ary). For given p(> %) and L(> 0), the L?? harmonic radius at x € M is
the radius 75 (z) = ru(z;g,p, L) of the largest geodesic ball B, () (z)(C M)
centered at z, on which there exist harmonic coordinates U = {u'}7, :
B;,(z)(z) — R (cf. [J, DK]) such that the metric components g;; =

9(0/0u',8/0ui) are bounded in the L*? norm on B = U(B,,)(z)), i.e.,

(3.1) G—L . (S,'j S 9ij S eL . 6,'_7' (as bilinear forms),
(3.2) ra (2)*109il| ey + ra(2) 100435l s 8y < L
fori,j=1,---,n, where a =2 - 2(> 0).

Remark 3.1. N 5
(1) By the Sobolev embedding theorem L*?(B) C C*(B), the L*? har-
monic radius controls the C'* norm of g;; on B.
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(2) For the rescaled metric h = A?. g (A = const. > 0), the L*? harmonic
radius at = changes as follows;

rua(z;h) = A ru(z;g).

Next we shall summarize part of convergence results for manifolds and
a priori estimates for L>? harmonic radius, which were developed by An-
derson [An1-3, AC2] and also many mathematicians (cf. [BKN, Gal-
2, GW, Gr, Ka, N, P, Ynl, 3]). These are also of essential use in our
proofs of §4 and §5.

Theorem 3.2. Let {(M;, ;) }ien be a sequence of compact C* Riemannian
n-manifolds which satisfy, for each 1 € N

(3.3) ra(e) 2ro for zeM;, Vo, <V

with some positive constants ro,Vy. Then there exist a subsequence {j} C
{1}, a compact C* n-manifold M,, with C* "\ L?? metric g, and a diffeo-
morphism ®; : Mo, — M; for each j such that (®;)*g; converges to g, in
the C*' topology for o < a and weakly in the L*? topology on M,,.

Remark 3.3. In Theorem 3.2, we should remark the following fact. For
a point ¢ € M, and fix it. From (3.3), for each h(j) = (®;)*g;, there exist
harmonic coordinates

Uy = {01y (= {u(i)*}iet) : Bry(C M) — R with Uj(z) =0 € R

such that the metric components h(j)q = h(j)(0/0u®, 8/9ub) satisfy (3.1)
and (3.2). Then, by (3.1), (3.2), the L? estimates for elliptic differential
equations (cf. [GT]) and the construction of ®; and M, there exists a
coordinate system {Vy}7L, of class C* on M, such that

1Uj o Vitlleer <C, [Uj0 Vi Hlgae < C

where C is independent of j and ¢ € M,, (cf. [AC2, Kal). Similar results
hold in the following Theorems 3.4 and 3.5.

Theorem 3.4. Let {(M;, ¢;) }ien be a sequence of compact C*° Riemannian
n-manifolds and §; C M; open subsets (possibly disconnected) which satisfy,
for each i € N

rg(z) >rq for x€Q; C M, 0 <e <vol() < e

and that each Q;(2¢) = {z € Q;;disty, (z,9Q;) > 2¢} is nonempty, where
ro, €1,y and € denote positive constants. Then there exist a subsequence
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{j} C {3}, a compact C* n-manifold Qs (¢) (possibly disconnected but only
finitely many components) with C* N L*? metric g., and an into diffeomor-
phism ®; : Qoo (e) — Q;(5) with ®;(Qo(€)) D Q;(2e) for each j such that
(®,)*g; converges to g, in the C*' topology for o < a and weakly in the
L*P topology on Q. (€).

Theorem 3.5. Let {(M;, gi,b;) }ien be a sequence of pointed compact C*
Riemannian n-manifolds which satisfy:

sup|Rg| <A for 1€N
MJ

with some constant A,
diam(M;, g;) —» o0 (1 — 00),
and for any R > 0 there ezist ip € N and ro(> 0) such that
inj(ar, () 210 >0 for z€ Br(bi;g:), 12> g,

where injy, .\ (2) denotes the injectivity radius of (M;, g;) at . Then there
ezist a subsequence {j} C {i} and a noncompact complete C* pointed n-
manifold (N,b.,) with C*?(0 < ¢ < 1) metric h such that (M;, g;,b;) con-
verges to (N, h,b) in the pointed Hausdroff distance. Moreover, for each
r > 0 there ezists an into diffeomorphism ®; : B,(bo; h)(C N) — M; with
bj € ®;(B,(beo; b)) for j sufficiently large such that (®;)*g; converges to h
in the C*? topology on B, (b;h) and that lerEOQj—l(bj) = beo

In order to state a priori estimates for L?? harmonic radius, we set, for a
given ¢ > 0
v’ (z) = sup{r > 0;vol(B,(y)) > 6 -s" forall B,(y) C B,(z)},

which was introduced by Anderson [An3]. We note that, for each § < w,,
v¥(z) is positive for any £ € M, where w, denotes the volume of the unit
ball in R™. Let M;(n) denote the space of all compact C* Riemannian
n-manifolds (M, g) with unit volume V, = 1.

