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For the linear connected simple Lie group split Fj, the
author determines which Langlands quotients J(M AN, o,v) are
infinitesimally unitary under the condition that dim A = 1.

1. Introduction and Statement of Results.

It is known that the problem of classifying irreducible unitary representa-
tions of a linear connected semisimple Lie group G comes down to deciding
which Langlands quotients J(M AN, o,v) are infinitesimally unitary. Here
MAN is any cuspidal parabolic subgroup of G, ¢ is any discrete series or
nondegenerate limit of discrete series representation of M, and v is any com-
plex valued functional on the Lie algebra of A satisfying Rev > 0 and certain
symmetry properties. Using Baldoni-Silva and Knapp [BK3], Baldoni-Silva
and Knapp [BK1] determined which Langlands quotients are infinitesimally
unitary under the conditions that G is simple, that dim A = 1 and that G
is neither split Fy nor split G,. Recently, the related problem was discussed
by D.A. Vogan [V3] for the simply-connected split G. In this note, the au-
thor determines which Langlands quotients J(M AN, o, v) are infinitesimally
unitary under the conditions that dim A = 1 and that G is split Fj.

The author is deeply indebted to the referees and A.W. Knapp for their
valuable opinions and their help. It is a great pleasure to acknowledege
these.

Let G be the linear connected simple Lie group split Fy. Let 6 be a
Cartan involution, let K be the corresponding maximal compact subgroup,
and let M AN be the corresponding Langlands decomposition of a parabolic
subgroup. We shall assume that dim A = 1. We denote corresponding Lie
algebra by lower case Italy letters. Let o be a discrete series representa-
tion of M or a nondegenerate limit of discrete series [KZ2], and let v be a
complex valued functional on the Lie algebra a of A. The standard induced
representation U(M AN, o,v) is defined as in [BK1] (cf. p. 23 in [BK1]). If
Rev > 0 (with positive defined relative to N) and v # 0, then U(M AN, o,v)
has a unique irreducible quotient J(M AN, o,v), the Langlands quotient. If
v is imaginary ,then J(MAN,o,v) is trivially unitary. If Rev > 0, then
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J(MAN,o,v) cannot admit a nonzero invariant Hermitian form unless the
Weyl group W (A : G) has a nontrivial element w and w fixes the class [o] of
o, moreover, v must be real. Conversely, these conditions give the existence
of a nonzero invariant Hermitian form (see [KZ1]). Thus the problem is to
decide which real parameters v > 0 are such that this form is semi-definite.

Clearly, rank G = rank K. Let b be a compact Cartan subalgebra of the
Lie algebra g of G. We may assume that a is built by Cayley transform
relative to some noncompact root o in A = A(g®,b6°). Then b_ = kera
is a compact Cartan subalgebra of the Lie algebra m of M and the root
system A_ = A(mC,b°) is given by the members of A orthogonal to a. Let
Ak and A, be the subsets of compact and noncompact members of A. It
will be convenient to identify a with its Cayley transform, so that we write
v as a multiple of a. Clearly, o is determined by x and a Harish-Chandra
parameter (Ao, AT) for 0 where x has been defined in [BK1] (see p. 24 in
[BK1]). Here AT is a positive system for A_ and X, is dominant relative to
At. We can introduce a positive system At for A containing A such that
Ao is AT dominant and « is simple. Let A} = AgNAT and A} = A, NAT.
It is automatically true that the nontrivial element w of W(A : G) exists
and fixes [o]. We can define o to be a cotangent case or tangent case as in
[BK1] (see p. 25 in [BK1]). According to [K], J(MAN,o,v) has one or
two minimal K-types with highest weights given by the formula

/\=>\0+5-25K—%(1—p’a)04.

Here § and 6k are the half sums of positive roots for At and A} and u, is 0
in a tangent case, and is equal to 1 in a cotangent case. For a given A, let
Ak = {r € Ak | (A,7) = 0}. The special basic case associated to Ay is the
group or root system generated by a and all simple roots of A* needed for
expansion of members in Ax ;. This root system will be denoted by Ag and
the component of @ in Ag will be denoted by A%. For a given o, let v§ and
v5 be the integers defined by (1.4a) and (1.4b) in [BK1] respectively (cf.
(1.2) below). By 2.1 in [BK1], we may assume henceforth that v > 0, that
vy > 0, and that the invariant Hermitian form on J(M AN, o,v) is positive
for all v near 0. Evidently there is nothing to prove unless min(yvy, vy ) > 1
in the consideration.

Let A(S) denote the subsystem of A generated by a subset S in A. A
subalgebra [ of g is called to be a standard subalgebra of g if there exists
S C A, a € S such that € is the subalgebra of g¢ with root system A(S), S C
A (cf. Section 3). For convenience, let L denote the subgroup of G with Lie
algebra ! and let A denote the subsystem A(S). A subalgebra [ of g is called
to be a fundamental of g if A is a subsystem generated by some simple roots
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and containing a. Clearly, each fundamental subalgebra of g is a standard
subalgebra of g. If [ is a standard (resp. fundamental) subalgebra of g,
then L is called to be a standard (resp. fundamental) subgroup of G. For
each standard subgroup L of G, let Ap(u) = {8 € AT | B € AL}. For each
fundamental subgroup L, there is a simple root system II, of Ay so that
a € Iy CII, and let A s be the special case associated with AL o, and let
A3 s be the component of o in A g. Here Ay is given by (3.1b) in [BK1].
For a fundamental subgroup L, let £(a,€) be the sum of the simple roots
strictly between a and ¢ in II; for any «,e € II;. Clearly, the simple root
system II can be expressed in the form II = {a;, a3, a3,a4} where a; and ay
are long, and a3 and a4 are short, and o is orthogonal to «; if [¢ — j| > 1,
1,7 = 1,2,3,4. Let T be the subgroup of G with Ar = Aoy, as).

In this note, we shall use the notations given by [BK1] directly. Now, we
shall state the main results of this note.

Theorem 1 (Main Theorem). For ¢ > 0, then, J(MAN, o0, +ca) with
three exceptions is infinitesimally unitary exactly when

0 < ¢ < min(yg,vy) = ¢,

the exceptions occur when there ezists a fundamental subgroup L of G which
is of one of the following form:

(A1) L =80(4,3) and A} 5 = Ar with o long, and there is a basic short
root € in Il

(i) Suppose that vy, < 1. Then J(MAN.o,;ca) is infinitesimally
unitary ezxactly when

0 < ¢ <min(vy,,v5 ) = co.

(ii) Suppose that ugjL > 1. Then J(MAN,o,ca) is infinitesimally
unitary ezactly when

0 <c<cy=min(vy, —d, vy, —d), or ¢=co=min(vg,,v5,)

Here d =0,d' =1 and T = — if é(a,€) is noncompact, d = 1,d' =0
and Y = + if (o, €) is compact or zero.

(A.2) L =80(5,2) and Ar C A} 5 = Ay with a long and a is the middle of
three simple root in I1L. Suppose that there is a unique positive noncom-
pact root By in AL such that By is orthogonal to o and is conjugate to
—a (resp. @) by K within L. Then J(M AN, o, ;ca) is infinitesimally
unitary when

0 < c¢<co=min(v,,vr +1), (resp. co = min(ygr +1,55)).
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(B.1) L=8p(2,1) and A} ¢ = AL with a short. Suppose that there is a long
compact root of Il; nezt o , and p, = 0. Then J(MAN,o, %ca) 18
infinitesimally unitary ezxactly when

0<c<min(yt,y;)—2=c¢), or c=cy=min(yy,vy).

Remark. For the case (A.1), (ii), or for the case (B.1), J(MAN, 0, ;coc)
is an isolated unitary representation and there is a gap (cg, ¢o) if ¢ < co. The
situations for (A.1), (ii) (resp. (B.1)) is a similar fashion as in situations for
(iii) (resp. for (i)) in Theorem 1.1 of [BK1].

For each r € A, let g¢ be the root space corresponding to r. Then g¢ has
the following decomposition:

g =b"+> g
reA

Let 6 denote the Cartan involution for the Lie algebra g of G. Then g, =
g+ +1g9_,i = v/—1 is a compact Lie algebra where g = {X € g | 8(X) =
+X}. For each r € A, let u, = %(er +e_,) and v, = 5(e, — e_,). Here
e+r € 99, ex, # 0 with (e,,e_,) = 1. Then g, can be interpreted as a vector
space generated by {u,,v, | r € A} over real number field R. Let 6 denote
the extension of 8 to g€ also. Clearly, f(ey,) = e4, if 7 € Ak, O(ex,) = —ex,
ifreA,.

If g is n-dimensional vector space over R, then g can be interpreted as
a 2n-dimensional vector space over R. If Z = X +14Y € ¢%,X,Y € g then
we denote by Z the element X — iY in g€.

Lemma 1.1. Foreachr € A, e, =e_, or &, = —e_,.

Proof. If r € Ag, then u,.,v, € g, C g, s0 e, = u, + iv, and e_, = u, — 1U,.
Thus for each r € Ag we have &, = e_,. If r € A,,, then iu,,iv, € g_ C g,
$0, e, = v, — i(iu,) and —e_, = v, + i(iu,). Thus for each r € A,,, we have
€, = —€_,.

In order to describe the root system A,it is convenient to use an orthonor-
mal base ey, e,, e3,e4 of a Euclidean space Egr of dimension 4. Clearly, we
have

1
A—_—.{ieiﬁ:ej,:tei, 1<14, 7<4,1i#7j, E(ielie2:t63:i:e4)}.
Let

1
II= {al =€y —€3,03 = €3 — €4,03 = €4,04 = ‘5(61 +€2+€3+64)}-
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Clearly, II is a simple root system of A. For the simple root system II, the
positive root system At can be expressed in the form:

1
A+ = {—61 :l:ei,ei :{:ej,ej,Z S_ ) <j S 4, —61,'—5(61 :1:62 :Eeg ﬂ:&;)} .

For convenience,the coordinate of the element z = z,e; + Toe5 + T3€3 + T4y
of Er can be written as

(1-1) (371,232,373,334)-

It is clear that 26 = (—11,5,3,1).

Hereafter, we shall fix the root system A, positive root system A* and the
simple root system II in the consideration. We shall assume that Ao is A*
dominant, A} C A*, and a € II. Let Ilg be the simple root system of Ag
associated with A% and let 1% =TI N A%.

For two ordered elements (z,y) in Er ® Epg, let (z,y) = 2(z,y)/{y,y).

