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It is known that the Hilbert transform along curves:
Hef(e / (- (¢ € R")

is bounded on L?, 1 < p < oo, where I'(t) is an appropriate
curve in R”. In particular, ||Hrf||, < C||f|l,, 1 < p < oo, where
[(t) = (t,|t|¥sgnt), k > 2, is a curve in R2.

It is easy to see that the hypersingular integral operator

—pv/f M) g (e>0)

in which the singularity at the origin is worse than that in the
Hilbert transform, is not bounded on L*(R?). To counter-
balance this worsened singularity, we introduce an additional
oscillation e~27111™" and study the operator

1
Ga-s dl
Topf@) = [ o= ty=a®) ™7 e (@,8>0)
-1

along the curve TI(t) = (t,7(t)), where ~(t) = |t*
y(t) = [t|* sgnt, k > 2, in R? and show that

(i) Tapfllz < Aapllfll2 if and only if B> 3a;

@3i) || Tapfllp € Baypllfllp whenever g > 3c, and

3 1 1 -3
(B+1) BB+ (B=3)

BB+ D+ (B—3a) 7 a@+n) -

1+

1. Introduction.

In recent years, several mathematicians have studied the Hilbert transform
along curves:

Hof(e) = o [ S -TE) G (s€R?),

389
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where I'(t) is an appropriate curve in R™. Fabes and Riviére were led to
the study of Hr in their attempt to generalize the Method of Rotation of
Calderon and Zygmund; for details see [Fa, Ri] and [Wa2].

Nagel, Riviere, Stein and Wainger, and several other mathematicians have
studied the LP-boundedness of #Hr for a variety of curves I'. A detailed
survey of these results can be found in [St, Wa]; also see [Wal]. Nagel,
Riviere and Wainger proved in [NRW1] that #r is a bounded operator on
L?, 1 < p < oo, when I'(t) = (|t|**sgnt,---,|t|*~sgnt), each o, > 0,
is a curve in R™. In particular, |[Hrfll, < C||fll,, 1 < p < oo, where

['(t) = (¢,]t|*sgnt), k > 2, is a curve in R?. For more general curves see
[Na, Wa],  NVWW], and [Wa3].

The kernel, K(z) = %, of the Hilbert transform,

i@ =+ [{8 0y (aer),

— 00

owing to its order of magnitude, is not integrable either at 0 or oco. It does,
however, compensate for this deficiency by cancellation due to oscillation;
this oscillatory property being reflected in the fact that its Fourier transform,
K(z) =i sgn z, is bounded.

It is tempting to explore a situation where the order of magnitude of the
singularity of K at the origin is greater than that of |z|~!, say of the order of
|z|71=%, a > 0. It is reasonable to expect that some additional oscillation is
required to compensate for this worsened singularity. This translates to the
requirement that the Fourier transform of K , in addition to being bounded,
have some decay at infinity; that is, |K(z)| < C(1+ |z|)=? for some 8 > 0.
For further discussion see Theorem 5 of [St].

Integral operators with strong singularities of the type described above,
were studied by Hirschman in one dimension [Hi], Wainger in k-dimensions
[Wa], Stein [St], Fefferman [Fe], and Fefferman and Stein [Fe, St].

It is not hard to see that the hypersingular integral operator

dt

i (a>0)

Ti@) = p [ fa-TO)

along I'(t) = (t,7(t)), where y(t) = |t|¥ or y(¢) = |t|* sgnt, k > 2, is not
bounded on L?(R?). The L?-boundedness of this operator is equivalent to
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the uniform boundedness, in R?, of the multiplier

1
m(:t:,y) — pv/e—ZWi[zt+y'y(t)

-1

dt
)l
e (a>0).

It is easy to see that |m(3,0)| = oo for @ >1;for 0<a <1 and >0,

27z

[m(z,0)| = 2 = 2 (2rz)” — 00

14+o

. ds
sin § ——
s

1
) dt
/ sin(2mzt) prEvs
0

as T = 0.

One can ask if the worsened singularity at the origin can be counterbal-
anced by an oscillation. This leads us to the operator

1

-8 dt
Toof(@y) = oo [ 1z ~ty =)™ o (,8>0)
-1
along the curve I'(t) = (¢,v(t)) , v(t) = [¢|* or y(t) = |¢|* sgnt, k > 2, in
R?.
Zielinski, in his thesis [Zi], studied the L*-boundedness of 7, ;3 along the
parabola y(t) = (t,t?), and proved that || T4 5|2 < Cl|fll2: <= § > 3a.