Theorem 3.6. For (M, g) € M;(n) which satisfies

/ |RglPdvg < A
M

with some positive constant A. Then there exists a positive constant ¢y =
co(A, n,p, 8, L) such that

ra(z) > co-v’(z) for z€ M.
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Theorem 3.7. Let (M, g) be an element in M1(n) which satisfies

[, i< 1

with some positive constant A, where B, denotes a geodesic ball of radius
r > 0 in M. Then there exists a positive constant co = co(A,n,p, 6, L) such
that

vu(z) > ¢o -1 (z) for z € B,,

where vg(z) = min{rg(z), disty(z,8B,)} and 1’(z) = min{v’(z),
disty(z,0B,)}.

Finally, for the proofs of Theorem 1.1 and Theorem 1.3, we shall prove
another a priori estimate for L?»? harmonic radius. To start with, we prove
the following lemma (cf. [An1, SU, S2]).

Lemma 3.8. Let (M,g) be a compact C* Riemannian n-manifold which
satisfies the following Sobolev inequality
(3.4)

n—-2)/n
w2/ =2 dy ( < 1 \Vu|2dv, + L u?dv
. g = S g qu/n o g

for w € LY?(M) with some positive constant ¢, and

(3.5) /M IVA,|" < A

with some constant A. Then there exist positive constants €q = €¢(n, ¢, c;)
and ¢; = ¢;(n, q,¢5, Vy, A1) such that, if

(3.6) / |R,|"*dv, < &,
then
(3.7) /B IR, "2y, < ey,

where B, = B,(z) is a geodesic ball of radius r > 0 in M.

Proof. We first note that the Riemann curvature tensor R, = (R;;x) satisfies
the following equation

(3.8) AyRiji = —ViAjr + VA + (Bg * Rg)ijnis
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where R, x R, denotes a linear combination of contractions of the tensor
R, ® R, by the metric g and A, = ¢*7V,;V; the (nonpositive) Laplacian of g,
respectively. From (3.8), we then obtain the following differential inequality

(3.9) A9|Rg| 2 _CZlVAgl - c3IR9|2a

where ¢, and c3 are positive constants depending only on =.
Let u = |Ry| and £ a cut-off function satisfying £ = 1 on By and £ =
0 on M\B, with |[V¢| < 4. Using Holder’s inequality in (3.5), we may

particularly assume ¢ < Multiply both sides of (3.9) by &2u”, where
4(n 1)°

T = "n‘iz(ll (max{1,22=2} < 741 < 2). Integrating by part, we obtain
(3.10)

2 (‘r+1)/2 _
(7'+1 /5 v ( )| dv, 2/§u IVE|Vuldo,
<o [ €0 (VA +u?)du,

where ¢4 = max{c,, c3}. The Young inequality implies

2
(3.11) fUTIVf“VU' < UT+1|V§|2 + (Tf_ 1)2 IV (u(r+1)/2)l2 .

Using (3.10) in (3.11) then gives

(3.12)
/62 lv (u(r—l-l)/g)lz dvg
T+ 1)? , .
< E4T_ %) [c4f€2u (IVAg| + u2)dvg+2/u +1|V£|2dvg] .
From (3.4) and (3.12), we obtain

(3.13)

( f ('r+1)/2
S

BT [ (€2um+? + 20T |V A, | + |VE[Pu™)dvg +

2n/(n—2) (n=2)/n
i dvg)

g

where c¢s is a positive constant depending only on .

By Holder’s inequality, we note
(3.14)

2/n 2n/(n=2) (n-2)/n
/52u7+2dvg < (L un/2dvg) (/ ({u(r+1)/2) d’Ug) )
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Taking &, in (3.6) satisfying 2/™ < 5o, it then follows from (3.5), (3.13),

(3.14) and Hélder’s inequality again that
(3.15)

2 2 2 (r=2)fn
(/5 n/(n— )]Rg|nq/(n— q)dvg>

2n/(n—-2 (n-2)/n
< </ (é‘u(r+1)/2) / )dvg)

2¢5T 9
5 /(|V§|2ur+1 +§2UT|VA9|)dvg+ ‘—/37;/52u7+1dvg
g

<
Cs

<o [l + Ivepyian,

1/q (¢-1)/q
+ (/B IVAglqdvg> ) (/(ﬁzur)q/(q—l)dvsI) ]
1 2(r41)/n
o0 2) (] v

r B,

1/q (g-1)/q
+ ¢ </ |VAglqug> ) (/£2”/("—?)unq/(n-24)dvg>
M

1 2(r41)/n . ) (g-1)/q
<e (1 + ;2_> &2 + Al (/5 "/(”—2>|Rg|"q/("-2q)dvg> ’

where ¢s = cg(n, ¢, V) and ¢z = ¢z(n, q, ¢, V).
Set X = [gr/(n=2)|R |ne/("=20)dy . The inequality (3.15) implies