A Dynkin diagram of II is called an explicit diagram if every simple root
of II is either white or black. For an explicit diagram of II, let II; be the set
of the white roots in the explicit diagram of II, and let (II,II;) denote the
explicit diagram of II. Clearly, the explicit diagrams are ones in Table 1.1
and Table 1.2. (See the end of this note.)

In[G), 0c = (¢1,¢2,¢3,¢4),¢; = 0,£1,+2, i = 1,2, 3,4, denotes a canonical
involutive automorphism of g, for A given above. Let ¢ be the element of
Er with coordinate (c;,cs,¢3,¢4) in (1.1). Then for any r € A, 0c(e,) = e,
or = —e, according to k., is even or odd where k., = (c,r). The canonical
involution ¢ of g, determines a maximal compact subalgebra C of g,. Here
C={X€g,|0c(X)= X} Infact, C is the subalgebra of g, generated
by the elements in the set {u,,v,,r € A | k., € 2Z}. Clearly, Ac = {r €
A | k., € 2Z} is a root system of C. It is clear that Ac N AT = A} is a
positive root system of Ac. Let Il be the simple root system of C' associated
with A5 and Y, = TN AS. In fact, IS = {r € I1 | k., € 2Z}. Then, for
each involution 6, there is an explicit diagram (I, IIy) such that I, = II%.
Conversely, for each explicit diagrqam (II,II,), there is an involution 6o
corresponding to (II,IIy) such that I1% = II,. Since the Lie algebra k = g
of K is isomorphic to the semisimple Lie algebra A; + Cs by [G] (or by [Y]),
for any involution O¢c, the root system Ac of C is a compact root system
Ag for G if and only if C = A; + Cs. By [G], it is easily verified that for
every involutions 6 corresponding to the explicit diagrams given by Table
1.1 (resp. Table 1.2), we have C' = A, + C; (resp. C # A; + Cs). O

Therefore, we have
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Lemma 1.2. There is a one to one correspondence between the explicit
diagrams (I1,I1y) given in Table 1.1 and the positive compact root systems
AL satisfying Ak C A* such that T, = II% = 1IN A}). Moreover, for each
ezplicit diagram (I1,IIy) in Table 1.1, there is an involution 6 of g, such
that Ily = TIY, = I N AL and AL = Ac N AT is the positive compact root
system corresponding to the ezplicit diagram (II,IIy) mentioned above.
For any finite set Y, let #(Y) denote the number of the elements of Y.

For a given o € IIN A}, let

dE={Be A} |BLtac A}

ot = (B a|fet);

E = (B e ot | 2n0) = 0;

T = {Be 27| 1Bl <lel,2(AB)/(B,B) = (A, B) = 1}.
We shall give an explicit formula for v and v§ :
(1.2) vE =14 po + 2#(F) + #(I7).

For convenience, function f(i4), e = 0,£1 will be expressed in the form

f = [f(”l)vf(o)af(l)]

2. The proof of Theorem 1.
For given A,a and A}, (A + (a)V,{ = + was defined in [BK1]. Clearly it

can be expressed in the form

(A+C¢a)Y = A+ uf,
where w¢ is a root in A which can be expressed in the form uniquely
(2.1) Wb = Ca+myr + mary + - + myr,

where m;,ms,...,m, € Z and 7,73, ...,74 € llg.

Let A(w,¢) = {—myry, —mars,...,—m,7,}. Let §* and 6~ be the results
of making o and —a, respectively, dominant for Ag ;. Clearly §* = w® if
and only if A + 6% is A} dominant (cf. p. 34 in [BK1]).

Lemma 2.1. Suppose that (2 is not a sum of some roots in A(w,)UA%.
Then (b) holds in Theorem 3.2 of [BK1] if { = +, in Theorem 3.2 of [BK1]
o=

Proof. Assume that (b) dose not hold. Then by the properties of highest
weight and (2.1) we have.

wEta=Atw - (AFa)= Z k,r,
TEA;
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wEFa=Atwt—(A+a)= Z m,r.
réA(w,+)
Here k, are nonegative integer. Thus (2« is a sum of some roots in A(w, {)U
A%;. Hence, the lemma follows. O

2.1. The proof of Theorem 1. By similar methods used in Sections 3-7
of [BK1], we shall determine a least positive integer ¢y such that J(M AN,
o, fca) is not infinitesimally unitary for ¢ < c¢. By similar methods used
in Sections 8-11 of [BK1], we shall determine a greatest postive integer c
such that U(M AN, 0, ;o) is irreducible for 0 < ¢ < ¢. It follows from a
general continuity argument (cf. [KS], Sect. 14) that J(MAN,o,1ca) is
infinitesimally unitary exactly for 0 < ¢ < ¢g if ¢§ = co. If ¢ < ¢, then
by the methods mentioned above, we don’t know whether J(M AN, 0, %ca)
is infinitesimally unitary for ¢; < ¢ < ¢y and we say that there is a “gap”
(ch,co). If ¢ < ¢ and by the methods given by D.A. Vogan [V1] we can
finally show that J(M AN, o, ;ca) is infinitesimally unitary exactly for 0 <
¢ < ¢ or ¢ = ¢y, then the “gap” (cj, o) is a gap mentioned in the Remark
of Theorem 1.

In fact, for short «, integer ¢, was determined by 6.1 of [BK1] (cf. pp.
45-49 in [BK1]), so, we shall only need to determine integer c; for this case.

By Lemma 1.2, in order to prove Theorem 1, it is sufficient to prove
Theorem 1 for the cases (1)—(6) and (1)'—(6)’ given in the Table 1.1. Now
we shall first determine the positive integers c; and ¢, case by case.

(1) 6c=(1,-1,0,0): It is easy to see that

1
AL = {637641 —e, t ey, €3 k ey, ‘“5(61 +etest 64)} )

+_
Ay = {—61,62, —ey T es,—e; T ey, e e, ey ey,

—1(e1—e2iesie4)},

2
HK = {az,a3,a4, —e + 62}, 251{ = —461 — 262 + 363 + e4.

(1.A) Let o = 0y. Clearly, we have

1
o = {62,—61 —€3,€ i€4,“‘2‘(61 — eyt e3 i64)} ;

2
¢+ = {'—61 “+ 83}, @I = {'—61 + 62}.

By Table 2.1 of [BK1], the following formula are easily verified

1
@; = {63,—61 — €2, €3 ﬂ:64,——(61 + €y — €3 :|:€4)};
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(2.1.1) (Nyoa) 25+ pa, (Nog) >0, 1=23,4.

(Equality holds if a4, 7 = 1,2,3,4 is basic.) It follows that

1
(A es3) >0, </\, —5(61 +e,—e;+ 64)> >0

</\763 + 84) Z 0, (/\, —€; — 62> Z 0,
(2.1.2) (A, —e1 + e2) > 2(5 + ).

It follows from (2.1.2) that

#(‘1’5) > [67676] =6, #(\111—) = [O) 0, 0} = 0;
#(¥g) = #(¥{) = 0,0,0} = 0.

Thus, min(yg,v5) < [2,1,0]. (Equality holds if a;,1=1,2,3,4, are basic.)

By (2.1.1), (A, —e; +e2) > 0, hence —e; +e; & Ag, 1. Therefore, it is easily
shown that —ais A%; | dominant, s0 6~ = —a. Clearly, A' = (A—a)¥ = A—a
is dominant for A};. For this case w™ = §~ = —a and A(w,—) is empty.
Thus by the Remark of 7.2 (or 3.1) in [BK1], (a) holds in 3.2’ in [BK1].
By computing, it is easy to see that —2a is not a sum of some roots in
A(w, =) U A%, so, by Lemma 2.1, (b) holds in 3.2’ of [BK1]. Since A' — A =
—a, (c) holds in 3.2' of [BK1]. Thus, by 3.2' in [BK1], J(MAN, o0, tca) is
not infinitesimally unitary for ¢ > min(yg, v5) = co.

We will consider the irreduciblility of U(M AN, o, Lca).

fl

(1) Suppose po = —1. Let Ay, = A(oy,az,0a3). Then L is a fundamental
subgroup of G and L 2 SO(5,2).

Obviously, there is a unique positive noncompact root Gy = e; + €3 in
A such that §; is conjugate to by K within L. We shall consider the
condition:

(21.q): ArCA)s=A;L.

(i) Suppose that (2.1.q) does not hold. Then (A, a,) > 0. Therefore, it
follows that #(¥;) = 0. Then we have min(vf,v5) = v < 1. For
this case, wt = 6t = —e; + €3 and Alw,+) = {—a, —a3z, —as}. A
similar argument shows that (a), (b) and (c) hold in 3.2 of [BK1].
Thus, by 3.2 of [BK1], J(MAN, 0, ;co) is not infinitesimally unitary
for ¢ > ¢y = vj = 1. By 8.3 of [BK1}, U(M AN, 0, ;ca) is irreducible
for0<c<cy=co=1

(ii) Suppose that (2.1.q) holds. Then min(vg + 1,15 ) = 2 since vy, = 2
and vgp +1 = 3. Thus by 11.2 in [BK1], U*(M ANy, 0y, 5¢cQ) is
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irreducible for 0 < ¢ < ¢}, ¢y = co =5 =2 . By Table 1.2 in [BK1],
we have

1
<)\0+—a,a1> >1, <>\o+“a,0fz> Z"i
1 1
(213) <A0 + "'CX,OZ3> 2 5, <)\0 -+ —a,a4> > 5
(Equality holds if o;, 1 = 1,2, 3,4, are basic.) By (2.1.3), (Ao+3c, 8) >

0 for all 8 € Ay(u). Thus, by 8.2 in [BK1], U(MAN, o0, Lca) is irre-
ducible for 0 < ¢ < ¢p,¢cp =¢cp < 2.

(2) Suppose o # —1. By 8.3 in [BK1], U(MAN, 0, ;ca) is irreducible for
0<e<cyep=c <1

Summarizing the results of (1) and (2), U(M AN, o, ;ca) is irreducible for
0 < ¢ < ¢, cy = cg. Therefore, by the continuity argument, (cf. [KS]), for
case (1), Theorem 1 is proved since [IN A} = {a; }.

