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EVERY STATIONARY POLYHEDRAL SET IN R" IS AREA
MINIMIZING UNDER DIFFEOMORPHISMS

JAIGYOUNG CHOE

It is shown that every stationary polyhedral set in the Eu-
clidean space is area minimizing under diffeomorphisms leav-
ing the boundary fixed. Similar theorems are also proved for
crystals and immiscible fluids.

There are infinitely many minimal cones in R3. Of these only three are
area minimizing under Lipschitz maps: the plane; the three half planes
meeting along their common boundary line at an angle of 120 degrees; the
cone over the one-skeleton of the regular tetrahedron (see [T]). A recent
work of Lawlor and Morgan [LM] has produced a generalization to higher
dimensional cones in R”. Namely, the hypercone over the (n — 2)-skeleton
of the regular simplex in R” has the least area among all surfaces separating
the (n — 1)-dimensional faces of the simplex. Consequently this cone is area
minimizing under Lipschitz maps. Moreover, Brakke has proved that the
hypercone over the (n — 2)-skeleton of the cube in R" is area minimizing
under Lipschitz maps when and only when n > 4 [B].

In this paper we prove that every stationary polyhedral set in R" is area
minimizing under diffeomorphisms leaving the boundary fixed. Therefore if
we only consider competing surfaces of diffeomorphic images of a minimal
cone C'in R3, C has the least area. Hence in R? all minimal cones are stable.

We wish to thank Frank Morgan for helpful comments on the extension
of the main theorem.

1. Terminology.

An m-dimensional set C C R"™ is said to be polyhedral if there exist
m-dimensional planes {[[;},c; in R™ such that C C U, Il;- Each
m-dimensional set F; = CN[]; is called a face of C'. The singularset S of C'is
the largest (m —1)-dimensional subset of C' which lies inside J;; (]_[,. N ]'[j).
A singular edge of C is the (m — 1)-dimensional subset E of S defined by
E=Cn (H,- ﬂ]—[j) for each pair 4,7 € I. So each singular edge of C' is the
intersection of two faces of C. For each face F; of C the boundary edge Br
of C in F; is the closure of OF; ~ S. The union of all boundary edges of C
is called the boundary 0C of C.
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A polyhedral set C' C R" is said to be area minimizing under diffeomor-
phisms (Lipschitz maps, respectively) if

Volume(C') < Volume(p(C))

for any diffeomorphism (Lipschitz map, respectively) ¢ of R" leaving the
boundary of C fixed.
A polyhedral set C C R” is stationary if

d
pm Volume(¢;(C)) |t=0 =0

for any 1-parameter family of diffeomorphisms {¢;}_1<:<1 of R* with ¢y =
id and leaving 0C fixed. A stationary polyhedral set C is said to be stable if

dz
pres Volume(¢,(C)) |i=0 > 0

for any {¢;} as above.

2. Main theorem.

Theorem 1. FEvery m-dimensional stationary polyhedral set C' in R™ is
area minimizing under diffeomorphisms.

Proof. Let C C R" be an m-dimensional stationary polyhedral set with faces
{F:}icr, boundary edges {B;},;, and singular edges {E}};cs. Then U;c; B;
is the boundary of C, U;¢; Ej is the singular set S of C, and {J;¢; Fi becomes
C itself.

In order to simplify computations we shall frequently classify the singular
edges of C'in terms of the faces. For this purpose let us double-index {E;};¢;
using two indices: Given a face F}, define a reindexed set {E;1, Eia, -+, Fim, }
to be the set of all singular edges E; such that E; C dF;. Hence

6E:B,'UE1‘1U"'UE,'mI.

Similarly we classify the faces of C in terms of the singular edges: Given a
singular edge E;, define

{}leyF}% o ,P}nJ} = {F; . 8E D) E]}.

Then N
Ej = ﬂ 8E7k

k=1
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Since a face contains at least two singular edges, each face is double-indexed
at least two times. Likewise each singular edge is double-indexed at least
three times because a singular edge is part of the boundary of at least three
faces.