1.1. Statement of the Main Result. We state the main result of this
paper as:

Theorem 1. Suppose that y(t) = |t|* or y(t) = |t|*¥ sgnt, k > 2, and

1
qp-p di
T =pv [ fle—ty=1@)e™ ™ r (5> 0).
-1
Then
©) NTapfllz < Aapllfll2 if and only if § > 3a;
(i) NTasflls < Bagllfll, whenever 8 > 3a, and

3a(8+1) B(B+1)+(8-3aq)

BB+D+(-3a) P 3a+1 "

1+

Here A, s also depends on k, and B, also depends on p.
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1.2. Outline of Proof. In Section 2, we define an appropriate one param-
eter family of dilations {6;}:s0, and a corresponding distance function p,
whose homogeneity with respect to 8, is essential in proving the L? and
L? -boundedness of 7, 5.

In Section 3, we prove that 7, s is a bounded operator on L? if and
only if # > 3a. This is achieved by applying van der Corput’s Lemma
and its corollary to judiciously subdivided intervals, and the asymptotics of
oscillatory integrals.

The LP-boundedness, as stated in the second assertion of Theorem 1, is
proven in Section 4. This is accomplished by showing that a certain analytic
family, { TF}, of truncated operators is bounded on L? for an appropriate
Rz > 0; and it is bounded on L? , 1 < p < oo, for an appropriate £z < 0;
and that the bound in each case grows at most as fast as a polynomial in
|z| . The result then follows by analytic interpolation.

2. Dilations and Homogeneity.

We define a one parameter group of dilations {8;}is0, 6 : R? = R?, by
5, = diag[ti*?, t*+P] with A = diag[1+8, k4] and a = trace A = 28+k+1,
and a corresponding distance function p defined by: p = p (z,y) =t such

that
R CORIEORE

if (z,y) # (0,0), and p(0,0) = 0. Then p is homogeneous with respect
to &: p(bz) = tp(z),t > 0,z € R?* p(z) is continuous and is in
C*(R?* - 0); p(z+y) < Clp(z) + p(y)], for some C > 0; and R? can
be coordinatized by the polar-like coordinates p = p(z) and v = 6, 'z,
with dz = p*~'dp (Au,u)ds = p*~1dpdyp, where ds is the linear measure
on S!. For proofs of these assertions and additional properties of §;, and p
see [St, Wal].

3. L?-Boundedness.

The proof of sufficiency in the first assertion of Theorem 1 is accomplished
as an easy consequence of Theorem 2, which we prove next. Our point of
departure is the observation that

—

(ﬂ,ﬁf)(:U?y):ma,ﬁ(xvy)f(‘z)y) (fELQ)a
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where ° denotes the Fourier transform, and m, g(x,y) is the multiplier
given by

1

oy dt
Mo, p(2,y) = pv / g2ty (O HI TR e (a,8>0).
-1

Thus, the boundedness of 7, 5 on L? is, by the Plancherel Theorem, equiv-
alent to the uniform boundedness, in z and y, of the multiplier m, s . So we
first prove:

Theorem 2. The multiplier mq5(z,y) is uniformly bounded in R? for
B > 3a.. More precisely:

c ifo<p<1
lma,ﬂ(x,y)lﬁ{ FOSPS1 5530, (s,4) e R

Cp‘a_aﬂ ifp>1

The proof of Theorem 2 depends mainly on the following:

Lemma 3.1. Suppose that
(i) g is real-valued and smooth for all t € [a,b], 0<a<b;
(i) |g® ()] > p > 0 for all t € [a,b] with k > 2; in addition, ¢’ is
monotone on [a,b] if k=1;
(i) z=0+i7,02>20,TER

(iv) a>0.
Then,
b
/6—27rig(t) dt (1+IZ|) p- %
t1+01+2 altoto
Proof. Let

t

G(t) = / L OF

a

Then, by van der Corput’s Lemma (see [St3], Chapter VIII),
IG(t)| < Ck p™%, tE€[a,b].

Integrating by parts, we get

b
/ e—27u'g(t) dt
t1+a+z

a

1+a+z)/ t2+a+z
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_1 1 1
S Cp * [ b1+a+o + a1+a+a ]

b
_1 dt
+C(1+OZ+IZ|),0"/W

2C . C(l+a+|z]) 1 1 _1
= giteto P - l+a+o [ bitote + glteto | P
Ci+lz) s
S T iFere PF
This completes the proof of Lemma 3.1. ]