(2) 6c=1(0,1,—1,0). It is easy to see that
. 1
AL ={—e;,eq,—€; ey, ey L €3, —5(61 + zey +zes t ey),z =1,
A = {62, e3, —€1 k€3, —e; T e3,e; 1t ey, €3 €y,
1
- 5(61 + ze; — zeg ﬂ:64),2 ==+l y
Mg = {az, 04,62 + 3,1}, 26 = —be; + 2eq + e4.
(2.A) Let a = ay. Clearly, we have
- 1
" = {—‘61 + e3,e — €4, €3, "5(61 +ey—e3+ 64)} )
1
o) = {“61 + eq,63 — €3,€4, "5(61 +ex+e3— 64)} ;
. 1
T = —61—63,62+64,*~‘2‘(61—62+63"—€4) )
1
of = {“61 —e4,e + €3, *5(61 —€e —e3+ 64)} .
By Table 1.2 in [BK1], the following formula are easily verified

(/\,C¥1> 2 O, (A1a2> Z 1 +/1'a7



42 CHENG CHON HU

1
(221) (Aas) > (

1 1 1
@ al T ol T aMa /\7 _>_ 0.
Po + 2' 2) H (A, ag)

It follows from (2.2.1) that

#(T3) = #(T1) =0.

Thus, min(yg,v5) < [2,1,0].

By (2.2.1), (A,ez + e3) > 0. Therefore, e, + e3 & Ak ;. Therefore, it is
easily verified that —ois A% | dominant and A — o is A} dominant. Thus, it
follows that w~ = §~ = —a. A similar argument used in case (1) shows that
J(MAN, o, >ca) is not infinitesimally unitary for ¢ > ¢o = min(vg, vy ).

We shall consider the irreducibility of U(M AN, o, $ca).

Let A = A(ay,02,03). Then L is a fundamental subgroup of G and
L =2 80(4,3). Let € = a3. So € is short and é(a,€) = 0. Then it is easy to
see that min(vg ; — 1,15 ;) < 2 since vy, < 3 and v5;, < 2. We shall consider
the condition

(2.2.q): A%,S = A.I"-

(1) Suppose that p, = —1.
(i) Suppose that (2.2.q) holds.

(a) Suppose that a3 = ey ¢ ¥7. Then we have v, —1 = 1 and
Vo1, = 2. Therefore J(M AN, 0, ;ca) is infinitesimally unitary for
0 < c<cy=1 and there is a gap (¢}, o) = (1,2). We shall show
that for this case, (A.2), (ii) holds in Theorem 1. By (iii) in The-
orem 1.1 of [BK1], it is easily shown that J*(M AN, 01, 3ca)
is infinitesimally unitary exactly when
(2.2.2)

0<c<c=min(vg,,v5, —1)=1, ¢=min(y,,v5.) =2

By Table 2.1 of [BK1], we have Ay, = (—1,0,0,0) and

2 1
Np = }‘O,b +6— 261{ - EOK = 5(—3, 1, ]., 1)

Clearly, (Ay,a3) = 1. Clearly, if a3 & U7, then (A,a3) > 1, so it
follows that A # Ay and Ag # Ao . Hence, it is easy to see that if
(2.2.q) holds and a3 ¢ ¥, then Ay must be

1 1
(2.2.3) Mop+5(=3,1,1,1) = 5(=5,1,1,1).
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(iii)
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Clearly, (Ao, o) = (Ao, ) for i =1,2,4 and (Ao, @3) = (Aop, @3)
+1. Set y(z) = Ao+ (1 — 2)a, 0 < z < 1. By (2.2.3) we have
1

(2.2.4) Y(2) = 5(=5,1,3 — 22,1 + 22).

By (2.2.4), for all 8 € Ar(u) (v(2),8) >0if 2> 0, (y(2),8) >0
ifz=0.

Thus, by Theorem 1.3a of D.A. Vogan [V1] (or Theorem 5.11 of
D.A. Vogan [V3]), it follows from (2.2.2) that J(M AN, 0, fca) is
infinitesimally unitary exactly when 0 < ¢ <1 or ¢ = 2. Hence,
(A.1), (ii) holds in Theorem 1.

Suppose that a3 = e4 € U7 . Then it is easy to see that V(_)*:L—-l =2
and vy, = 2. Therefore, by 11.2 in [BK1], UY(My AN, 0y, 5ca)
is irreducible for 0 < ¢ < ¢§ = ¢y, ¢y = cop < 2. By Table 1.2 in
[BK1], we have

1 1 1
<)\o + Ea’a1> > 3 <>\o + 50,012> > 1,

1 1 1 1
(225) <)\0 + 504, Ol3> Z —-2-, <>\0 + §a,a4> Z 5

It follows from (2.2.5) that (Ao + ja,B) > 0 for all B in A(u).
Then by 8.2 in [BK1], U(MAN, 0, ca) is irreducible for 0 < ¢ <
CoyCh = co = 2. By continuity argument (cf. [KS]), Theorem 1
holds.

Suppose that (2.2.q) does not hold. Then a; & Ap . Therefore, it
is easy to see that (Ao, ;) > 0. Let Ay = A(az,a3,a4). Then L is a
fundamental subgroup of G and L = Sp(3,R). It is easily verified that
min(vy ,, Ve ) = min(vg, vy ) since eq, —3(e1 + ez +e3 —eqg) € AL

(a)

(b)

Suppose that #(¥;) < 2. Then min(vg, v ) = v§ < 1. Then for
this case, we have wt = §* = —e; + e, and similar arguments as
used in the case (1.A),(1),(i) show that Theorem 1 holds with
g =co=vi =1

Suppose that #(¥7) = 2. Then by 11.2 of [BK1], UX(M_ ANy,
UL,%ca) is irreducible for 0 < ¢ < ¢; = ¢o = 2. Here ¢y =
min(vy,v5 ). Since (X, 1) > 0, it follows from (2.2.5) that
(Mo+31a,8) > 0forall 8 € Ap(u). Then by 8.2 of [BK1], it is easy
to see that U(M AN, o, ;ca) is irreducible for 0 < ¢ < ¢; = ¢o < 2.
By contiunity argument (cf. [KS]), Theorem 1 holds.

Suppose po # —1. By 8.3 in [BK1], U(M AN, 0, ;ca) is irreducible for
0 < ¢ < ¢y,ch = cy = 1. By continuity argument (cf. [KS]), Theorem
1 holds.
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Summarizing the results of (1) and (2), for case (2), Theorem 1 is proved
since [IN A} = {as}.

(3) 6c=(1,0,0,—1). It is easy to see that

2

1
+ — -
A = {ez,ea, —e; ke, eates, —-(eg ey testey)p;
Al = {*81,64,—31 t ey, —e; es,ex ey, e3 key,

1
- ‘2"(61 :te3 :t83 - 64)};

Mg = {oy,e3,a4,—€1 +e4}, 205 = —4e; + 3ex + e3 — 2eq.

(3.A) Let a = a,. It is clear that
P = {—61 + ez, €3 — 64},
q); = {—'61 + €4,€E9 — 63};

1
&t = {64,-—61 —e3, € +e4,-——2-(61 +e,+e;— e4)},

1
<I>: = {63, —e; — €4, €3 + €3, —-2-(61 te —e3+ 64)}-

By the Table 1.2 in [BK1], the following formulas are easily verified

(2.3.1)
</\7a1> .>_. 07 (Ava‘Z) 2 -3 + Has

1 1 1 1
/J,a—il—'z‘) +2_+_(1_'u'a), (/\,014)20-

It follows from (2.3.1) that
#(5) <1, #(¥7) =0, #(¥5) < [5,5,0], #(¥7) <[0,0,2}.

Therefore, we have min(yg, vy) < [2,3,2).

Suppose o # 1. It is easy to see that 67 =e; —eq and A' = (A + )V =
A+ e; — e4 is A dominant. For this case, we have w* = §* = e; — ¢, and
Aw, +) = {—(e2 — &5)}.

By Remark of 7.2 (or 3.1) in [BK1], (a) holds in 3.2 of [BK1]. It is
clear that 2a is not a sum of some compact roots in A(w,+) U A%. Thus,
by Lemma 2.1, (b) holds in 3.2 of [BK1]. Clearly, A' — A = e; — ey, 5o, (c)
holds in 3.2 of [BK1]. Therefore, 3.2 of [BK1] shows that J(M AN, 0, ca)
is not infinitesimally unitary for ¢ > vg = c.



UNITARY REPRESENTATIONS 45

We shall consider the irreducibility of U(M AN, o, 1ca) for pe # 1.

Let A, = Aoy, 9,a3). Then L is a fundamental subgroup of G and
L = S0(5, 2). Clearly there is a unique positive noncompact root 3y = es;+e4
such that (3, is conjugate to —a = e3 — ¢4 by K within L.

In the following, we shall consider the condition:

(23(1) Ar C A%,S =A;.

Clearly, if (2.3.q) holds, then by (ii) in 11.2 of [BK1], UY(M AN, 0,
1ca) is irreducible for 0 < ¢ < ¢y = 2 since vf, = 2 and 5 = 2 if
po = —lyg, =3 and y5 = 1if p, = 0. Clearly, by Table 2.1 of [BK1], we
have

1 [ 1.1 1
<)‘0+§aaal> Z [_ana §j| ’ <A0+§a,a2> 2 1,
(2.3.2) <)\ +laa>>[0—l—l] <)\ +——aa>>
9. 0 9 y 3/ = ’ 2, 9 ? 0 y &4 /2
Thus (Ao + 5o, ) > 0 for all B in AL (u), hence, by 8.2 of [BK1] it is easy to
see that U(M AN, 0, >ca) is irreducible for 0 < ¢ < ¢j = 2 if (3.2.q) holds.

(1) Suppose that u, = 0.

(i) Suppose that (2.3.q) does not holds. Then a; &€ Ak, . Thus, it is
easy to see that (A,a;) > 0, it follows that o ¢ ¥y . Therefore, for
this case, #(¥;) = 0. Hence min(vg,v5) = vf = ¢o = 1. It is shown
that J(M AN, 0, Lca) is not infinitesimally unitary for ¢ > ¢o = 1. For
this case, by 8.3 of [BK1], U(M AN, o, ;o) is irreducible for 0 < ¢ <
¢y = ¢o = 1, hence, Theorem 1 holds with ¢; = ¢; = 1 by continuity
argument (cf. [KS]).

(ii) Suppose that (2.3.q) holds. Then U(MAN, o, ;ca) is irreducible for
0 < ¢ < ¢y = 2. Clearly we have ¢; = 2 and ¢y = 3, so, there is
a “gap” (cp,c) = (2,3) that is called the gap (A.2). But (¢}, c) =
(2,3) is not a true gap since we shall show that J(MAN, o, ico) is
infinitesimally unitary exactly when 0 < ¢ < ¢ = ¢y < 2 in Section 4
(see Proposition 4.1). Thus for this case, (A.2) holds in Theorem 1 by
continuty argument (cf. [KS], Sect. 14).