1 n-— n(n—
(3.16)  X"D/m _ g AV X @D/ ¢, (1 + ,.—z) gl A=20) < ,

From ¢ < & we note

1 n-2
(3.17) o<l 222
q n
It then follows from (3.16) and (3.17) that there exists a positive constant
ci = ¢i(m, g, ¢, Vy, A, r) such that

/ |R,|"/ "2 du, < X < c).
B

This completes the proof of Lemma 3.8. O

Proposition 3.9. Let (M, g) be an element in Mi(n) which satisfies the
Sobolev inequality (3.4) and (3.5) in Lemma 3.8. Let B, denote a geodesic
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ball of radius r > 0 in M. Then there erist positive constants ey = €4(n, g, ¢,)
and ¢p = ¢o(n, q,¢5, A, 1,6, L) such that if

(3.18) / IR, | *dv, < &,

BZr

then
vu(z) > ¢ -V‘s(x) for =z € B,,

where yg(z) = min{rg(z),disty(z, 8B,)}, ¥’ (z) = min{v’(z), dist,(z,dB,)}
and ry(z) denotes the L*™/("=29 harmonic radius at z.

Proof. We take the same ¢p in (3.18) as in (3.6). By Lemma 3.8 we obtain
the following estimate

(3.19) / IR, "/ "=y, < &,

r

where &, = &;(n, ¢, ¢5, A, 7). It then follows from (3.19) and Theorem 3.7 that
there exists a positive constant ¢o = ¢o(n, ¢, ¢5, A, 7,8, L) such that

yu(z) > co -1 (z) for =z € B,.

This completes the proof of Proposition 3.9. O

4. Compactness and pinching theorems for Yamabe metrics.

In this section, we shall prove compactness and pinching theorems for Yam-
abe metrics of positive scalar curvature with integral bounds on curvature,
and we also prove Theorem 1.3.

Theorem 4.1. Let {(M;, g;) }ien be a sequence in Y (n, po) such that each
(M;, g;) satisfies

(4.1) / R, [Pdv, < A
M:

with some positive constant A. Then there exist a subsequence {5} C {i}, a

compact C*® n-manifold M., with C* N L?? metric g, of positive constant

scalar curvature S, and a diffeomorphism ®; : Mo, — M; for each j such

that the following hold.

(1) V. =1, 0 < po < S, < n(n—1)vol(S"(1))*/".

(2) (®,)*g; converges to g in the C* topology for o/ < a and weakly in
the L*? topology on M.
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Moreover, there are only finitely many diffeomorphism types of compact n-
manifolds M, which satisfy that there ezists a Yamabe metric g on each M
such that (M, g) € Vi(n, po) with (4.1).

Corollary 4.2. There exists a positive constant €9 = £o(n, p, o) such that
if a compact Riemannian manifold (M, g) € Y\ (n, po) satisfies

[ 7o <
M
then M admits a C* metric h of positive constant curvature with
(4.2) Vi=1,  u(M,[h]) 2 po >0,
where Zy = (Z;ji1) denotes the concircular curvature tensor of g, i.e.,
Zijii = Rijri — i—(g‘kg'l ~ gigjk)-
ij 1] n(n — 1) kY3 ilYj

Moreover,

n(n —1) vol(S"(l))z/") "

#(m(M)) < ( o

Remark 4.3. Under more general setting, compactness and pinching
results similar to Theorem 4.1 and Corollary 4.2 have been already proved in
[An3] and [Yn2]. However, we make only minimal assumptions for Yamabe
metrics of positive scalar curvature and conclude some additional results.

Proof of Theorem 4.1. Set § = (5-2"~2)="/( pYER=y 21))71/2 /% > 0. From (2.2),
(2.5) and V,, = 1, we obtain

(4.3) Ué(x)z\/n(n——Q)vjl(S"(l))Z/">0 for =€ M.

Using (4.1) and (4.3) in Theorem 3.6, then there exists a positive constant
co = co(A, n,p) such that the following estimate for L?? harmonic radius
holds

4
(4.4) rg(z) > co\/n(n 3y vol(S (1)) 7" >0 for ze€ M.

It then follows from (4.4) and Theorem 3.2 that there exist a subsequence
{5} C {i}, a compact C*® n-manifold M,, with C* N L?? metric g, and a
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diffeomorphism ®; : M., — M; for each j such that (®;)*g; converges to
Joo in the C* topology for o < a and weakly in the L*? topology on M.,
and then V,_ =1.

Moreover, taking a subsequence if necessary, we may assume that

limS, =S, = const.
j—roo g9, Joo ]

then we also obtain
0 < po < Sy, < m(n—1)vol(S™(1))*/.