Let ¢ be a diffeomorphism of R" leaving 0C fixed. Since ¢ is homotopic
to the identity map in R™, the singular set S is homologous to ¢(S). More
precisely, let ¢, be the homotopy from the identity to ¢. For each singular
edge Ej, there exists an m-dimensional smooth submanifold G; of R” such
that G; is the set swept out by ¢, (E;). Clearly 0G; D E; U ¢(E;). {G;}jes
can be double-indexed in the same manner as {E;}: We write G; = Gy if
E; = Ey. Similarly, given a face F;, there exists an (m 4 1)-dimensional
smooth submanifold D; swept out by ¢, (F;) such that

3D,v:F,~Ugo(F,~)UG,~1U---UG,~m,.

Now let us equip submanifolds F;, ¢(F;), Gik, and D; with appropriate
orientations in such a way that

(1) OD; =F, - p(F)+ G+ -+ Gim,-

One can find a coordinate system {z,,--,z,} in R™ such that the coordinate
frame fields 9/0z,, -+ ,0/dz, are orthonormal and 8/0z,,---,d8/0z,, are
parallel to F;. Define

w; =dzy A---ANdz,,.

Then dw; = 0. Reordering {z,,---,z,,} according to the orientation of F;,
if necessary, one sees that

(2) / w; = Volume(F;).

Then

(3) 0 :/ dw; = / w; = Volume(F;) ——j w; + Z/ w;.
D, aD, p(Fy) k=1 Gk

Let £ be the volume form of ¢(F;) and £* the m-vector on ¢(F;) with £(£*) =
1. Note that w;(£*) < 1 and

/ w; = / w; (£*)€ < Volume(p(F})).
(Fy) @(F)

Then summing up (3) for all ¢ € I, we have

Volume(C) = ZVolume(F,-) < Volume(¢(C)) - E mz /G'k wj.

i€l i€l k=1
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Here let us double-index {w;}ie; such that w; = wj, if F; = Fj,. Then
rearranging the summation in terms of the singular edges gives

(4) Volume(C) < Volume(p(C)) — Z Z/ Wik-

In the integral in (4), however, the orientation of G is ambiguous since
it depends on the orientation of Fj; for each k subject to (1). But since
Jo, wix = J_g, —wjx, one can fix the orientation of G; by taking the negative
of wji, if necessary. Then through (1) the orientation of G; determines that
of Fji, which in turn determines w;, through (2). Now m-forms w;;, -+, wjn;
can be expressed more explicitly as follows. Let v, be a unit constant vector
field in R" parallel to Fj; and perpendicular to F;. Assume further that
vk | Fj, points inward along E;. Define 6, to be the 1-form in R" dual to v,
i.e., 8;(v) = v - v for any vector field v. Let 7; be a volume form of E; for
an appropriate orientation of E;. Then one can easily check that

Wi = 75 /\Hk

The stationarity of C states that

i:uk =0 and i:ﬂk =0.
k=1 k=1

Therefore

Thus it follows from (4) that
Volume(C) < Volume(p(C)).
O

Corollary 1. Every stationary cone in R3 is area minimizing under dif-
feomorphisms.

Proof. All stationary cones in R? are polyhedral. O
Corollary 2. Every m-dimensional stationary polyhedral set in R" is stable.

Remarks. i) In fact, the set of competing surfaces in Theorem 1 can be
enlarged from diffeomorphic images ¢(C) of C to the surfaces homologous
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toC: IfC = User F;, C > 8C, and if each F, satisfies D; = F,UF,UG;, U
-+ +U Gim,, then Volume (C~’) > Volume(C).

i) There are nonpolyhedral stationary cones that are unstable: e.g. the
cones over S* (1/\/5) x St (1/\/5) in R* and over S? (1/\/5) x S2(1/1/2)
in RS [S].

iii) B. White has also shown that stationary polyhedral cones are always
stable.

iv) It should be mentioned that not every stationary polyhedral set is a
unique minimizer. Figure below illustrates two diffeomorphic 1-dimensional
stationary polyhedral sets of equal length. However, if we assume that each
face of the m-dimensional stationary polyhedral set C' has nonempty in-
tersection with the boundary of C, then Volume(y(C)) = Volume(C) for a
diffeomorphism ¢ leaving 8C fixed if and only if ¢(C) = (C). This is because
Volume(p(C)) = Volume(C) if and only if w;(£*) = 1 on ¢(F;) forall ¢ € I if
and only if ¢(F;) = F; or ¢(C) = C. But is there an m-dimensional station-
ary polyhedral set which is not a unique minimizer? Indeed it seems to be an
interesting problem to find an m-dimensional (m > 2) stationary polyhedral
set C which has an interior face, i.e., a face disjoint from the boundary of C
(like the edges of the hexagons in the 1-dimensional polyhedral sets of figure
below)

Two diffeomorphic stationary sets of equal length.