(2) Suppose p, = —1. If (3.2.q) does not hold, then a similar argument
as used in (1), (i) mentioned above shows that min(vg,vy) = v§ = 1 and
Theorem 1 holds for this case with ¢ = ¢ = 1. If (3.2.q) holds, then
¢y = ¢o = 2, so, by contiunity argument (cf. [KS]), (A.2) holds in Theorem
1.
(3) Suppose p, = 1. Then min(vy,vy) = v < 2.

Clearly, A% , = {a;,a4}. Thus, 6~ = —a is A, dominant but A — «
is not A} dominant. Clearly, v = e; is a short compact root satisfying the
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conditions for producing w™ in Section 3 of [BK1]. It is easy to see that
—a +7 = ey is not A% | dominant since (e4, o) < 0. Thus it is clear that
N =(AN-a)Y =AN—-w". Here w~ = —1(e; + €, + €3 — ¢4) is the image
of —a 4+ v = e4 under the reflection in a4. For this case, w™ # 6~ and
Aw,—) = {—ay, —e3}.

Since a4 is the only short simple root in A}}, 1 but is not strongly orthog-
onal to 3, 3.1 in [BK1] shows that (a) holds in 3.2’ in [BK1].

It is clear that —2c is not a sum of some compact roots in A(w,—) U Af%.
Thus by Lemma 2.1, (b) holds in 3.2 of [BK1].

Clearly A'—A = w™ = a4+as, hence, we can prove that (¢') holds in 3.2" of
[BK1]. Therefore, by 3.2’ in [BK1], J(M AN, 0, ca) is not infinitesimally
unitary for ¢ > ¢y = min(vy,v5) = 15 < 2 since v > 2.

Let A = Aoy, a3,04). Then L is a fundamental subgroup of G and
L = Sp(3,R). Clearly e3,—2(e; + €2 —e3 +es) € Ag, 50, Vg, = 15 < 2
and vg, = vy > 2. By 11.2 in [BK1]}, U¥(M ANy, 0y, @) is irreducible for
0<c<cyco=1y, <2

By (2.3.2) (Ao + 3, 8) > 0 for all 8 in Az(u). It follows from 8.2 in
[BK1] that U(M AN, 0, Lca) is irreducible for 0 < ¢ < ¢j, ¢ = ¢o =15 < 2.
Therefore, by continuity argument (cf. [KS]), Theorem 1 follows for this
case.

Summarizing the results of (1) and (2), Theorem 1 follows for a = a5 .

(3.B) Let o= . It is clear that

1
®” = {—61,62 + e4,€3 +€4,—5(61 te ez — 84)}7

1
@; = {_el — €4, 62,63, _5(61 + €2 * e + 64)} ’

Pt = {—61, €3 — €4,€3 — e4}a

®F = {—e; + €4, 63,63}

By Table 1.2 in [BK1], the following formulas are easily verified
(Aaa1> 2 0, </\aa2> Z [—1a"—1’“2]7

3 .5

> |29 2

<A7a3) = [272’ 2

Thus it follows that #(¥5) = 1 and #(¥¢) = 0. We have min(vg, vy ) =

co < [2,1,0]. By 6.1 of [BK1], J(M AN, 0, ;ca) is not infinitesimally unitary

for ¢ > ¢o. By 8.3 in [BK1], U(MAN, 0, ca) is irreducible for 0 < ¢ <

¢y, Cp = Co. Therefore, Theorem 1 follows for a = aj3.

It follows from (3.A) and (3.B) that Theorem 1 is proved for case (3)
since IIN A} = {az, a3}

], (A, as) > 0.
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(4) 6. =1(0,1,0,—1). It is easy to see that
1
AL = {——el,ea, —e; te3, ey + ey, —5(61 +zey ez + zey), 2 = :{:1} ,

+
An - {62,64, —€; + €2, —€1 =+ €4,€2 :1:63,63 + €4,

2
HK = {63,0’4,62 + 64}, 2(5]{ = —‘561 + 262 + e3.

1
— —(e; +ze3 L e3 — z€4),2 = :i:l};

(4.A.a) Let a = oy. It is clear that
_ 1
® = {62, —e; + 62,——2‘(61 —ey+ e+ e4)} ,
1
;= {es, —e; + es, —5(61 +e;—e3+ 64)};

1
ot = {63 * ey, —e€ — 62:"5(61 + ey —e3 — 64)} s

1
ot = {62 + eq,—€ — €3, —5(61 —eyt+e;— e4)} .
By Table 1.2 in [BK1], the following formulas are easily verified

(Nou) 2 =1+ pa, (Aar) 21— pq,

(2.4.1) (A, ) > % (A, @) > 0.
It follows from (2.4.1) that

#(P) <0, #(¥7)<[0,0,2), #(¥3)=1, #(¥])=0.

Therefore, we have min(vg, vy) < [0.1.2).

(1) Suppose that u, = 1.

Clearly, (A, e3), (A, ez + e4) > 0. Thus, it is easy to see that 6~ =e3 — ey
and A' = (A—a)¥ = A+ e3 — ey is Af; dominant. So, w™ =0~ = e; — ey,
and A(w,—) = {—(es — e4)}-

Clearly, a4 is orthogonal but not strongly to e —e4. Thus by 3.1 of [BK1],
(a) holds in 3.2'. It is easy to see that —2c is not a sum of some compact
roots in A(w,—) U A%. Hence, by Lemma 2.1, (b) holds in 3.2, of [BK1].
Clearly, A' — A = e3 — eq4 = a3, so, (c) holds in 3.2 of [BK1]. Therefore,
3.2' of [BK1] shows that J(M AN, 0, ;ca) is not infinitesimally unitary for
c>co=vf <2
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Let Ay = A(a;,az,a3). Then L is a fundamental subgroup of G and
L = S0O(4.3). Let € = a3. Then ¢ is short and £(e,a) = a3 is noncompact.
It is easy to see that 5 ;, < 2 and Va': 1 < 3. In the following, we shall consider
the condition:

(2.4.q9): A 5 =Ar.

(i) Suppose that (2.4.q) does not hold. Then o, ¢ Ak, ;. Thus, it is easy
to see that (A,ay) > 0. Therefore, it follows that a; + as & ¥g. So,
#(¥¢) = 0. Hence, we have min(vf,vy) = vy = ¢ = 1. It follows
that J(MAN, 0, 1ca) is infinitesimslly unitary exactly for 0 < ¢ <
¢y = co = 1. Consequently, Theorem 1 holds for this case.

(ii) Suppose that (2.4.q) holds. Clearly, v; = 15, = 2 since the root
e; — ey that is in ¥¢ is also in Ay. Therefore, we have v5, —1 = 1.
It has been shown that J(M AN, o, ;ca) is not infinitesimally unitary
for ¢ > ¢y = 2 and is infinitesimally unitary for 0 < ¢ < ¢y = 1 by
continuity argument (cf. [KS]).
Since ¢; = 2 > ¢, = 1, there is a gap (cg, ¢o) = (1,2), (cf. the Remark of
Theorem 1). Consequently, for this case, (A.1), (ii) holds in Theorem 1 by
Proposition 4.1. The gap (cp,¢o) = (1,2) is called the gap (A.1).

(2) Suppose that p, # 1. Then min(vg,vy) = vi.

By (2.4.1), (A,e3) > 0, and (A,e; + €4) > 0. Thus, 6T = ais AL
dominant. It is easily verified that A’ = (A + @)Y = A + « is dominant for
A% For this case, wt = §* = o and A(w™) is empty.

Clearly, by 7.2 (or 3.1) in [BK1], (a) holds in 3.2 of [BK1]. It is easily
verified that 2o is not a sum of some compact roots in A(w*) U A%, so,
by Lemma 2.1, (b) holds in 3.2 of [BK1]. Clearly, A’ — A = ¢, hence, (c)
holds in 3.2 of [BK1]. Thus 3.2 in [BK1] shows that J(M AN, 0, $ca) is not
infinitesimally unitary for ¢ > ¢, where ¢, = min(vg,v5) = 1.

By 8.3 of [BK1], U(M AN, 0, Lco) is irreducible for 0 < c < ¢y =1 = ¢o.
Thus by continuity argument (cf. [KS]) J(MAN, o, ;ce) is infinitesimally
unitary exactly for 0 <c < ¢y =¢o = 1.

Summarizing the results of (1) and (2), Theorem 1 follows for a = a;.

(4.A.b) Let a = ay. It is clear that
- 1
e ={“61—34,62+€37—§(61+€2—€3+€4)}a

1
o, = {—61 —€3,€2 +€4,““2'(61 + e; + €3 — 34)},

1
ot = {64,—61 + €4, €9 +63,—§(61 +ey+es3 — 64)} ,
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1
q)I = {63,—61 + €3,€69 — 64,—‘2'(61 +e2 — €3 + 64)} .

By Table 1.2 of [BK1], the following formulas are easily verified

<A)a1> Z [17 ';_70] ) (/\702) _>_ [—1,—‘%,0] )

(2.4.2) (A, as) [3 2,1], (A,a4) > [0,0,0].

It follows from (2.4.2) that

#(¥g) <10,0,0] =0, #(¥7) <[0,0,1],
#(3) <[L,L,1] =1, #(¥7)<[0,0,2].

Thus min(vg,v5 ) < [0,1,2]. In fact, under the reflection in «, then u, and
(0,1,0,-1) are replaced by —u, and (0,1,-1,0) respectively, moreover, 6t and
0~ are replaced by 6~ and §* respectively. Under the reflection in «, the
data of case (4.A.b) with a = a, are replaced by the data of case (2.A)
with @ = a,. For example, if min(vg, vy ) = [m_;, mo, m;] for case (4.A.b),
then min(vy,vy) = [my,me,m_;] for case (2.A). Therefore, by a similar
argument used in (2.A), Theorem 1 can be shown for this case. Similarly,
if (2.2.q) holds, p, = 1 and e & U7, then there is gap (c),co) = (1,2) that
is the gap (A.1).

Remark. The details of the device, called reflection in a were given in
[BK1] and [BK3] (cf. pp. 31, 35, 39 in [BK1] and p. 190 in [BK3]).