This completes the proof of Theorem 4.1. a

Proof of Corollary 4.2. Our assertion will be done by contradiction. If
the assertion does not hold, then there exist sequences {g;};en of positive
constants and {(M;, g;) }ien C V1(n, po) satisfying €; > €2 > --- — 0 and

(4.5) / 12, [Pdv,, < &
M,

for all ¢ € N such that each M; never admits a metric of positive constant
curvature.
From (2.2) and |R,|? = |Z,,|? + =252, we first note that

n(n—l) gs?

(4.6) |Rg.| < 1Zg,] +1/2n(n — 1) vol(S"(1))*/"

for ¢ € N. Combinig (4.5) and (4.6) with Minkowski’s inequality, we have

(4.7)

/M‘ |Rg,|Pdv,, < [(/M |Zgi|pdvg'>1/9+ mvol(S"(l))z/n]p
< [5}/P + ﬁ;(,z__nvol(sn(l))Q/n]P

for : € N. It then follows from (4.7) and Theorem 4.1 that there exist a
subsequence {j} C {i}, a compact C* n-manifold M, with C*NL?? metric
h of positive constant scalar curvature S, and a diffeomorphism ®; : M, —
M; for each j such that the following hold.

(4.8) Vi=1, 0<po <8, <n(n—1)vol(S™(1))*/".
(4.9) h(j) = (®;)"9; —h (G — o0)
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in the C*' topology for o/ < a and weakly in the L2? topology on M...

(4.10) lim S, = S, = const..

J—}OO

Using (4.7) in (4.1) of Theorem 4.1 then gives the following estimate for L2?
harmonic radius of each h(j)

(4.11) ra(z;h(j)) 210 >0 for z€ M,

where rq = ro(n,p, tto). From (4.9) and (4.11), we can cover M, by a fi-
nite collection of geodesic balls {Bra(yk;h); Y € Moo }h=, With respect to
h. It then follows from (4.11) and Remark 3.3 that there exist harmonic
coordinates

Ui = {u"}our (= {u(3)"}a=1) : Bro(w; (7))(C Ms) — R”
with Uj,k(yk) =0¢R"

and a coordinate system {Vy}5_, of class C*° on M,, such that the metric
components h(j)a = h(j)(0/0u®,8/0u’) satisfy (3.1) and (3.2) on Bjx =
Uj,k( Tu(yka (J)))aa'nd that

(4'12) ”Uj,k o VA_l ”Lw <C, ”Uj,k © VA_IHCZ-0 <C

where C is independent of j and k. From (4.12), taking a subsequence if
necessary, we may assume that there exists a coordinate system {Uy i }4_;
of class C** N L*? such that, for each k, U;, converges to Uy in the
C%%' topology for o/ < a and weakly in the L*? topology. We also as-
sume that a collection of geodesic balls {By,(yk; h(j))}i=; covers Mo, and
that Uj x(Byo(¥k; (7)) D Boox(1/2) for all j and k, where B, (1/2) =
Uso e (Bup (i h)).

On the other hand, from (4.5) we obtain

(4.13) fM ‘I/{Eh(j)'p dvn() = /M Iﬁg,» ’,, dvy,
o )

n —2\?/? » )
< ( 1 ) /M,- |Zy, [ dvg;, — 0 (7 — 0),
where f{i\cg denotes the traceless part of Ricg, i.e., I/{Eg = Ric, —%"--g. In each
harmonic coordinates Ujx, by using (3.1) in (4.13), then the components
E(]\')ab of ﬁi\ch(j) converge to 0 strongly in the L? topology on Bw,k(l/Q).
Combining (4.9) with this fact, we obtain

(4.14) R(j)ab—a%-hab strongly in L7 (B x(1/2)),
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where R(j)q denote the components of Ricy(;). In terms of this harmonic
coordinates, R(j).s are expressed as follows (cf. [J, DK]).

s\ e 62h(j)ab . - )
(4.15) h(j) dW + Qas(0h(4)) = —2R(j)a on Bjy,
where @ is a quadratic term in the first derivatives dh(j) of k(). It then
follows from (4.9), (4.14) and (4.15) that the metric & in terms of the coor-
dinates {Uw x}4-, is a weak C* N L?? solution to the following equation

8%hg
Oucdu?

Applying the elliptic regularity theory (cf. [Gi, GT]) to the equation (4.16),
we obtain that h is an Einstein metric of class C* on M., and then
{Us x},—, is a harmonic coordinate system of class C* compatible with
{Va}7L,. From (4.5), we also obtain that h is a positive constant curvature
metric on M. Here we remark that an Einstein metric is a Yamabe metric
(cf. [O, 83]). Combining (4.8) and (4.10) with these facts then contradict
our assumption.

(4.16) ped +Qa,,(ah)=_%s,,-ha,, on  Bex(1/2).