Proof of Theorem 2: We only need look at

1
o ky.—p1 dt
mt (a:,y) = m:"’ﬁ (‘T,y) — /8 2mifwttyt*+t 7] el
o}

since the other half can be dealt with similarly.
Since p(0,0) = 0 and m(0,0) = 0; for (z,y) # (0,0) but z? + y* < 1, so
that 0 < p < 1, if we let

g(s) = w5+ ys* + 577,
then

g'(s) =z +ykst = s,

and so there exists a T > 0 independent of z and y such that
g'(s) £ - gs‘(m’l) for s € (0,7T]. Then if we let

s

G(s) = /6_2”9(” dt

0

we get | G(s)| < CsP*!, by van der Corput’s Lemma. Hence integrating by
parts we get,

T

. ds
-2 ) 22
/6 nig(s 81+a S

0

G(s
GG,

81+a

[G(S)IiT b (4a) /T

$8+1 1T T g
<C | == +C(1+0‘)/Scﬁd3
4]

— 8a+1
s=0



HYPERSINGULAR INTEGRALS ALONG CURVES 395

s=T
s=0

T
=C [s°7%] + C(1l+a) / stP-o)=1 gs
0

Both of these exist if 8 > a . Thus,

T
e—21rz‘g(s) ds
Sl+a

0

< C.

For s €[T,1],

1 1
) ds ds 171
—2mig(s —
/e m)gﬂ S/Eﬁ?_ELW—J]SG
T T

Thus m*(z,y) is uniformly bounbed when 0 < p < 1. We now turn to the
case when p > 1. With p = p(z,y) as defined above, the change of variable
t =sp! leads us to

p
+ o« —21ri[—:;s+-‘§:—sk+pﬂs"9] ds
m* (z,y) =p /e . pEe

0

Thus, to prove the theorem, we need only show that
p

6—2ni[fs+;y,;sk+p’ss_ﬂ] ds
sl+a

£
3

< Cp~

0

for all (z,y) € R2. To this end, we show that the above integral is uniformly
bounded in each of the four quadrants of R2.

Note: For notational convenience, we shall write x (resp. y) if = (resp.
y) is positive, and —x (resp. —vy) if ¢ (resp. y) is negative.
Casel: <0, y<0.

Let

__Z Y B
gs)=——s8 — —s + pfs .
()=-2 -

Then,
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and
g'(5) == L h(k=1) s 4 P B (B +1) 5,

Let

s

/e—Zwig(t) dt .

0

Q
—~~
@
~—
I

Since near 0 we have g¢'(s) < —p? B s~¥#+1) | van der Corput’s Lemma
gives |G(s)| < C p~# sP*! . Hence, integrating by parts as before, we get

1
e~ 2mig(s) ds
Sl+oz
0

To tackle the integral from 1 to p, we need to consider the following two
cases:

Cp* for 8> a.

IA

8 B
m=>%; @<k
P 2 p 2
B
Nz
(i) 2 ’%‘ , ,
This implies that —% 92— Thus ¢'(s) < —% < - %— on [1,p],
together with Lemma 3.1, yields
P
—27ig(s ds -
/629()81+ < Cp*t
1

() <&

B
By the definition of p, this implies that — ;yk_ < - %— . Then,

T
gs) =~ = Lk = pf gD
PP
B
z p - (B+1)
<-Z —kE -
£ 5 PP’ B s
k B
S-5p° for seflpl
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This, along with Lemma 3.1, gives

P

/ e—27rig(s) ds
Sl+oz

1

< Cp?.

Hence, |m* (z,y)| < C p~¥~*) whenever z,y <0 and B > a. This
completes Case I.
Casell: 22>0,y>0.

In this case,

Zz
gs)=+ s+ L + pPsP,
p p

x

gE) =+ + Lkt - pf s,
p

o
96 =+ (k= 1) & 4 BB 5O
In the vicinity of 0, we have g”(s) > Cp?s~(#+2) ; and so

b

/ e~ 2mig(s) _d_s_
Sl+a

0

< C’p'% for B> 2ca,

using van der Corput’s lemma, where b can be chosen later.

Away from 0, we have the following two cases:

B B
(1)?5—2—§ (11)/72“2_'
. s
i) % <f&
B
This, and the definition of p imply that % > 22— .

Then,

B
g(s)> % — g pf s

2

g g
> _ P
-2 4

ﬂ 1
> P~ Whenever s > (48)7 .
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Note that ¢’ is increasing since g¢” > 0 . Choosing b = (4ﬁ)ﬂ;+1 , and
using Lemma 3.1, we get

e
IV

.. p
(ii) oF %‘
B
Here, ¢"(s) > C 92— . Choosing b =1, and using Lemma 3.1, we get

P

/ e—21rig(s) ds
sl+a

1

< Cpt.

Thus, | m*(z,y)| < C p~(5=%) whenever z,y >0 and 8> 2a.
This completes Case 1.

Case l1l: 2 <0, y>0.