(4.B) Let a = a;. It is easy to see that #(¥¢) = [2,0,0] and #(¥;) =
[1,1,2], hence min(vf, vy ) = ¢o < [2,1,0]. By 6.1 of [BK1], J(M AN, 0, ;cc)
is not infinitesimally unitary for ¢ > ¢;. By 8.3 in [BK1], U(MAN, 0, ;ca)
is irreducible for 0 < ¢ < ¢y = ¢o. Therefore, Theorem 1 follows for a = 3.

It follows from (4.A.a), (4.A.b) and (4.B) that Theorem is proved for
case (4) since IN A} = {a1, a2, a3}.

(5) 6c=(1,0,-1,0).

(5.A.a) Let @ = a;. Under the reflection in «, then the data of the
case (5.A.a) with @ = «; are replaced by the data of the case (1.A) with
a = oy. Thus, a similar argument as in (1.A) shows that Theorem 1 holds
for this case.

(5.A.b) Let a = a,. Under the reflection in «, then the data of case
(5.A.b) with a = a, are replace by the data of the case (3.A) with a = a,.
Thus, a similar argument as in (3.A) shows that Theorem 1 holds for this
case.
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It follows from (5.A.a) and (5.A.b) that for case (5), Theorem 1 follows
since IIN A} = {a;, as}-

(6) 6c=1(0,0,1,-1).

(6.A) Let o = a;. Under the reflection in o, then the data of case
(6.A) with a = o, are replaced by the data of the case of (4.A.a) with
o = @;. Therefore, by a similar argument used in (4.A.a), Theorem 1 can
be shown for this case. Similarly, if (2.4.q) holds and p, = —1, then there
is a gap (¢, co) = (1,2) that is the gap (A.1).

(6.B) Let a = a;. It is easy to see that

1
Ag = {—el,ez,—el + ey, €3 :i:e4,——§(el t ey + ze3 + zey), 2 = :i:l} .

A= {63,64, —e; ke3, —e; ey, e ez, e ey,
1
— 5(61 +e, + ze3 — zey),z = 1%,
1
HK = {62, -"2‘(61 +e;+e;+ 64),63 + 64}, 261{ = —561 + e + 263.

It is clear that

o = {63, —e; + eq, €3 + ey, —%(el te,+e;— e.;)},
o, = {63 - e4,—el,ez,—-%(el tes+es +e4)},
ot = {63,—61 —€4,65 — &;,—%(el te, —ez+ 64)} ,
or = {63 + 84,—61,62,—5(61 +e, —e3— e4)} .

By Table 1.2 in [BK1], the following formulas are easily verified

e (A, 2) > [1,0,0],

) >2
(A )>[101] (Ayag) >0
’a3 ety 27 ,2 ) ,a4 = .
It follows that #(¥5) < [1,2,2] and #(T¢) < [2,2,0]. Therefore, we have
min(vg, vy ) < [2,5,0].

(1) Suppose that u, # 0. By a similar argument used in (3.B), Theorem 1
can be shown for this case.



UNITARY REPRESENTATIONS 51

(2) Suppose that p, = 0. Let Ay = Aoy, as,a4). Then L is a fundamental
subgroup of G, and L = Sp(2,1). Clearly, ¥ C Ay, so, we have Vor ="V -
We shall consider the condition

(6.2.q): AY g=A;.

(i) Suppose that (2.6.q) does not hold. Then @, & Ak, (. Thus, it is easy to
see that (A, az) > 0. Then it is easily verified that r;,72 & Ak ;, hence,
r,72 € U, Here 1y = e3 + €4 and 1, = —2(e; + e, — e3 — e4). Thus,
it follows that #(¥7) = 0. Therefore, min(vg,vy) = vy = ¢ = 1.
By 6.1 of [BK1], J(MAN,o0, fca) is not infinitesimally unitary for
¢ > ¢y = 1. By 83 of [BK1], U(MAN,o, %ca) is irreducible for 0 <
¢ < ¢y = ¢g = 1. Thus, for this case, Theorem 1 holds by continuity
argument (cf. [KS]).

(ii) Suppose that (2.6.q) holds. Then, by 6.1 in [BK1] J(M AN, 0, ;ca) is
not infinitesimally unitary when ¢ > vy = ¢ = 5 or min(yg,15) — 2 =
¢y < ¢ < ¢p. By 11.1 in [BK1], it is easy to see that UX(M ANy, 01,
>ca) is irreducible for 0 < ¢ < ¢y = vy, — 2 = 15 — 2 = 3. By Table
1.2 in [BK1], we have

1 1 1 1
<)\0+§a,a1> >0, <>\o+§a,az> > ['2-,0, 5] )
1 -1 1
(261) <)\0 + —a,a3> Z ‘2‘, <)\0 + —Q, C(4> Z [—,0, —] .

By (2.6.1), (Ao + 3, 8) > 0 for all B € Ay (u). It follows from 8.2 and 8.3
of [BK1] that U(MAN, 0, ca) is irreducible for 0 < ¢ < ¢; = 3. Therefore,
by continuity argument (cf. [KS]), it is easy to see that J(MAN, o, ;ca)
is infinitesimally unitary for 0 < ¢ < ¢; = 3. Moreover in Section 4, we
shall show that J(M AN, o, ;ca) is infinitesimally unitary for ¢ = ¢o = 5 (cf.
Lemma, 4.3). Hence, (B.1) holds in Theorem 1 for this case. Clearly, for this
case there is a gap (cj, co) = (3,5) that is called the gap (B.1).

Summarizing the results of (1) and (2), Theorem 1 follows for a = a;.

It follows from (6.A) and (6.B) that Theorem 1 is proved for case (6)
since TN A} = {a1, a3}

(1') bc = (1’ 1,0, 0)

(1'A) Let a = ;. By similar methods used in case (1), it is easily
verified that min(vg,v5) = ¢ = ¢, < [2,1,0]. Therefore, for this case,
Theorem 1 can be shown by a similar argument used in case (1).

(1'.B) Let a@ = a4. By similar methods used in (3.B), it is easily verified
that min(vgd,v5) = ¢ = ¢ < [2,1,0]. Therefore, for this case, Theorem 1
can be shown by a similar argument used in (3.B).
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It follows from (1'.A) and (1'.B) that Theorem 1 is proved for case (1)
since TN A} = {a,a4}.
(2') 6c=(0,1,1,0). Set z = %1. It is easy to see that
1
A} = {——el, €4, —€1 + €4,€2 + €3, —'2-(61 + ze; — ze3 + 64)} )

Af =

€2,€3, —€; L ey, —e; L e3,e; = eq,e5 - ey,

| =

- 2(61 + zey + zes :!:64)},

g = {ag,a4, —%(el +e—e3+ey), 1,6+ 63} , 0k = —5e; + 2e; + ey.
(2".A) Let a = ay. Clearly, we have
o = {63, —e; +e3,ey — ey, Q%(el —e;—e3+ 64)} ,
o, = {64, —e; + 4,63 — €3, —%(el —e+e3— 64)} ,
&t = {—81 —e3,€ + e,;,—%(el +e+e;— 64)} ,
o = {—e1 —eq, €2 + €3, ——;—(el +e, —e3+ e4)} .
By Table 2.1 of [BK1], the following formulas are easily verified
(N, aq) >0, (A, ag) > [0 1,2],
(2.2'.1) (A, ) > [; 0, o] (A, ag) > —[ —_3,-2,—1].
It follows from (2.2'.1) that

#(¥5) < [1,2,2], #(‘I’)
#(¥7) < [2,0,0], #(¥f

<[2,1,0],

) <1[0,1,0].

Let B = —1(e1+ e —e3—eq) and B = —1(e; — ez + €3 + €4). It is easy
to see that § and ' are compact and strongly orthogonal to a. Thus, the
fact that (Xo,s) = 0,s = B, B' is in contradiction to nondegeneracy. So,
it follows that (Ao, —e;) > 0. Then we shall consider the case where Ay =
(¢,0,0,0),t € Z,t > 1for po =—1. Let rs = =¢€}, 1o =€ —€3 =€ — €3
and r; = @ = e} —e}. Let Ay = A(ry,72,73). Then L is a standard subgroup
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of G and L = SO(5,2). The restriction Aj of Ay to L can be written as
Ay = 3te;. Clearly, if po = —1, then we have ¢ € 2Z,t > 0.

Under these conditions, it follows from (2.2'.1) that —e; —eq, 7 € ¥§ UTT
if o = —1, 7 € O if po = 0. Here r = —2(e; + ey —e3+e4). Thus by (2.2'.1)
we obtain min(vg,v5) <[2,1,0].

Hence, similar arguments as used in case (2.A) show that Theorem 1
holds for this case. Similarly, if (2.2.q) holds, u, = —1, and e; € ¥, then
there is a gap (cj, o) = (1,2).

(2'.B) Let a = o4. By similar methods used in (3.B), it is easily verified
that min(vy, vy ) = ¢ = ¢ < [2,1,0], therefore, by a similar argument used
in (3.B), Theorem 1 can be shown for o = a4.

It follows from (2’.A) and (2'.B) that Theorem 1 is proved for case (2')
since ITN A} = {a2, 04}

(3") 6c=(1,0,0,1). It is easy to see that
1
AL = {62, e3, —e;  eq,e; ke3, —5(61 tete;— 64)} ;
A: = {"61,64, —e; ey, —e; T ez, e; T eq,e3 ey,

1
- '2‘(31 te tes +€4)},

1
g = {011,33,‘“5(61 +e;+e3—eyq),—€ — 64} )

2(51{ = '—461 + 382 +e3 + 264.

(3".A) Let a = a,. It is clear that

1

o = {—61 + e3, €z —64,—5(61 te —e3 +€4)}7
1

o, = {—61 + €4,€9 "63,—5(61 te +e; “64)}1

‘P+ = {64, —€; — €3,€9 + 64},

& = {e3,—e; — e4,€3 + €3}

By Table 1.2 in [BK1], the following formulas are easily verified

(A7a1> Z Oa <A3a2) Z 1 + ﬂ'aa
3
(2.3'.1) (A, ag) > [0’—1’*%] B AES]
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It follows from (2.3'.1) that

#(¥5) <[1,1,2], #(¥7) <[0,2,1],
#(¥7) <[2,2,0], #(¥F) <[0,0,1].

