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Let M be an embedded strictly stable constant mean cur-
vature surface, and S a surface with the same boundary that
encloses the same volume. If S is sufficiently close to M we
show area(S) > area(M) unless S = M, i.e. M is a local mini-
mum of area.

R. Finn [F] has pointed out that for a general variational functional a
positive second variation does not imply that an extremal is actually a local
minimum, no matter if ‘local’ is taken in the C°®, C, or C* sense.

For minimal surfaces, however, it is known the above statement is true,
see e.g. [N, §109]. One way to prove this is to foliate a neighbourhood of
a strictly stable extremal with minimal surfaces. The field of normals to
the leaves is divergence-free, or a calibration, and the statement follows by
integration.

There are two equivalent variational characterizations for a surface to
have constant mean curvature H: (i) it is an extremum of area under a
volume constraint (H is the Lagrange parameter); or (ii) an extremum of
area plus H times the enclosed volume. If H # 0 they lead to different second
variations (see [BdC]). Positivity of the second variation for (i) is called strict
volume preserving stability; for example this holds for any proper subset
of the sphere. A stronger condition is that the second variation of (ii) is
positive or strict stability; any proper subset of a hemisphere is strictly stable.
We remark that spherical disks with the same boundary but varying mean
curvature show that a strictly stable surface of constant mean curvature
H # 0 is not a local minimum of area alone.

In [Wh] it is shown that the functional (ii) is locally minimized by a
strictly stable surface. As this proof uses regularity theorems from geometric
measure theory we feel it is worth giving another proof that generalizes the
idea for minimal surfaces mentioned before. This also gives for (i) that a
strictly stable surface locally minimizes area among surfaces enclosing the
same volume.

Under the weaker and physically more appropriate assumption of strict
volume preserving stability it seems that local minimality for the functional
(i) has not yet been addressed. Using an idea suggested by B. White we
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give a proof that shows local minimality for C!-close graphs. The statement

for arbitrary, merely C°-close, surfaces then follows from the arguments of
[Wh].

Stability.

We let H = trace A where A is the second fundamental form of a hypersur-
face M of R™**!. Then S™ has mean curvature H = n with respect to the
inner normal. A hypersurface M C R"*! of constant mean curvature H is
critical for the functional area+H vol. One way to define the volume vol is
to take a cone, vol(M) = (f,, v(z)-z)/(n+1), with v the unit normal to M.
Integration is always with respect to the volume element of M. We assume
M is compact and C?, with C%-boundary dM, and orientable if H = 0.
The second variation of the functional (ii) on a surface of constant mean
curvature H depends only on the normal component u of a variation field X,

(1) 5§(area(M)+Hvol(M))=—/ wAut|A] 2:/ |Dul? | AP,
M M

see e.g. [BAC, L.2.8]. Here we assumed X (and u) to have compact support
on M; A is the Laplace-Beltrami operator of M. An immersed constant
mean curvature surface M is called stable iff

(2) / —ulAu—|APu? >0 forall ueCXP(M),
M

that is the lowest eigenvalue of A + |A|? is nonnegative. If the lowest eigen-
value is positive we say the surface is strictly stable. Equivalently there is a
A > 0 with

(3) /M —ulAu — |A]Pu® > )\/Muz.

If H # 0 then positivity of the second variation for (i) is equivalent to
requiring (2) (resp. (3)) only for all u with f,, u = 0, i.e. for those u that do
not change the volume; this is called (strict) volume preserving stability.

Local minimality for strictly stable surfaces.

For a strictly stable immersion i, : M — R”™ of constant mean curvature H,
we find a neighbourhood that is foliated by surfaces of the same constant
mean curvature. Requiring that i, = id |5y we do not distinguish between
M and io(M).

Theorem 1. Letiy: M — R™ be an immersed strictly stable hypersurface of
constant mean curvature Hy with C** boundary M. There exists a foliation
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t — M, of immersed surfaces with constant mean curvature Hy, that is an
immersion ¢ : M x [—1,1] — R” with i(M,0) = o and M, = i(M,t). If iy is
an embedding then i is a diffeomorphism onto its image.