Here,

_ 7 Y B.—p
gs)=——s + /8 + ps™7,
(s) p p p
gs)= -2+ L kst — pf BN

P p

" y —_ —_
g(S):‘*”‘p‘;;k(’“—l)Sk2+p"ﬁ(ﬂ+1)8(”+2)-

Close to 0, ¢"(s) > B(B+1) p® s~#+?) ; and so

b
e—Zm’g(s) ds
Sl+oz
0

using van der Corput’s Lemma , where b can be chosen later.

C'p‘é for 8> 2a,

Farther from 0, the following two cases need to be considered:

8 8
N oY p3 ) p?
Z o> 2 2 o< B
0% = %<k
8
(i) !k" > 37583
p
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k-1
> ( . ) pf; sF—2
> Cpt pt
= C'p%g whenever s € I = [p3<k—2>, p] .

Choosing b = p3¢- in the above, and using Lemma 3.1 we get

e—21rig(.s) ds
sl+a
I

S Cp—aik-z) p_g' S Cp_g .

W % <o

p

This implies that £ >

¥ 5 > 3

B
7 BQ»,andso
ﬂ@s—%+%kwn
P’ p5
< - — _p3
< 5 + 3 p
pﬁ
= -7 whenever se[l p3* 1)]
k-1

subdivide further:

(ia) %<

In this case,

4 B—(k-1)
P p -1
g) < — 2 (k=1)
gl -5 + =
B B
4 P
< £ Ll
- 2+8
B
< -2
- 4

Thus, Lemma 3.1 gives

399

, we are done using Lemma 3.1. If not, we need to
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. p~(k=1) 5 3(k—1

ib) &—— < ¥ < : 0<fB< , se[l,p].

(ib) g < % < p< 3L ey )

There is a real number 7 > 1 such that 0 < j—1< 23@ <j<k. Then
2 . .

B=p-F<p-G-1)=p-[k-{k-(G- D).

Now, let

N+l
le, (j—1) > k (k_g_l) . This can be done since k—g—l < 1.
We now look at:

pﬁ—[k—sm]
8k -

pﬁ_[k—5m+1]
8k '

IA

m=0,1,2...,N—1.

bkl @

For sel = [1,p1‘§3],wehave

g(s)=—= + L kst — pf g ¥V
p P
8 -1
< - % + %pp_[k—sm“] pk—l—("—k——)sm
A
2 8
p
p
< —-—.
- 4

Hence,

< Cp? using Lemma 3.1.

1—Sm

Next, for s€ I = [p x ,p],wehave

g'(s) > k(k—1) L s+

P
(‘c 1) B—
> 7
P

[k=Sm] gk—2
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(k- 1)
- 8
= CpP=2t# Sm,

pP—lk=5n] pk-z-(igi) Sm
This, along with Lemma 3.1, gives

/ e—Zm'g(s) ds
31+a

I

S Cp_g'*'l_iﬁm p_1+£lfm = Cp"g .

Thus, |m*(z,y)| is uniformly bounded when z,y <0 and 32> 3a.
This completes Case II.

CaselV: z>0,y<0.

Here,
g)=+>5 - S+ s
P p
' T - -
gls)=+- - Ykt - P psTOHY)
g"(s) = - p—ik(k—l) 72 4 pPB(B+1) sTEHD

g"(s) =~ k(= 1) (=2) 72 = pf B (B+1) (B+2) 7).

We need to split as follows:

(i);yk— > Cy o (ii)p% < Cpf

where 0 < C)} < 1 is to be chosen appropriately at a later stage.
Note that, in the vicinage of 0,

whenever s€ [ = (0, (g—

Therefore,

~—
BE‘H

/6—21”'9(6) ﬁ. < CpP for B>a

sl+a
I
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using van der Corput’s Lemma.
(i) :3; > Cypf
Note that, |¢”'(s)] > _p% k(k—1)(k-2) &3 > C p° whenever

sel = [(g)r ,p} . Thus,

[emmo to | < o
1
using Lemma 3.1. This completes (i).
(ii) /_'% < Cipf
This needs to be split further:
(iia,)p%é <L <oy @b d < ¥
8k = oF = ’ > = 8k

28
(ii a) %’5 < Eyg % Cip?