Let 8 = —%(el + ey —e3 —ey). It is clear that B is compact and strongly
orthogonal to a. Therefore, the fact that (A\¢,3) = 0 is in contradiction
to nondegeneracy. Thus, it follows that ()\y,3) > 0. Therefore, we have
(Ao, @3) > 0 or (Ag,a4) > 0. Under these conditions, it follows from (2.3'.1)
that —2(e; + e, + €3 — es) € U7 if po = 0. Hence, by (2.3.1), we obtain
min(vg, 1) <[2,3,1].

Thus, similar arguments as used in case (3.A) show that Theorem 1 holds
for this case. Similarly, if (2.3.q) holds and p, = 0, then there is a “gap”
(¢, ¢c0) = (2,3) that will be considered in Section 4.

(3'.B.a) Let a = a3. By similar methods used in (3.B), it is easily ver-
ified that min(vg,v5) = ¢ = ¢ < [0, 1, 2]. Therefore, by a simlar argument
used in (3.B), Theorem 1 can be proved for this case.

(3'.B.b) Let a = 4. By similar methods used in (3.B), it is easily ver-
ified that min(vg,v5) = co = ¢y < [0, 1,2]. Therefore, by a similar argument
used in (3.B), Theorem 1 can be proved for this case.

It follows from (3'.A), (3'.B.a) and (3'.B.b) that Theorem 1 is proved for
case (3') since 1N A} = {as, a3, 04}.

(4') 6c=(0,1,0,1). It is easy to see that
1
AL = {—61,63, —e; T es, e, t ey, —5(61 +zey L ez — zey), 2z = :tl} ,
A:: = {62,64, —e; T ey, —e; T eq, ey T e3,e3 L ey,

1
- 5(61 + zex L ez + zey),z = :l:l}.

1
HK = {63,—5(61 + e +es — 64),62 :{:64} ,

26}{ = —561 + 262 + e3.
(4'.A.a) Let a=qa;. It is clear that
- 1
U {625 y —€1 T+ €y, _5(61 — e+ ez — e4)} ’

2,

1
€3, —€; + €3, —5(61 +ex—e3—eq);
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1
&t = {63 +ey,—€ — 62’—5(61 +e—es+ e4)} ,

1
ot = {62 + ey, —e; — €3, —5(61 — ey +es+ e4)} )

By Table 1.2 in [BK1], the following formulas are easily verified

</\,CX1> Z -1 +/—La7 (/\,0’2) Z 1- Mo

(2.4'.1) (A as) > (A ag) > — o
2’ 2

It follows from (2.4',1) that
#(¥5) =0, #(¥7)<[0,0,2],

#(UF) <3, #(¥TF)=0.

Let 8= —1(e; +ex+e3—e4) and § = L(e; — ey — €3 + €4). It is clear
that 8 and (' are compact and strongly orthogonal to . Then the fact
that (Ag,s) = 0, s = 3, #' is in contradiction to nondegeneracy. Hence, it
follows that (Ao, —e;) > 0. Under these conditions,it follows from (2.4'.1)
that —1(e; + e —e;—e,) € U7 and —e; —e3, —2(e; —ex + €3+ e4) € U if
po = 1. Thus min(vg, vy ) < [0,1,2].

Thus, similar arguments as used in cases (4.A.a) show that Theorem 1
holds. Similarly, if (2.2.q) holds and p, = 1, then there is a gap (cj,¢o) =
(1,2) that will be considered in Section 4.

(4.A.b) Let a = ay. Under the reflection in «, then the data of the
case (4'.A.b) with o = o, are replaced by the data of the case (2,.A) with
o = ay. Hence, similar arguments as used in (2'.A) show that for this case
Theorem 1 holds. Similarly, if (2.2.q) holds, u, = 1 and e; & U7, then there
is a gap (c,c0) = (1,2).

(4'.B.a) Let a = az. By similar methods used in (4.B), it is easy to
see that min(vy,vy) = ¢ = ¢, < [0,1,2]. By a similar argument used in
(4.B), we can show that Theorem 1 holds for this case.

(4'.B.b) Let a = a4. By similar methods used in (3.B), it is easy to
see that min(vg,v5) = ¢ = ¢ < [0,1,2]. By a similar argument used in
(3.B), Theorem 1 can be proved for this case.

Therefore, it follows from (4'.A), (4'.B.a) and (4'.B.b) that Theorem 1
is proved for case (4') since IIN A} = {4, a3, 04}.

(5") 6c=(1,0,1,0).

(5'.A.a) Let o = a;. Under the reflection in «, then the data of the
case (5.A.a) with a = «a; are replaced by the data of the case (1.A) with
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o = oy. Therefore, by a similar argument used in case (1.A), Theorem 1
can be shown for this case.

(6'.A.b) Let @ = a. Under the reflection in ¢, then the data of the
case (5'.A.b) with a = o, are replaced by the data of the case (3'.A) with
a = ay. Therefore, by a similar argument used in case (3'.A), Theorem 1
can be shown for this case.

(5'.B.b) Let a = o4. By similar methods used in (3.B), it is easy to
see that min(vf,15) = ¢ = ¢ < [2,1,0]. By a similar argument used in
(3.B), Theorem 1 can be shown for this case.

It follows from (5'.A.a), (5'.A.b) and (5'.B.b) that Theorem 1 is proved
for case (5') since IIN A} = {a,, 03, a4}-

(6') 6c=1(0,0,1,1).

(6'.A) Let o = ;. Under the reflection in ¢, then the data of the
case (6'.A) with o = a; are replaced by the data of the case (4'.A.a) with
a = 4. Therefore, by similar argument as used in case (4'.A.a), Theorem
1 can be shown for this case. Similarly, if (2.4.q) holds and g, = —1, then
there is a gap (cp, ¢o) = (1,2) that will be considered in Section 4.

(6'.B.a) Let a = 3. For this case, as in the case (6.B), it is easy to
see that min(vg, vy ) = ¢ < [0,5,2] and ¢, < [0,3,2]. By a similar argument
used in case (6.B), we can show that for u, # 0, Theorem 1 holds and, for
to =0, (B.1) holds in Theorem.

(6'.B.b) Let a = a4. By similar methods used in (3.B), it is easy to
see that min(vy,v5) = ¢ = ¢y < [0,1,2]. By a similar argument used in
(3.B), Theorem 1 can be shown for this case.

It follows from (6'.A), (6'.B.a) and (6'.B.b) that Theorem 1 is proved for
case (6') since IIN A} = {0y, 3,04}

The proof of Theorem 1 is complete. O

3. The Reducibility for the Gaps.

The reducibility of the standard induced representations of G is important
in the study of unitary representations of G. B. Speh and D.A. Vogan [SV],
and Barbasch and D.A. Vogan [BV] gave an algorithm for computing com-
position series of the standard induced representations of G. Baldoni-Silva
and A.W. Knapp [BK2] use Vogan’s algorithm mentioned above to deter-
mine some irreducibility questions that arise in [BK1]. In this section, we
shall use Vogan’s algorithm to determine some reduciblility questions that
arise in the discussions for the gaps mentioned in Section 2.
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By the results of Section 2, it is clear that in the cases of (4.A.a),(1),(ii)
and of (3.A),(2),(ii), there are the gaps (A.1) and (A.2) respectively. The
case (4.A.a),(1),(ii) is called the case of gap (A.1), and for this case we have
(3.1)

1 1
Mo =dop = (=1,0,0,0), 40 = L,A = 3(=3, 1, ,1),v = za,ch = Lo = 2.

The case (3.A),(2),(ii) is called the case of gap (A.2) and for this case, we
have

(3.2)
1 1
)\0 = )\O’b = —2‘(—3, 1,0,0),,&& = 0,/\ = (—3,0,0, 3),V = 520[, CZ) = 2,60 = 3.

The data given by (3.1) and (3.2) are called the data of gap (A.1) and of
gap (A.2) respectively.

First we shall use some notations given by D. Barbasch and D.V. Vogan
[BV].

Let R(Ao®v) ={re A|2(y,r)/(r,r) = (v,7) € Z}. Here y = (M ® V) =
Ao + v. It is clear that R(A¢ ® v) has a decomposition

R(AO ® V) = R++ U RO UR™™

of the roots according to whether their inner products with ~y are positive,
zero, or negative. Let ¢ = a. Then R(Ao®v)* = R(Ao®v). Choose a positive
root system R{ so that

(a) R D AT NR,.

(b) Ifr € Ry and (—0)r € R**, then r € R{.

(c) Ifr,(—8)r € Rf,r # (—0)r, then both belong to R{, or neither does.
Define II® be the simple root system of the positive root system R*(\; ®
v) = R¥" U R{. If —0 does not preserve Rt (A ® v), then

a= E n.Tr

rellk’

with n, a nonegative rational number. We define
Hcritz{TEHRlnrféo}-
Let C'(Ao ® v)* be the span of Il ;.

Lemma 3.1. For the case of gap (A.1), (resp. of gap (A.2)), My, is
given by (3.1.1) (resp. by (3.1.2)) below. It is isomorphic to a subset of
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AT containing a and the isomorphism ¢ preserveing the additional structure
(1) — (5) described in [BV], (cf. p. 384 in [BV]).

Proof. 1t follows from the data of gap (A.1) given by (3.1) that

1 1 1
’Y-—()\O@U)—)‘O-i—ia" <_1a§7—§a0>.

It is easily verified that

w((0p-3))

1
= {—61,62,—63,64762 *e3, —e; i€4,“§(31 te tes i€4)} .

It follows that

1
HR = {62 + €3, —eés, —5(61 + ey — ez + 64),64} .

It is easily shown that
(3.1.1) Hcrit = {e'Z + €3 = T;) —€3 = r;}'

Here r},7; can be written as r} = e} —e3,7; = €3.

It is easy to see that @Il = {e2 — e3,e3} where the isomorphism ¢ is
the reflection in the hyperplane orthogonal to the root e3;. Clearly e; € Ag,
hence, ¢ preserves the additional structure (1)—(5) given by [BV], (cf. p.
384 in [BV]).

It follows from the data of gap (A.2) given by (3.2) that

1
Y= ®V)=X+a= 5(—3,1,2,—2).

Set z = (z1, %2, %3,24),%; = £1,7 = 1,2,3,4. By computing, we have

1 “lz
R+ (5(-—31 112a _2)) = {—61,62,63, —€4, —€; + €2, €3 + €4, ’_g—x} .