Since there exists a C*° metric h of positive constant curvature on M
satisfying (4.2), then from (2.1) we have

vol(s"(l))>2/"
#(m1(M)) '

This completes the proof of Corollary 4.2. O

o < (M, [A]) = n(n — 1) (

Proof of Theorem 1.3. Our assertion will be also done by contradiction. If
the assertion does not hold, then there exist sequences {e;};en of positive
constants and {(M;, ¢;) }ien C Vi(n, po) of compact Riemannian n-manifolds
satisfying ) > €9 > --+ — 0 and

(4'17) / |Rgl lp dvgs S A1 / |VA9||3 dvyi S 8i
M; M;

for all ¢ € N such that each M; never admits a C* metric of harmonic
curvature.

Since each M; satisfies the estimate (4.17), we can apply volume estimates
of geodesic balls from above due to Yang [Yn3]. Then, there exist positive
constants ¢o = ¢o(n) and po = po(n, p, A) such that

(4.18) vol(B,(z;9:)) < cor™ for r<p, and z € M.
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From (4.17), (4.18) and Holder’s inequality, we have

(4.19) / IR, " dv,
B, (z)

nf2p
S (/ |Rg, |pdvg‘> . VOl(Br(l';g,'))(ZP_n)/Zp
B, (z)
< An/ZP(cOrn)QP—n)/Zp for r < 26 and z € M.

Taking p, = pi(n,p, A) satisfying A™/?P(cop})@P~™/%P < g4 and p; < po,
where €y is the same constant as in (3.6) with ¢, = 4("71;_21)#0 > 0. By
Hélder’s inequality and V,, = 1, we may particularly assume that s < Z. It
then follows from (2.4), (4.17), (4.19) and Lemma 3.8 that

(4.20) / |Rg‘|ns/("—2s)dvg' <¢ for z €M,
B (z)

where ¢; = ¢i(n,p, s, po, A). Here, by (2.5) and V,, = 1, there exists a
finite subset {z,(¢)};=, C M; for each ¢ € N such that {ng_ ))}.j1 is a

covering of M;, where mq = mo(n, p, o, A). Combining (4.20) with this fact
then gives

(4.21)
/ |R9'|ns/(n 2s) d’l) < Z/ ns/(n 2s) d’U < moey for i € N.
B_;a_L(xa i
Set p = 25-(> 2s) and @ = 4 — 2(> 1) in the proof of Corollary 4.2,

respectively. From (4.21), Theorem 4.1 and Remark 3.3, the same results
as (4.8)—(4.12) and (4.15) hold, and then we will use the same notation as
in the proof of Corollary 4.2 except for p and a. In terms of each harmonic
coordinates U, x, the Ricci curvature Ricy(;y satisfies the following equation
beside (4.15)

nedOPR(J .
(4.22) h’(])Cda—cE?—)d + (ah ) * aRICh(J‘))ab

= [(90h(5) 4 Oh(]) * Oh(j) + Ricng;)) * Rica)las
+ k() IV A ) ats — VaA()cbd]
(—3 T(j)ab) on Bj,lw

where A(j) = An(j)- Here we note

(4.23) 1AG)asll 2 725 (5,,) < Cn 1h(G)abllcro-2 (5,,) < C
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for all j,k and a,b=1,---,n, where C; and C5, C3 below are independent
of j. Combining (4.17), (4.21) and (4.23) with (4.22) then gives

(4.24) IT(5)ab

olas(5,0) <

for all j,k and a,b=1,---,n. From (4.23), (4.24) and the L? estimate (cf.
[GT)) for (4.22), we have for B € B;

(4.25) |1 B(5)abllL2eB) < Cs

for all j,kand a,b=1,---,n

From (4.17), (4.23) and (4.25), there exist a C*:3="/*  [2n¢/(n=22) metric
h and a L?*® symmetric tensor P of type (0,2) on M, such that we obtain
the following.

(4.26) h(3)ab — hay (j — 0)

in the C** topology for & < 3 — 2 and weakly in the L*"*/("=24) topology
on By, x(1/2).

(427) R(j)ab — Pab (] —_— OO)

weakly in the L2* topology on B, x(1/2), where P, denote the components
of P.

(4.28) VaA(j)bca — 0 strongly in L° ( 00k(l/2))

It then follows from (4.12), (4.15), (4.22) and (4.26)-(4.28) that, in terms
of the C33-n/s N [4n3/("=29) coordinates {Uwo x }4o;, b is a weak C13-7/5
L?73/(n=23) solution and P a weak L?* solution to the following equations,
on each Bm,k(l/Q)

2 e Ohay oh) = —2P.
(4 9) aucaud +Qab( ) - 2 aby
(4.30)
cd a Pab
h Dudul + (Oh * OP) 4 = [(00h + Oh * Oh + P) * Pla

Applying the elliptic regularity theory (cf. [Gi, GT]) to the equations (4.29)
and (4.30), we obtain that A is a C* metric of S, = const. on M, and then
P = Ricp, {Uso k }%=; is a harmonic coordinate system of class C* compatible
with {V3}7.,. From (4.28) we also note that VA, = 0. By the definition of
Ay, we then obtain