ey
At s = [’8 ﬁ+1y]ﬂ p , we have g¢”(sp) = 0. Since ¢g” <0, ¢’ has

k(k-1)
a maximum at sg .
Now,
k=1 y:Lay
) x Y ﬂ(ﬁ+1)]“"+‘° ko1 -1 [ﬂ(ﬁ“rl)] P
= _ L (2T _ LAGCauIN
z ygﬁ'
- — - Cﬂ,k y
p p
B41
_ [BBAE)][E(k—1)]7*
where Cg, = [ =) EICES)
Now, choose C; so that g¢'(sg) > 5 % Next, choose a < 1 and
b > 1 such that in the neighborhood I,, = [asq, bsg] of so, we have
T 1 1
"(s) > — > Z(1=-C?%3 pf
Then,
X d
/6—2mg(s) Slfa < Cp*
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using van der Corput’s Lemma on [asg,sy] and [sg,bso] -
BT
Since g"”'(s) < 0, ¢g”(s) is decreasing; andsoon I = [ (g) , aso} ,

we have

9"(s) 2 g"(aso) = = Lk (k—1) (aso)*™* + p* (6 +1)(ase) "+

2
yﬂ+k , 28
= Capre 5= 2 Cupp P ™

as a simple calculation shows.

Thus on T,
. d
/e—mg(s) slfa < Cpt
T
by Lemma 3.1.
Now,on I = [bso, p],
¥

g"(s) < g"(bso) < =Chppp™ ,

as before. Hence, once again,

/ e—27rig(s) ds
Sl—+—a

I

-2

< Cps

using Lemma 3.1. This completes (ii a).

28
v 4 < G
Have,
Z
g =+ - Lt = gty
p P
28
VAN sk=1 _ pf g g (P+D)
-2 8
ﬁ 1
> %— whenever s € [ = {(Sﬁ)m,pm’s——ﬂ} )

If 3> 3(k—1), we are done using Lemma 3.1. If not, we need to subdivide
further:

B—(k-1) B—(k-1) 2z

s Y P . P Y p3
= -_— [E— SR

(iib A) 7 < S (ii b B) Sk S ;S

with 0 < g <3(k—1),and s€l = [1,p].
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p-(k=1)
[ibA) H <bg—; 0<B<3k-1), sel =[1,p]

p
Have,
z
R LU s
8 g—(k-1) g
N s
2 8 8
8 1
> T whenever s €] = [(Sﬂ)m ) P] .

Using Lemma 3.1 once again, we are done.

p~(k=1) k3
iibB < ¥ < : 0<B<3k-1), sel = [1,
(iibB) B < F < & B<3(k-1), s (1, p]
We proceed here as in Case III (ii b):
There is a real number 7 > 1 such that 0<j—1§g§j<k.

Then 2 = p - § <p-(i-1)=8-[k-{k-( - DY

With N, Sy, and S,, asin Case Il (ii b), for

B—[k—5m] B—[k~Sm41]
P y _ P
< =< — m=012,..., N-1
8k > T Sk ) 01 PEg) ’ ’

: 1- ] , we note that

!
> D -
g(S)_2 5P p 3
Y
2 8 8 < 4

Hence Lemma 3.1 implies that

/ e—21rig(s) ds
sl+a

I

Cp?.

For sel = [pl‘%m , p] , we use the fact that

|g///(3) | > k(k‘ — 1) (k_ 2) ;yﬁ sk-3

k-3

Cpp pPlh=Sn] ph=3=*F25n

v

> C pP73+ESm
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Lemma 3.1 now yields,

; ds
—2mig(s)
e —
/ sl+a

I

< Cpm ST R = 0 p8

Elﬁ 1
On [(g) ) (8ﬂ)ﬂ_‘] we use the fact that |[g”(s)| > C' p? ,

and Lemma 3.1. This completes Case IV, and shows that |m(z,y)| <
Cp- §+a, i.e., the multiplier m(z,y) is uniformly bounded in R? when-
ever 3 > 3a . Thus the proof of Theorem 2 is complete. O

Plancherel’s Theorem now shows that
1 Tasfllz = 1 Tapfll2 < Aap Ifllz = Aasllfllz for B> 3a.
Theorem 3. Along the curve y = —Cp o5 (z>0),

’m (:1:, —Cpk x%ﬁ)

~ C’p'[é“"‘] as p — 0o.

Proof. As before, it suffices to prove the above estimate for

1

—oni x, ,-8] ds
ey = [ el
0
For (z,y) on the above curve, write = Cp, 7°*! and y = —77** (1 > 0).