Here n, = -1ifz =(1,-1,1,-1),(1,1,1,-1), n, = 1 otherwise.
Hence, it is easy to see that
ne = {—63——64 —1(1 1,-1,-1) 1(1 1,1,-1) --1-(1,-1,1,1)}.
b 2 b b b ’2 ) b b b 2

Therefore, we obtain

1 1
(312) Hcrit = {"'63 — €4 = 7‘;1 —5(11 la _17_1) = T‘;, 5(1a ]-, la ""1) = ’l";} .
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Here r},r;,r; can be written as 7} = e} — e}, r; = e; —e},7; = 2ej3.
Clearly, @Il = {aq2,a3,a4} where ¢ = @1p,. Here ¢, (resp. s) is
the reflection in the hyperplane orthogonal to «y (resp. e3). Clearly, the
isomorphism ¢ preserves the additional structure (1)-(5) since a4 and ez are
roots in Ag.
The proof is complete. O

If £ = z,e} + z2€} in case (A.1l) (resp. = = z,e] + Zze5 + zze; in case
(A.2)), then (z1,z,)* (resp. (z1,Z2,23)*) is called the coordinate of z for
I_Icrit-

We shall directly use some results given by B. Speh and D.A. Vogan
[SV] and D.A. Vogan [V2] and we shall introduce some notations given by
Baldoni-Silva and A.W. Knapp [BK2}.

Let L be the standard subalgebra of g with Ay = A(S),S C A, and let L
denote the standard subgroup of G' with Lie algebra L also.

Let us fix a compact Cartan subgroup Bj, of L with Lie algebra by, = bN L.
We shall be working with some Cartan subalgebras b_ ; + a where b_ | =
b_Nby and a C g_ formed by Cayley transform relative to a succession of
noncompact roots in an ordered set {...} and we can write a = {...} for a.
Let A be the subgroup of G with Lie algebra a. For subgroup A, there is
a standard cuspidal parabolic subgroup P, = M ANy of L. Let Ao L, fto,L
and vy, be the restriction of Ay, s and v to L which are defined by (3.1b)
of [BK1] respectively. Here Ay, and v are the data given by the cases
of gap (A.1) or of gap (A.2). Let o, be the representation determined by
Xo,rs o, and vp. If v, = Ao + v is singular, then there is regular 7o,
obtained by adding to 7, a suitable parameter that is dominant integral
for A}: = Ay N A" and adjusting u, ; compatible. Let oo be the repre-
sentation determined by 7o ; and . . We denote by UL (M ANy, 001, v1)
and JY(M[ANp,001,v.) the induced representation for group L and its
Langlands quotient respectively. Let w(yr;{...}) and #(yr;{...}) be the
global characters of UX(M ANy, 00 ,v.) and of JE(MLANL,001,v1) Te-
spectively. (Baldoni-Silva and Knapp’s notations in [BK2] differs slightly
from this: they use n(yr,a ¢ {...}) and #(y,a < {...}) for w(yz; {...}) and
7(yL; {.--}) respectively.)

In the following, we shall directly use the notations given by [BK2]. For
each B € AL, let sz denote the wall-crossing functor which acts on the
local expression for a global character by the reflection in the hyperplane
orthogonal to # (or the reflection in the hyperplane orthogonal to 8 on
Eg). We say that B is in the 7- invariant of 7(yz;{...}) (denoted by G €
T(@(ye; {---})) if sp7(v1; {...}) = 0. Let ¢ denote the empty set.
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Lemma 3.2. Let Ay = A(Ilyi,). Then UY(ML ANy, 0r,v1) is reducible.

Proof. First, we show the lemma for the case of the gap (A.1). By (3.1), we
have v = Ay + v = 1(-2,1,—1,0) (in system given by (1.1)). It is easy to
see that

(777';) =0, (7a T;) = 1.

Thus vy, = 1(1,1)* is dominant for II.. Clearly, o = (1,1)*, so, (yz,) = 1.
Since p,,, = 1, (or o) is a cotangent case. Hence a does not satisfy the
parity condition.

We number the simple roots of simple Lie algebra B, (from left to right)
as 1 and 2 (2 is shorter).

Let IV = {r{ + 2r;,—r3;} and B = r; = (0.1)*. For convenience, let s,
denote sz. Clearly, sy, is dominant for IIY and the set of singular roots
in IV for syy, = (1, —1)* is the set {(1,1)*} = {1}. It is easy to see that
a & sl1Y = T y.

Since a does not satisfy the parity condition and « is a simple root in I1V,
moreover, s,y is IIY dominant and is integral, by Theorem 1.2 of [BK2],
we have

(3:2.1) m(s27L5 @) = R(s2vL; @)

Since 3 is complex, it follows from Theorem 1.5 of [BK2] that
(3.2.2) 89T (827L; @) = m(S282Y15 @) = W(YL; @)-

By Theorem 1.6 of [BK2], we have

(3.2.3) sam(yp; @) = T(syyr; @) + T(yr; @) + G-

Here ©¢ must occur on the right side of (3.2.1) and must have the simple
root 2 in their 7-invariants. Clearly, sy7y; is dominant for ITV so it is easy
to see that 6((0,—1)*) = (1,0)* is a positive root, hence, by Theorem 1.4 of
[BK2], we have 7(#(y;a)) = ¢. Thus ©, = 0.

Clearly, v, is dominant for s,I1V. By Theorem 1.4 of [BK2], 7(7(y.;¢)) =
{(0,1)*} = {2} since 6((0,1)*) = (—1,0)* is negative root (the number of
(0,1)* is 2 in s,ITY).

Clearly, the set {2} is disjoint the singular root set {1}. Therefore, by The-
orem 1.3 of [BK2], it follows from (3.2.2) and (3.2.3) that UX(M[ AN, o1,
1a) is reducible into two pieces for the case of gap (A.1).

Now we shall prove the lemma for the case of gap (A.2). By (3.2), we
have y = Ao+ v = (—3,—1,2,—2) (in the system given by (1.1)). It is easy
to see that

(vsr1) = (1,r3) =1L, (v,73) =0.
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Thus v, = (2,1,0)* that is dominant for II..;. Clearly, @ = (2,0,0)*, so,
(7L, @) = 2. Since po, = 0,a (or o) is a tangent case. Hence a does not
satisfy the parity condition.

We number the simple roots of simple Lie algebra C; from left to right as
1,2 and 3 (3 is longer).

Let ITY = {rj + 2r; + 2r} = 2e},—1; = —€] + €5, —15 = —e3 + €3}

Let B, = (=1,0,1)*, B = (—1,1,0)* and B, = (0, —1,1)*. Let s; = s,,5 =
1,2 and sj, = sg. It is easily verified that a = (2,0,0)* is a simple root in IT".
Clearly, sys1857r = (0,1,2)* is dominant for IIV and is integral. The set of
singular roots in IIV for sys,s57yy is {3}. It is clear that o & s5s18I1Y = Iy

Since a € ITY and a does not satisfy the parity condition, by Theorem 1.2
of [BK2], we have

(3.2.4) m(s28185YL; @) = T(8281857L; @).

Clearly, 8, is a complex root, thus by Theorem 1.5 of [BK2], we have
(3.2.5) 827 (828185VL; @) = m(s1837L;5 @)

By Theorem 1.6 of [BK2], it follows from (3.2.4) and (3.2.5) that
(3.2.6) m(s1857; @) = T(s28185VL; @) + T(818977L; ) + Oy

By Theorem 1.4 of [BK2], we obtain

(3.2.7) (T (s2s15p705 @) = {1}, 7(7(s185715 @) = {2}

Thus, by Theorem 1.6 of [BK2] it follows from (3.2.7) and (3.2.4) that
0, = 0. Clearly, 3, is complex, so, by Theorem 1.5 of [BK2], we have

(3.2.8) s17(8185YL; @) = T(SyyL; ).

By Theorem 1.6 of [BK2], it follows from (3.2.7) and (3.2.8) that
(3.2.9)  w(syyr;a) = —7(se81857r; @) + T(s187yL; @) + F(syyL; @) + O
By Theorem 1.4 of [BK2], we obtain

(3.2.10) T(7(syyr; @) = {1, 2}.

Clearly, we have O, = c,m(s28,85y; @) by (3.2.6) and (3.2.7), where ¢, is
a constant. Using similar methods used in [BKZ2], it is easily verified that
¢z =1 by Theorem 1.7 of [BK2]. Therefore, by (3.2.9), we have

(3.2.11) m(shyyr; ) = T(s185yL; @) + T(syyL; ).
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It is easy to see that G} is a m-compact root. Clearly, 2 € 7(7(s185yL;@)) by
(3.2.7) and 2 € 7(7(syyL; ) by (3.2.10). Thus, by Theorem 1.6 of [BK2],
it follows from (3.2.11) that

(3.2.12) —m(yr; @) = —T(s1857L; @) — T(yL; @).

It is easy to see that the sets {2} and {1,2} are disjoint from the set {3} of
the set of singular roots, hence, by Theorem 1.3 of [BK2], it follows from
(3.2.7), (3.2.10) and (3.2.12) that UL(M AN, 01, <) is reducible into two
pieces for the case of gap (A.2). The proof is complete. O

Combining Lemma 3.1, Lemma 3.2 and Theorem of [BV], we obtain the
following lemma immediately.

Lemma 3.3. For gap (A.1) or gap (A.2), U(MAN, o0, icpa) is reducible.

D.A. Vogan [V1], [V3] and Speh and Vogan [SV] used the 6-stable
parabolic subgroups of g¢ to study of unitary representations of semisimple
Lie groups. We shall not need their detailed construction. It is enough to
have the following result.

For each subset St of A, let —St = {—r | r € St}. Let S be a given subset
of A. A subset St of A is said to be a supplement of S in A if St satisfies the
following condition:

(s.1) STNA(S) = ¢,

(s.2) STUA(S)U-ST=A,
(s.3) StNn-St=4¢,
(s.4) there exists a ¢ in b’ such that (¢,r) > 0 for all r € St,

(s.5) there is a positive root system A{ in the root system Ay = {r € A |
(¢,7) = 0} such that Af NSt = A, N ST.

For fixed § C A and a fixed supplement St of S in A, define

1° =5 + Z g% u=u’= ng
reA(S) rest

For convenience, let A; and A(u) denote A(S) and ST respectively. Let
(3.e) q=1°+u.

It is easily verified that the following conditions are satisfied:
(a) 08(q) = q, (since for any r € A,f(e,) = *e,).

(b) 1° =qNgq, (by Lemma 1.1, (s.1) and (s.3)).

(c) g% =1u+I1° +u, (by Lemma 1.1, (s.2) and (s.3)).