3. Extensions to crystals and immiscible fluids.

Crystals tend to minimize the surface energe which is given by an integral
Js ¥(n) in which the weighting of area depends on the unit normal n at each
point. Immiscible fluids try to minimize the total interface energy. This
energy is proportional to area, but the constant of proportionality depends
on a pair of fluids separated by the interface. In this section we extend
Theorem 1 to the stationary polyhedral hypersurfaces (interfaces) of crystals
and immiscible fluids.
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Definition. A norm V¥ in R” is a homogeneous convex function on R",
positive except at 0. The dual norm ¥* is defined by

U (w) = sup{w-v:¥(v) =1}.
It follows immediately that
v-w < ¥U(v)T*(w).

If equality holds, we say that w is dual to v. One can easily see that w is
dual to a U-unit vector v when w is an outward-pointing normal to the unit
Y-ball at v.

For a hypersurface S in R™ with a unit normal n, the energy ¥(S) of S
associated with the norm W is defined by

¥(S) :/S‘I’(n).

Theorem 2. Let ¥ be a norm in R* , and let C be an (n — 1)-dimensional
polyhedral set in R™ which is stationary with respect to the U-energy. Then
C is energy minimizing under diffeomorphisms, i.e., for any diffeomorphism
@ leaving OC fized,

¥(C) < ¥(p(C)).

Proof. For the faces and edges of C and their “swept-out” sets, we use the
same notations [}, Fjx, F;, D;, G, Gix as used in the proof of Theorem 1.
Also we employ the same double-indexing convention as used there. Let n;
be a unit normal to F;. Extend n; to a constant unit vector field n; in R".
Let n} be the ¥*-unit vector field dual to n;, that is,

v-n! < U(v)
with equality for v = n;. Let dV be the volume form of R* and define
w; =njy dV.

Then dw; = 0. Hence
U(F;) :/ U(n,) :/ n;-n; = w;
F. Fl
v-n; — / wj

T

m,
= Wy — E / Ww; =
k=1Y Gk

e(F) w(Fy)
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where v is a unit normal to ¢(F;). Therefore

® <[ v)-Y [ w=veE) -3 [ w

w(F)
Adding up (5) for all ¢ gives
©) ¥(C) <UeC) - [
iel k=17 G

Now, for a singular edge Ej, the faces Fj,, Fj,, -, Fj,, are assumed to be
indexed in the order they appear around Ej;. Also the unit normals nj; to
Fj, are chosen in such a way that nj; points from Fji to Fjuq4qy (to Fjy if
k = nj). Then the stationarity of C implies that

nj

* —
> 5 =0.
k=1

(See [LM, Theorem 4.2].) Hence we have

7,
Z Wik = 0.
k=1

Therefore the last term in (6) vanishes by the same reason as in the proof
of Theorem 1. O

Definition. Let S be a union of hypersurfaces S; of R* and a; the mul-
tiplicity constant (interface energy) of S;. Given a diffeomorphism ¢ of R",
define the total interface energy M (¢(S)) of ¢(S) by

M(p(9)) = Z a; Volume(¢(S;)).

Theorem 3. Given an (n — 1)-dimensional polyhedral set C in R with
faces F; of multiplicity a;, suppose C is stationary with respect to the total
interface energy. Then C' is energy minimizing in its diffeomorphism class.

Proof. Employing the same notations as in the proof of Theorem 2, we define
an (n — 1)-form w; in R™ by

w; = a;n;J dv.
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Then dw; = 0 and so

MFi:/a,-::/wi:/ Wy — l/‘ Wi
( ) F, F, o(Fy) Z Gk

k=1
= a;n; -V — / (9] S M((,O(E)) - / Wi .
[p(F,) ; Gk kZ:]_ Gk

Hence

Since C' is stationary, we have

7,
E QN = 0,
k=1

where a;; is the multiplicity of the face F, and n;, the unit normal to Fjy.

Hence n
ijk =0
k=1
and we get
M(C) < M(9(C)),
for any diffeomorphism ¢ leaving 9C fixed. O
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