The change of variable s+~ s77! yields

T

1 k —2mirf ds
mt (Cp e PF!, —7PHF) = 7 / e ™ g(’)m,

0

with g(s) = [Cpsx s — s¥ + s7P] . We split the above integral as
T a b T
[=]+]+]
0 0 a b

where [a, )] is a small fixed interval centered at s, = [%ng—i))-]m Then
since ¢'(so) = ¢”(s0) = 0, but g”’(so) # 0, we have

b

e-21rir’9g(s) ds
sl+a

a

re <crl=% 40 (r(“‘%é)) as T —» 00,
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by a standard result on integral asymptotics; see [St3], Chapter VIII. Next,

g 17
on [; = |0, [Tﬁ—k] , we have

B

g -3 st < —Cpy .
Hence, by van der Corput’s Lemma we get

6—211'1'739(3) ds
81+a

I

o

T < Cr -

: . : g 17
Since ¢ < 0, g” is decreasing on I, = [m} ,a| . Thus

)

§'(5) 2 9"(a) = [~k(k = 1)@+ BB+ 1) ™) = C >,

since 0 < a < sy and ¢”(sp) = 0. Hence,

7 / e—Zm"rﬁg(s) ds

sl+a

< CT_[%_"] .

Iz

" < 0, as seen before, ¢g” is decreasing on I3 = [b,7]. Then

Since g
g"(s) < g"(6) = [~k(k = 1) b2+ BB+ 1) b~C+)] = ~C <,

since b > s, and ¢g”(sg) = 0. Hence, by van der Corput’s Lemma,

e /e—2m'1"59(s) ds

Sl+a

Is

Thus on (0,a] U [b,7], m*(z,y) decays faster than required. This shows
that

|m (Cp e 77, —7PF) | ~ crl5-2 as 1 — oo

that is,
‘m (:z:, —Cha m%) ~ C’p_[%'“] as p — 00.
This completes the proof of Theorem 3. O
This shows that on the curve y = —Cp e (z > 0), the multiplier

m (z,y) becomes unbounded if § < 3«; hence the bound 8 > 3a on
m (z,y) is sharp, and the first assertion of Theorem 1 is proved.
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4. L?-Boundedness.

To prove the second assertion of Theorem 1, we introduce an analytic family
of truncated operators defined by

TN (@, y) = p (e, 9) mi(a,y) fla,y)  (f€S),

where

di ca>0,02>3a, and € > 0.

—2mifot+yy(t)+]t] 7] [t|=* ek
t|t|«

mS(z,y) = / €

e<ft|<1

We note at the outset that 7° = 7,4 is bounded on L?. We need to prove
that

17/l < Clifll,  (fe€L?),

where p is as in the statement of Theorem 1.

Lemma 4.1. Let z=0c+ir; 0 < o < %[g——a] , 7 € R. Then for
simple f
1771l < CAA+lz]) 1 fllz

Proof. 1t suffices to show that for each z, |m&(z,y)| is uniformly bounded
for (z,y) € R?. The proof of this fact is very similar to that of Theorem 2
of Section 3, and shows that

C+|z)) if 0<p<1

for all (z,y) € R2.
C(1+ |z]) p= 5+t if p>1 (=.9)

it (2, 9)] < {

Then for p > 1,

0" mS (2, y)| < C(14|2]) p7 p= 5+
= C(1 4 |z]) p~Bm+2,

For each z, this is uniformly bounded whenever 0 < o < % [g — a] . The

result now follows from the definition of 7¢ and the Plancherel theorem.
This completes the proof of Lemma 4.1. O

To prove the LP-boundedness of T¢, we need the following:
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Lemma 4.2. For —a < R2< 0,

pz(zvy) = hz(z,y)

where
(i) h.(z,y) is a locally integrable function;
(i) h, € C*(R? - 0);
(iii) P (6x(z,y)) =A"?h,(z,y), A >0, (z,y) # (0,0);
(iv) each derivative of h,(z,y) is bounded by a polynomial in |z| if p(z,y) >
1.
Here a = (28 +k + 1) =trace A, and the Fourier transform is to be taken

in the sense of distributions.
Proof. See [St, Wa). O

Remark 4.3. If the line joining ¢ and z — w avoids the origin, and ITETI is
sufficiently small, then

b (2 - w) — hy(2)] = /%hz(x—tw)dt

= ——/th(x—tw)-wdt
0

IA

|| /[th(a: — tw)| dt

(4.3-1) C(2) |w]

IA

since the derivatives of h, are bounded by C(z), by Lemma 4.2. This
observation, and the homogeneity of h, with A = p(z) and ||z sufficiently
large, then imply that,

h:(z — w) = h.(2)]
hz (5’,(:5) (5;&).’1: - 5;&:)10)) —hz (5p(z) (5/:(35)37)),

“5,;—(;) ]
p(x)(2ﬁ+k+1)+a

< C(2) by (4.3-1)

|w]
(4.3-2) < C(2) p(x)(2ﬂ+k+1)+a+ﬂ+1 '
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Lemma 4.4. Suppose that
(i) Tr5f is defined by

T (2,y) = p*(z,v) mE(2,9) fz,y), fES;