Proof. (See [MY, Thm. 3], [N, §414] for the proof for minimal surfaces.)
We consider normal perturbations of M of the form ¢o(z) + u(z)v(z), where
v is the normal to M and u is in the Banach space C**(M). Then i, +
uwv is a C**immersion if v has sufficiently small C?“-norm, in particular
the mean curvature function H(iq + uv) is defined. We now want to use
the implicit function theorem for the map o from C%%(M) to C%*(M) x
C?*(dM) defined by u — (H (3o + uv) — Hy, u|onm).
The linearization of o at u = 0 is given by

do(v) = (Av + |A)?v, v|om)

(see [K, App.C], note that H is the first variation of area, and [ dH (v)vis
the second variation of area). By strict stability the only solution v to the
equation do(v) = (0,0) is v = 0. The Fredholm alternative for weak solu-
tions [GT, Thm. 8.6] therefore gives a unique solution v € W'?(M) to the
equation do(v) = h with v|gy = ¢ foreach h € L? and ¢ € C**(IM). More-
over if h € C%%(M) then by [GT, Thm. 8.29] v € C®*(M). The Schauder
estimates yield ||v||caepry < C(||v]lcoa@ry + |Bllcoe@ry + l1¢llc2.e(on)) for
h = (A + |A|*)v with a constant C' depending on the coefficients, see
[GT, Thm. 6.6]. This shows that for A € C®* the weak solution v is
in fact in C**(M). We conclude that do is a diffeomorphism between the
Holder spaces.

The inverse function theorem for Banach spaces then gives a neighbour-
hood of (0,0) € C%*(M) x C**(0M) such that o is invertible. In particular
there are preimages u;, € C**(M) of the constants (0,t) for ¢ sufficiently
small. After scaling in ¢ as necessary we let ¢(M,t) be the map 4o + u,v.

It remains to show ¢(M, t) is an immersion. Choosing ¢ smaller if necessary
(resp. scaling in t) it is sufficient to prove that v := du,/dt is positive. Now
v is a solution to the linearized equation Lv = Av + |A|?v = 0 on M with
boundary values (d/dt)t = 1. By assumption the first eigenvalue of L on M
is positive. The statement follows from the next lemma. O

Usually, for the maximum principle it is required that the coefficient of
the term linear in the function be negative (see, e.g. [GT, Cor. 3.2]). This
condition can be relaxed up to a positive number less than the first eigen-
value, see [H, Problem on p. 92]. We include a proof as we are not aware
of a reference.

Lemma 2. Let Lv = a* D;;u+b*D;v + cv be a linear elliptic equation with
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smooth coefficients. Suppose that its first eigenvalue on a bounded C?°-
domain Q C R” is positive. If Lv < 0 and infagqv > 0 then infqv > 0.

Proof. The minimum of v cannot be 0 since then v = 0 by the Hopf maximum
principle, see the remark following Thm. 3.5 of [GT].

We now suppose that v takes a negative minimum. Since Q has C%¢
boundary we can extend the coefficients smoothly to a neighbourhood of 2.
We let Q be a neighbourhood of € so that the extended operator still has
a positive first eigenvalue. Let & be the first eigenfunction on €, that is
LE+ A€ =0 with A > 0 and £|q > 0. Writing v = w on Q we find that w
also takes a negative minimum at some point y. Since v|sq > 0 the point is
in the interior, y € Q, and Dw(y) = 0, ¢’ D;;w(y) > 0. Hence at y

0> Lv= L(&w)

= aijDijfw + b’ Diéw + cfw + €a¥ Dyjw + €6 Dyw + QaijD,ijw
(L&)w + £a Dyjw
> —Aw.

i

We conclude w(y) > 0 and v(y) > 0 in contradiction to our assump-
tion. O

Using the foliation we prove the local minimality for the functional (i)
assuming its second variation is positive. We let i : M x [-1,1] = R™ be a
foliated embedding by surfaces with constant mean curvature H, and let N
be its image.

Theorem 3. Let M be a strictly stable embedded surface of constant mean
curvature H and S any C*-surface with 8S = OM that is contained in the
foliation N = (M x (—1,1)) defined in Theorem 1. Then either area(S) +
Hvol(S) > area(M) + Hvol(M) or S = M. In particular, if S and M
enclose the same volume then either S = M or area(S) > area(M).

Proof. We consider the unit vector field » on N normal to each leaf M, so
that v|y_, is the interior normal to N. The divergence of v on a leaf M, is
given by divy, v =3, €; - D,,v = —H, where ¢; is an orthonormal basis to
the tangent space of M;. From v-v =1 we get v - D,v = 0 and hence the
divergence with respect to N is also given by div v = —H.

Now —H vol(S) = [i,_div v and by the divergence theorem this is equal
to fov-&— fy_ v v, where £ is the unit normal to S that agrees with
the exterior normal to Vy. A similar formula holds for M and we obtain
—Hvol(S) + Hvol(M) = fqv-& — [,,v-v < area(S) — area(M) with strict
inequality unless S is tangential to the foliation in all points. Thus either
area(M) + H vol(M) < area(S) + H vol(S) or S = M. g
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We thank Rob Kusner for the communication of a similar idea of proof;
it is used by Rossman [R] to simplify the proof of the following result of
Meeks [M, Sect. 4]: If there is a foliation with leaves M, of constant mean
curvature H, then leaves that are critical for the mean curvature are stable.
Wente used a similar calibration argument for capillary surfaces [W].