(4.31) / | A |Pdon < 2 ] | Ricy | - [V Ay |dos = 0.
Mo Moo
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From (4.31) we have A, = 0, i.e., h is of harmonic curvature. Since a
sequence of Yamabe metrics h(j) = (®,)*g; converges to the C'*° metric h in
the C'1' topology for o < 3 — % and weakly in the L*"*/(*=2%) topology on
M, then h is also a Yamabe metric on M. In fact, unless h is a Yamabe
metric, one can show that h(j) is not a Yamabe metric for j sufficiently
large. Combining this fact with the following

Vh = 17 #(Mooa [h]) 2 Ho > Oa

it then contradicts our assumption.

When n = 3, A, = 0 implies that (M3, h) is conformally flat. Now the
compact 3-manifold M?® admits a conformally flat metric h of positive scalar
curvature. Then, by Izeki’s theorem [I], the rest assertion is immediate. This
completes the proof of Theorem 1.3. O

5. Proof of Theorem 1.1.

In this section we shall prove Theorem 1.1.

By Theorem 2.3, if the first case (1°) in Theorem 1.1 does not hold, then
there exist subsequence {j} C {i} and a connected compact metric space
(My, doo) with diam (M, doy) = Do > 0 such that

lim dy (M, 95), (Moo, deo)) = 0.
Taking a subsequence if necessary, we may assume that
(5.1) diam(M;, g;) > %Do >0
for all 7 and that there exists a (1/7)-Hausdorff approximation
@5+ (Mj,g;) — (Moo, doo)

for each j. For each y € M, we can find y; € M; such that

1
doo (Y, i (¥5)) < 7

We define the singular set S by

S = ﬂ {y € Mw;li}r_l)glf ]RgJ["/z dvg, > €

0<r<Do Bar(y;)

for arbitrary {y;}jen as above},
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where €y = €4(n, ¢, o) denotes a constant similar to €y in Proposition 3.9.
To prove Theorem 1.1, we first note the following.

Lemma 5.1. § is a finite set.

Proof. Take a small constant » > 0 and fix it. Then we can cover S by a
finite collection of metric balls {B2,(24); s € S}aer With respect to do, such
that the collection {B,(z4)}ser is disjoint. Since z, € S, for j sufficiently
large there exists a point z,; € M; such that

(52) / IRngnlzd 91 2 63’
By (za,) 2
1
(5.3) doo (Tay pj(2a;)) < 7 forael,
(54) B_z': (xa,j) N Bg(xb,j) = ¢ for a # b.

It follows from (5.2)—(5.4) that

(5.5) w0 <2ty [ (R, [,

a€l "("”“ i

- 2 -
< 251 /M Ry, " dv,, < 200657
7

Since 2A,¢5! is independent of r, letting r — 0 in (5.5), we then obtain
#(S) < 2M,657
This completes the proof of Lemma 5.1. O
Next we give a proof of (2°.2) — (2°.4). Fix a point y € M, \S.

Lemma 5.2. There ezist r satisfying 0 < r < %doo (y,S), a point y; € M;
for each j and a positive constant ro = ro(n, g, o, A2, ) such that

(5.6) yu(z) > re >0 for z€ B, (y;) C Mj,

where vg(z) = min{rg(z),disty,(z,dB,(y;))} and rp(z) denotes the
L?*9/(n=29) harmonic radius at z.

Proof. Taking a subsequence if necessary, we can find r satisfying 0 < r'<
14w (y,S) and y; € M; for each j such that do, (y, p;(y;)) < % and

(5.7) / |jo|"/2 dvg, < &g for all j.
Bar(y;)
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Using (2.4), (5.7) and [y, [VAy,|?dvy, < A, in Proposition 3.9, then gives
(5.8) vu(z) > ¢ -1 (z) for z € B,(y;) and all j,

where ¢o = ¢o(n, ¢, fto, 6, A, C) and v (z) = min {v°(2),disty, (z,dB,(y;))}.
Now set § = (5-2"‘2)‘”/2(#%)71/2#”/2 > 0. It then follows from (2.5) and
(5.8) that