(ii) z:0+iT,-—a<a'_<_—og[ i%](O,TGR.
Then

177l < CE A,  (1<p<oo),
where, for fized o and B, C(z) grows at most as fast as a polynomial in
|2] .
Proof. By Lemma 4.2, for f € S, we see that
(4.4-1) (T:f) (z) = (K. * f) (=),

where

dt

K.(z) = / hy(z — T(8)) 8|7 e=2™ 1" i

e<[t|<1

with z € R?, and T'(¢) = [t,y(t)] € R? It follows that (4.4-1) holds when
f is simple. Our aim now is to show that, for z,y € R?,

(4.4-2) / |K,(z —y) - K.(z)| dz < Ci(2),
p(z)>Cr(y)
where C;(z) has at most polynomial growth in |z|. Now Uy = {z:p(z) < o}

is a regular Vitali family; and proving (4.4-2) will prove our lemma by virtue
of Theorem 4.1 of [Ri].

There are two cases to consider: 0 < p(y) <1, and p(y) > 1.
Casel: 0 < p(y) <1.

Since
. dt
~omift) =P -2 GV —0-
hz ($)e Itl tltla O)
e<lt|<1
—2milt|=P |4|-2 dt
Ke) = [ [hale=T) = hte)) e 1
e<[t|<1

The change of variable t = sp(y)ﬁJrl gives dt = p(y)“l ds, and

K. (=) = / [ (2 - D(sp(y)**")) - hz(x)] - 2mils p(u)P*1 7

€ p(y)~ P+ 3| <1
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-z ds
g+1 —(f+1)a
( ) (B+1)

- 'SP(L’) p(y FRE
+
1<]s|<p(y)~FD
= K! + K2.
Now,
K@) | do
p(x)>Cp(y)
< he (2 =T (sp()™)) = he() |
p()>Cply) € p(y)~ B+ <|s]<1
(4.4-3)

|S|—1—a—a p(y)—(ﬂ+1)(a+0) dsdz .

The change of variable z = 4,y 2’ implies dz = p(y) PP gt p(z) =
p(y) p(z’) ; and that ||z'|| is large. The right-hand side of (4.4-3) now be-

comes:

h, (5p(y) [55[ - 5;(;) r (sp(y)ﬁH)D h, (59(11) z’) '

PE)>C e p(y)~ P <8<
. Isl—l—a—a p(y)—(ﬁ+1)(a+0) p(y)(2ﬂ+k+1) dsdz'.

Now, using the homogeneity of h, :
h (6 @) = p(0)" 7 ha(2),

and writing @ = ', this

= p(y)_(ﬁ+1)(a+0)_"/ /

p(@)>C e p(y)~FHI<[si<1

he (o =[5, 7(5) o0 7V]) = hale) | Is| =" dsda

= p(y)—(ﬁ“)(“”)"’/ /

p(@)>C € p(y)~ P+ s|<2

e (8 (3582 = 858y [ 7(9) oWV 7)) = e (01 (6551 2)) |

< |s|7tm*? dsdz.
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Note that Hép(w)x” = 1; and since p(z) is large,
||w] = “ @) [ y)p(k-l)] " is small. Fubini’s theorem and (4.3-2)
then imply that the above is

< C(z) p(y)—(ﬁ+l)(a+0)—0 / |s|~1-e= [82 + szkp(y)w(k-l)]5 ds

ep(y)~PHILs|<1

/ dzx
(28+k+1)+o4p41 °
p(z)>C p(z‘)

Changing to polar-like coordinates with dz = ,1)(37:)(”‘”‘*”1)‘1 dp(z)de, the
above is
1
< C(z) ply)~CHata)=e / |s|=*=° [1 + SZk—zp(y)Zﬂ(k—l)] ds
ep(y)‘(’“)SlslSl

/ ng / ﬁ+a+2

p(z)>C

Forp(y)_(ﬁl)(mw)—‘7 to be bounded, we need —(8 + 1)(a+ o) —0 > 0;
that is, 0 < —a [ i%] < 0. With o as in the preceding statement,
—a — & — 3 . —-—a—0 oo

a—o > F+2 > 1 since B8 > 3a; and so |[s] is integrable
on ep(y)_(p’q) < |s| £ 1. For the p-integral to be bounded, we need S +
o+2 > 1; thatis, o > —(8+ 1). Thus, whenever —(8+ 1) < —a <

o < —a [ + 1] , we have that / |K; ()| dz is bounded by C(z).

+ 2
p(z)>Cp(y)
Similarly, / |K:(z — y)| dz < C(2) using the fact that p(z + y) <
p(z)>Co(y)
Clp(z) + p(y)]-
Next,

|KX(z —y) — KX(z)| d
p(x)>Cp(y)
<

P(2)>Chly) 1<]s|<p(y)~ B+

he (2 =y =T (sp(®)*)) = he (2 =T (sp)*")) |

. |s|-—1—a-a p(y)—(ﬂ+1)(a+0) dsdz .