Clearly our statements generalize to embedded constant mean curvature
hypersurfaces in orientable n-manifolds.

Local minimality for volume preserving stable surfaces.

We now address the problem of minimality of area with a volume constraint
under the (weaker) assumption of volume preserving stability. The main
difficulty is that the constraint vol(¢g + uv) = 0 is non-linear, that is it does
not imply vol(io + tur) = 0. Following an idea of Brian White, for given M
we replace area with a volume constraint by the functional

Fc = area+H Vol+—§-[v01 — vol(M)]?.

The first variation of [vol — vol(M)]? vanishes evaluated at M. Therefore
critical points of the functionals area+H vol and F agree:

Lemma 4. Let C € R. Then M has constant mean curvature H iff M is
critical for Fe.

For a volume preserving stable surface the second variation of F¢ is pos-
itive for all test functions, not just for the volume preserving ones provided
we choose C big enough.

Lemma 5. Let ) be a positive number such that 62, (area+H vol) > X [u?
holds for all w € C®(M) satisfying the volume constraint v = 0. Then
there is a C > 0 such that 62, Fc > A [ u? holds for all u € C(M).

Proof. The second variation of F¢ is §2Fc = é%(area+H vol) + C(d vol)2.
Hence by (1)

(@) 52 Fo = /M IDuf? — [A2u? + C ( /M u)z.

Suppose the statement does not hold. Then for each n € N in place of C+
there is a function u, with 62 ,F, < A [, u2, or

(5) /M \Dun|? = |22 + n (/M u,.)z < A/Mug.
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In particular [|Du,|? < [(|]A]|? + A)u2 < const ||u,||2;. Further assuming
Uy, is normalized with ||u,||z2 = 1 we obtain that the W' 2-norm of the u,
is bounded. Hence u, converges weakly in W12, and by Rellich’s theorem
strongly in L?, to a function u. For the left hand side of (5) to be finite,
u must satisfy the volume constraint fu = 0 and so (5) gives [[Dul|® -
|A|?u? < X [u?, in contradiction to our assumption.

We can now prove the main statement for graphs.

Theorem 6. Let iy : M — R3 be an immersed volume preserving stable
surface of constant mean curvature H. Then there is a constant ¢ as follows:
If a graph over M is of the form ig+uv, with ||u||co: < ¢ and ulop = 0, and
it encloses the same volume, then it has bigger area than M unless u = 0.

Proof. For u with sufficiently small C%!-norm we aim at an estimate
(6) Felio + wv) = Felio) + 83, Fe (io) + o (|ullZ- + | DullZ2) -
A computation leading to (3.23) of [BT] gives

(M)
area(io + uv) + H vol(ig + uv)

= area(ig) + H vol(Z) + /M (IDul? — |Alu?) + o (||ullZ> + || Dull32) .

A similar formula for the volume (same page of [BT]) states

vol(io—{—uu)—vol(io):/ u—/ £I_UZ+/ _If_ua,
M M 2 M3

where K is GauBl curvature of M. By the assumption on the enclosed vol-
ume the left hand side vanishes and [u < sup, (|H|/2+ |u||K|/3)||ull3. <

const ||u||32, using that the C°-norm of u is bounded. Squaring the last
equation gives

Q (/. w) = otz

Now the estimate (6) follows from (7) and (4).

On the other hand, by the preceding lemma we have strict stability for
Fc with sufficiently large C, namely [|Dul? — |A|?u? + C (f v)* > [ Au? for
all u. Multiplying with (1 — ¢) we get

/M(1 — )| Duf? - |A[? + (1 - €)C ( /M u)2
> /M [(1-e)X —e|AP]u? > é/M u?,
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where £ is a lower estimate for [...]; we choose € > 0 small enough so that
€ is positive. Adding € [ |Du|? to both sides we obtain with a new constant
¢ = min(e, &)

(9) 8unFelio) 2 p(llullzs + 1 Dullzs) -

We now combine (6) and (9) to obtain
Folio+uv) 2 Folio) + & (lullts + 1Dull?:)

for all v with sufficiently small C®!-norm. In particular if Fc(ip + uv) <
Fc(io) then w = 0. O

The theorem generalizes to hypersurfaces of R™ since (8) clearly extends
to this case. The graph hypothesis in the preceding theorem can be removed
with some regularity results. Indeed using Lemma 5 this follows from The-
orem 3 of [Wh)].

Added in proof: F. Tomi kindly pointed out the following reference to
us. H. Ruchert: Ein Eindeutigkeitssatz ff Flachen konstanter mittlerer
Kriimmung (Arch. Math., 33 (1979), 91-104). Therein our Theorem 1 and
3 are proven on the assumption that M is a disk-type immersed C,-surface
contained in an open ball of radius 2/H with @M real analytic.
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