yu(z) >ro >0 for z € B,(y;) and all j

This completes the proof of Lemma 5.2. O

By (5.6), for each j there exist harmonic coordinates U; : B, (y;) — R™
with U;(B,,(y;)) D B2, = {z € R";|z| < 2p} for some p > 0 independent of
j, such that the metric components of g] satisfy (3.1) and (3.2) for p = ;1—9,,;
and a =4 — —( B> 0). Now @;oU; 5, is a (J) Hausdorff approximation
from (Bp,fyj) to a neighborhood of y in M., equipped with d,, where v; =
(U7') g;. From (3.1) and (3.2), taking a subsequence if necessary, there
exists a C? N L?"9/("=29) metric v, o, on B, such that ¢; o U;'|p, converges
to an isometry Hy : (B,,Yy,00) — (Oy, doo), Where O, is also a neighborhood
of y. Moreover, for any y,z € M \S, H;' o H, : (H; ' (Oy N O.),7y,00) —
(H;'(Oy N O,),7:,00) is also an isometry unless O, N O, = ¢. Since each
metric v, o is of class C?, then H 'oH, is of class C*? unless O,NO, = ¢ (cf.
[CH]). By Whitney’s theorem, there exists a unique C'* structure on M, \S
compatible with the C# structure {(H; ", Oy) }yemo\s- Thus {7y co}yemo\s

also gives a C? metric go, on M, \S compatible with d,,

For each z, € § = {z, -+, 24}, let {z,,};en be points same as in the
proof of Lemma 5.1. For each m € N, define the open subsets D;(27™) in
M, and D, (27) in M., by

D;(27™) = {z € Mj;disty, (z,2,;) >27™ for a=1,---,k}
and
Do(27™) ={2 € Mw;d(z,S) > 27"},

respectively. From (5.1) and (5.6), each D;(27™) is nonempty for m suffi-
ciently large. Also from (3.1), (5.6) and V,, = 1, we have for all j

(5.9) 0<ec <vol(D;(27™),9;) <1

for some constant ¢; = ¢;(m) independent of j. Replace §2; and € in Theorem
3.4 by D;j(27™7') and 27" respectively. It then follows from (5.6), (5.9)
and Theorem 3.4 that, for each m, there exist a subsequence {j.} C {j}, a
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C* n-manifold D™ with C? N L*9/(»=29) metric g™ and an into diffeomor-
phism F;_ : D% — D; (3-2"™"2) with F; (D%) D D;,.(5-2"™"2) for
each j, such that (Fj,)*g;,. convergesto g2 in the c*? topology for g’ <
and weakly in the L? na/(n=2q) topology on DT. Moreover we assume that

{jms1} C {jm} for all m.

Now we remark that ¢;, oF} :DZ — M, converges to an into isometry
G™ : (D7, g™) — (Do (3 -27™72), goo) With G™(DT) D Dyo(5-27™72) for
each m. Take the diagonal sequence {j;} of {jm};men. We shall rewrite the
index “j;” by “j” again. Then we obtain that, for each m, there exists an
into dlﬁ'eomorphlsm 7" = F; 0 (G™) py(s2-m-2) : Do (5-27772) — M
for j sufficiently large such that (®7*)*g; converges to g, in the C*' topology
for 8’ < B and weakly in the L% A/ (n32q) topology on D, (5-2"™"%). We
also note that g is a L2""%9 metric on My \S. Moreover, taking a

loc
subsequence if necessary, we may assume that

lim Sy, = S, = const.
j—oo oo !

then we obtain
0 < po < S, < n(n—1)vol(S™(1))2/".

For a compact subset K C M, \S, there exists m € N such that K C
Dy (5-27™7%). Thus we can take &; = ®7*|¢ as in (2°.3).

Finally we give a proof of (2°.5) and (2°.6). Fix a point z, € S. There
exists z,; € M; such that deo(j(2a,j);%a) < 3. Since S is a finite set, we
can take p > 0 so that (B,(z4)\{z.}) NS = ¢. For each j, we define the
positive number r; in (2°.5) by

rj = sup |Rgyl|.
By (za,;)
By the definition of S,
(5.10) rj — oo (j — o0).

Moreover we may assume that |R,| takes a local maximum value r; at z, ;.
We consider the new sequence of pointed Riemannian manifolds ((Mj, §;),
Z.;), where §; = r;g;. From (2.1), (2.2), (2.5), (5.1), (5.10) and the condi-
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tions in Theorem 1.1, this sequence satisfies:

(5.11)
, WP )IR@I =1, |Rg|(zay) =1,
N
(5.12)
diam (M;, g;) = \/r; diam(M;, g;) — o0 (j — 00),
(5.13)
Vi, = r"/ng] = r”/z —r o0 (j — 00),
(5.14)
S, =17 Sq, = 17 1 (Mj,[gs]) — 0 (j — 00),
(5.15)
/B (@arid) 125" :/B (Zarsig) 2, " ey, <
VoSt o(%a,5i9s
/ VA, | dv,
B\/;_p(fa,j;ﬁj)
(5.16)
= rj—z‘”"”/z/ . VA, |"dvg, — 0 (j — o0),
(5.17)

vol (B,(2);§;) > (5-2"(n — 1)) ™"/*(n — 2)"*pp/*r"

for z € Bcz\/r—_(xa,j;gj), where ¢, = ¢3(n) > 0. By using (5.11) and (5.17)

in Theorem 5.3 below due to Cheeger-Gromov-Taylor [CGT], then for any
R > 0, there exists jgp € N and ro(> 0) such that

(518) iIlj(ijgj)(JL') 2 ro > 0 fOI‘ T € BR (iBa,j;f]j), ] Z jR-

Theorem 5.3. Let B.(z) be a metric ball of radius r in a Riemannian
manifold (M, g) such that for v’ < r,B,(z) is compact. Assume that on
B,(z),w < K, <k and r < (r arbitrary if & < 0) for some constants
w, k. Let BY be a geodesic ball of radius r in the simply-connected space
form of constant curvature w. Then, for positive constants ry and s with
ro+2s < r and ro < 5, the following inequality holds

S

.. (@) > "o 1
M)(m,g)\T) = 2 14 vol (B‘;’0+,)/V01(Bs(:”)).