(4.4-4)
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!

Again, with 2 = d,4) 2’ so that ||z’|| is large, dz = p(y)
p(z) = p(y)p(2’), and using the homogeneity of h, with A = p(y), the
right-hand side of (4.4-4) becomes

(28+k+1)
da’,

= ply) He

PD>C1]s|<p(y)” P

b o= 50y o0 p0P]) e (= 0"

< |s|7tm*=7 dsda’.

Writing 2 =2’ and w=2— [s, v(s) p(y)ﬂ(k_l)] , so that dw = dz and ||z||
is large, and using Fubini’s theorem, this is

— p(y)-—(ﬁ+l)(a+a)—o 'S'—l—a-—a dS
1<]s] < p(y) =B+

[+

p(w)>C2  p(w)<Cy

= ply) e / js|=1=o=7 ds [T + 177 ;

1<]s|<p(y)~PHD

he (= 855y y) = ha(w)] do

where C is a large constant. Now, using the homogeneity of A, , and (4.3-2)
we see that,

I=p(y)y Cere [ e ds

1<]s| < p(y) =P +Y
. / h (5”(“’) (6 ()~ 5p(w (5;(;)?/))) —h. (6P(U)) (5,,—(,11,)w>)‘dw

p(w)>Co
< CEp(y e [ s
1<]s]<p(y)~PHY
/ l(sp(y)y dw
p(w)J>cz p(w)(2ﬂ+k+1)+a+ﬁ+1
< Cply P [ s

1<]s|<p(y) =D

dp(w)
jd99 / (@)

St pw)>Ca
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For —a <0 £ ~a [ i%] < 0, we have 0 < p(y)~ ¥Vt <1
and 14+ a4+ 0 > 1; and so |s|717%"9 is integrable on |s| > 1. The p-
integral is bounded, since 8+ o0+ 2 > 1 whenever 0 > —a > —(6+1).

Hence, I is bounded by C(z).
Next,

II = p(y)—-(ﬁ+1)(a+a)—a / |S|—1—a—a ds
1< s|<p(y) = B+D)
/ h, (w - 5;(;) y) — hy(w)| dw.
p(w)<C2

The inner w-integral is bounded, since h, is locally integrable; the outer

s-integral is bounded whenever —a < 0 < —a [ i% .

Casell: p(y) > 1.
Fubini’s theorem, homogeneity of h,, and (4.3-2) together imply that,

K. (2)] de
o(z)>Cp(y)
< [ a0 b @-TO) - b)) do
e<|t|<1 p(z)>Co(y)

= [ e

e<ti<1
/ B (5 (852 — 65 T®)) = b (S0e) (5 2)) | de
p(z)>C
o dz
< C(z) / It~ |T'(¢)] d¢ / (m)(2ﬁ+k+1)+a+ﬁ+1
e<Jt|<1 p(z)>C
—a—0 dp(z)
< C(2) / [¢] dt/dso / G
e<lil<t U R
since |I'(t)] = (£2+1%%)% < /2 |t| for |t] < 1. The last expression is bounded
whenever —a < 0 < —a { i%] Similarly, / |K,(z — y)|dz is
p(z)>Cp(y)
bounded by C(z). This completes the proof of Lemma 4.4. O

This brings us to the final step of the proof of Theorem 1:
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4.1. Interpolation. Lemma 4.1 shows that, for f  simple,
TEfllz < Ci(2)||f]|lo whenever 0 < Rz < % [g - a] , B> 3a; Lemma 4.4
shows that ||7T7fll, < Ca2)|fll,b,1 < p < oo, whenever

—a <Rz < —a[ i%} < 0;each Ci(2) (1 =1,2) grows at most as fast as

a polynomial in |z|. It follows that {7°} is an admissible analytic family
for the Stein analytic interpolation theorem (see [St, We], page 205), defined
for z in the strip

S = {zeC:—a[gi;] S%zﬁ%[g—a]}.

Analytic interpolation and duality now imply that 75 = 7 ; is bounded on
L? whenever

3a (64 1) B(B+1)+(B-3a)
BB+D+(B-3a) P 3a@+1)

1+ +1,

for all simple f on R?  An easy limiting argument shows that
WTssfllp < Bagllfll, for all f € S. The constant B, s is independent
of €. Letting ¢ — 0, Fatou’s lemma gives ||To5fllp < Bagllfll, for all

f € §. Now, another limiting argument shows that the last inequality holds
for all f € LP. This completes the proof of Theorem 1. a
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