It then follows from (5.11), (5.12), (5.18) and Theorem 3.5 that there ex-
ists a noncompact complete C® pointed n-manifold (N, &, o0) With C17(0 <
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o < 1) metric h, such that, taking a subsequence if necessary, ((M;, §;), . ;)
converges to ((Ng, hs), Z4,00) in the pointed Hausdorff distance. Moreover,
for each r > 0 there exists an into diffeomorphism ¥; : B, (24,,0)(C N,) —
M; with z,; € U;(B,(Z4,00)) for j sufficiently large such that (¥;)*g; con-
verges to h, in the C*? topology on B, (z, «) and that jli}ngo‘l};l(wa'j) = Zg,00-

On the other hand, by using (5.10), (5.11), (5.17) and the Bishop compar-
ison theorem [BC, Corollary 4, p. 245] in Theorem 3.7, then for any s(> n)
satisfying 1 — 2 > o there exists 7, (> 0) such that

rg(z) >r; >0 for z¢€ B%\/’_—j.p(-'lfa’j;gj),

where rgy(z) denotes the L** harmonic radius at z € M;. In terms of each
harmonic coordinates in ¥;* (Bl\/r—.p(za,j;gj)), by (5.11), (5.16), the L?

estimates and the Sobolev inequality (cf. [GT]), then the components R(5)ki
of hj = (¥;)*G;, R(j)w of Ricy, and V,A(j)c of VAj, satisfy

(5.19) |Bu],.. <C0 RG]0, <€
(5.20) |26 . <€,
(5.21) |Ved(i)en,, <€,

where C is independent of 7. From (5.16) and (5.19)—(5.21), there exists
a L?? symmetric tensor P of type (0,2) on N, such that we obtain the
following.

(5.22) h(G)e — (Ra)u (5 — o0)

n

in the C'° topology for 0 < 1 — 2 and weakly in the L** topology, where
(ha)k: denote the components of h,.

(5.23) R(j)t — Pu (§ — )
weakly in the L?7 topology.

(5.24) Vb/i(j)ckl —0 (j — o)

strongly in the L? topology. It then follows from (5.22)-(5.24) that h, is a
weak C11-"/5 N L2 solution and P a weak L?7 solution to the following
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equations

(5.25)
0%(ha)wi
be a —
(ha) b Ouc + Qri(0(ha)) = ~2Py,
(5.26)
0? Py
ha be
(ha) duboue
Applying the elliptic regularity theory (cf. [Gi, GT]) to the equations (5.25)
and (5.26), we obtain h, is a C*™ metric on N,, and then P = Ric,,. From
(5.10), (5.11), (5.14), (5.15) and (5.17), we also note that S,, = 0 and

+ (0(ha) * OP) gy = [(00(ha) + O(ha) * O(ha) + P) * Ply.

sup|Ry, | =1, 0< / IRha[n/z duy, < Ay,
Na Na
vol(B,(2); ha) > (527 (n — 1)) 2(n — 2)"/ 25 *r"

for z € N, and r > 0.

From the definition of A;, and Holder’s inequality, we note

(5.27)
/ |A§j,2 dvg, < 2/ ,Ric§jl ) 'VAéjldvﬁa
M, M,

(g-1)/q
<2 (/ |Ricz, |7/ d”ﬁ:) (/ [V A, | dvg;)
M, M,

By using Holder’s inequality and V,, = 1 in fMJ ‘Agllq dvy,, < Ay and ¢ >
max{1, %}, we may assume that

1/q

(5.28) 4 >

T2 when n <5.
q_

N3

From (5.11), (5.15), (5.16), (5.27) and (5.28), we then obtain for n <5

(¢—1)/q
/M |4, [2dv;, < 2 ( /M ]Ric;,]ln/zdvgJ)

7

1/q
(5.29) Ly ( / VA, | dugj)
M;
< o PPNl DIIN T g (5 — o0).

By (5.29), when n < 5 we have that 4, = 0, i.e., h, is of harmonic curvature.
In particular, when n = 3 (N,, h,) is conformally flat.
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The proof of (2°.6) follows from the lower semicontinuity of the curvature

integral. This completes the proof of Theorem 1.1. O
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