UNITARY REPRESENTATIONS 63

(d) (3.e) is Levi decompostion of q with Levi factor {, (by (s.4), (s.5) and

(s.3)).
By (a), (b), (c), (d) and (3.€), we obtain the following Lemma immediately.

Lemma 3.4. With above notations, q is a 8-stable parabolic subalgebra of
g€ and q is determined by the subset S and St of A.

The subalgebra q defined by (3.e) is called to be the 6- stable parabolic
subalgebra determined by (S, S?). Let | =1° Ng and L be the normalizer of
q in G. Clearly, Ap = A(S).

Lemma 3.5. With above notations, for gap (A.2), U(MAN,o,33a) is
irreducible.

Proof. We number the simple roots of simple Lie algebra B; from left to
right as 1, 2 and 3 (3 is shorter).
Let S = {a1,a2,a3} and let A; = Ay = Ao, a2, a3). Let

ST - {"“61 iez,—el :*:63, —€) :1:64,—61,—772—1:1:,3: = (61 + €9 :I:e3 + 64)} .

Here n, = -1 if z = (1,-1,1,-1) or z = (1,1,1,-1), n, = 1 otherwise,
(cf. the coordinates given by (1.1)). It is easily verified that the subset
S and St of A safisfy the condition (s.1)-(s.5) (letting ( = v = Ay +v =
3(—=3,1,3,-3)). Let q be the f-stable parabolic subalgebra determined by
(S, S1). Then I€ is its Levi factor. Let Af = A, N At and A" = A} UA(u).
Define

Xo,r = Ao — 0(U), oL = Has AL = A —26(uNp).

Here 6(u) (resp. d(u N p)) is the half sum of the roots (resp. noncompact
roots) in A(u) = St (cf. (3.1b) in [BK1}). Let xr be such that xr(v,) is
consistently with p, 1. Then (Ao 1, AT, xr) leads to a well-defined standard
induced series of representations UX(MyANy.0p, %3a). Here M; = M NL
and Ny, = NN L and N is defined in G for A™". Let v, = Ao,r + 330

It is easily verified that 6(u) = 3(—9,0,2,—2). By the data of gap (A.2)
given by (3.2), we have

1
)\O,L = )‘0 - 6(”) = ';‘[('—3, 1, 0107) - (-—9,0, 2a —'2)] = 5(6, 1a _23 2)
1t follows that

3 1 1
YL = )‘O,L + é‘a = i[(Ga 1’ —"272) + (0707 37 _3)] = 5

It is easy to see that (y;,a) = 1 is odd. Since u, 1, = 0, a (or o) is a tangent
case. Therefore, a satisfies the parity condition. Let II; = {0, a3} = IIY.

(6,1,1,—1).
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Let 8 = a3 and s3 = sg. It is clear that s3y, = $(6,1,1,1) is I, = IIy
dominant and the set of the singular roots in II;, = IIy for ssvy. is {1,2}.
Therefore, since a satisfies the parity condition, by Theorem 1.1 of [BK2],
we have

(3.5.1) m(s3yL; @) = T(s37L; @) + T(s37L;5 @) + T(SaS3VL5 B)-

Clearly, § is a complex root, so, by Theorem 1.5 of [BK2], we have
(3.5.2) s3m(szy; @) = w(y; ).

By Theorem 1.4 of [BK2], we have

(35.3) T(7(ssyr;0)) = {2}, T(7(s37L; ¢)) = {1}, 7(F(sas37L5 ¢)) = {3}
By Theorem 1.6 of [BK2], it follows from (3.5.1) and (3.5.2) that
(3.5.4) m(ye; @) = A(ssyrs ) + Ty @) + ©:1 + .

Here
w = 7(s37yL; @) + T(s37L; B) + O2 — T(saS37L; @)

By Theorem 1.4 of [BK2], we obtain

(3.5.5) T(7(yi@) = {3}, 7(7(ss71;6)) = {1,3}.

It follows from (3.5.1) and (3.5.3) that ©; = ¢;(7(saS377L;¢)) by Theorem
1.6 of [BK2]. Here ¢, is a constant. Using similar methods used in [BK2],
by Theorem 1.7 of [BK2], we obtain ¢; = 1.

Thus, by the results given above, we have

(3.5.6) w(yr;0) =@(s3yLs ) + T(yL; @) + T(s3vL; @) + T(s37L; B) + Os.

It is easily shown that if C(©,) is a irreducible character which occurs in
©,, then the 7-invariant of C(0;) must contain 1 where 1 is the compact
root e; — ez = a; in Iy = IIy. Thus, by (3.56.3), (3.5.5) and (3.5.6), it is
easily verified that only the 7-invariant of the second term in the right side
of (3.5.6) that is 7(yr; ) is disjoint from the set {1,2} of the singular roots,
so, by Theorem 1.3 of [BK2], UX(M, ANy, 0y, ;3a) is irreducibe.

It is easily verified that (8, (o + v)) > 0 for all 8 € A(u) = S'. Here
v = 13a. Hence, by 4.17 of [SV], U(M AN, 0, ;3c) is irreducible. The proof
is complete. O
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4. The Gaps and the Isolated Representations.

In this section, the chief idea to prove the unitarity is to use the arguments
given by D.A. Vogan [V1] and D.A. Vogan and G.J. Zuckerman [VZ] as in
Baldoni-silva and A.W. Knapp [BK1].

Now we bring in intertwining operator. We shall use the notations of
[KS] and of [BK1] without redefining. According to [KZ1], the intertwining
operator that defines the Hermitian form at v is

(4.1) o(w)Ap(w,o,v)

apart from normalization. Here w is a representative in K of the nontrivial
element of W(A : G). We may assume that this operator is positive definite
(on each K-type) relative to L?(K,V?) for v small and positive.

Let E be a finite-dimensional subspace of the domain of (4.1) equal to
the sum of number of K-types, and let T(z) : E — E be the restriction to
E of o(w)Ap(w, 0, 3(cy — 2)a), for complex z with | z |[< 1. Let Ej be the
subspace of E defined by (13.2) in [BK1]. We say that 7T°(z) has only a
simple zero at z = 0 if E;, = 0.

Lemma 4.1. With the above notations, for the case of gap (A.1) or gap
(A.2)
EO = E, E1 = ENker T(O) and E2 =0.

Proof. First we shall consider the case of gap (A.2). Let A, be the subgroup
of G built from a = e; — ey, @' = e3+e4 and o' = —e;. (By [C] (or by [Su]),
it is easy to see that the Lie algebra of A, is contained in a Cartan subalgebra
of g.) For A,, let P, = M,A,N, be the real rank three standard parabolic
subgroup of G. Clearly A,,,, = {e.} where m, is the Lie algebra of M,. Let A}
and o, be the restriction of Ay and o to P, respectively. For restricted roots
relative to this parabolic subgroup, we can use a system of type A; @ B,
with f, + fo = cayley(a),fi — f2 = cayley(a') and f = cayley(a").

We can choose w in (4.1) to be a representative in K of the reflection
Sf+f, iIn W(A, : G), and the techniques of [KS] show that

(4.2) Ap ('w,a, %ca) C Ap, (w,a*, %c(fl + f2)> .

Actually since we can discard invertible operators in our analysis by Lemma
13.2 of [BK1], we can simply write s, s, directly in place of w and Propo-
sition 7.8 of [KS] allows us to factor the right side of (4.2) according to a
cocycle relation as

1
(4.3) Ap, (w, O, Ec(f1 + fz)) = Ap, 3Ap, 2Ap, 1,
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1
AP‘,3 = AP~ <Sf2’sfl_f2sf2a*’ —-2-C(f1 - f2)> )
1
Ap.2 = Ap, <3f1-f2,3fz‘7n gclfi~ fz)) ,
1
AP.,I = AP. (sz,a*, Ec(fl + fZ))

(cf. (13.5) of [BK1]). Let a, be the subspace generated by {f1, f2, f} over
R. It is easy to see that a, is a commutative subalgebra in g_

Let us examine Ap, ; here more closely. This operator depends only on
data in the subgroup of G given as the centralizer Z; = Zg(ker(f,)), and by
means of kind of identification in Proposition 7.5 of [K S}, it can be identified
with a standard intertwining operator of Z;.

Clearly, ker f> in a, is a subapace generated by {fi,f} over R. Thus
Z; = 50(3,2) and we can write the Dynkin diagram of Lie algebra z; of Z;
as

e => e,

Here the left (resp. right) e denotes e; — e, (resp. f, = Cayley(es)). Let a. ;
be the subspace generated by f, over R. Clearly a,; C z;. Let A.; be the
subgroup of Z; with Lie algebra a, ;. For A, ;, there is a standard parabolic
subgroup P, ; = M, 1A.1N. 1 of Z;.

Let m, ; denote the Lie algebra of M, ;. Then A,,,, = A(e;) and m,; =
m.. Clearly M, ; C M and N,; C N. Relative to this system, the restriction
of Ao to M, can be write as (3,0) in coordinates (z,,z4) (cf. (1.1)). It is
easy to see that the restriction of o to M, ; (denoted by 0. ;) is a tangent case.
Hence, since f, is short in z; and ¢ = 2 is even, by 8.3 of [BK1], the induced
representation U?' (M, 1A, 1N, 1,01, 32f,) is irreducible. Therefore at z =
0,T1(z) is invertible. Thus 13.2 of [BK1] allows to discard the opertor T}
on the right side of (4.3) from our analysis, and in similar fashion we can
discard T3 in the right side of (4.3).

Let us examine more closely the operator Ap, . This operator depends
only on data in the subgroup Z, = Zg(ker(f; — f2)) and again can be iden-
tifitied with a standard intertwining operator for Z,. Here the relevant fact
about the identification is that if the operator for Z, is diagonal with diag-
onal entries having at most a simple zero at z = 0, then the same thing is
ture of the operator in G.

Clearly, ker(f; — f2) in a, is the subspace generated by {f, + f2, f} over
R. Thus Z, = SL(2,R) ® SO(3) and we can write the Dynkin diagram of
Lie algebra z, of Z, as

c e,

Here o denotes f; — f, corresponding to the subgroup Z;,Z) = SL(2,R)
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and o denotes e, corresponding to the subgroup Z, Z) = SO(3). Clearly,
Zy, =2, 7Z,. Let a, » be the subspace generated by f; — f, over R. Clearly
a,, C z; and a, , is the Lie algebra of A'. Let m, » denote the Lie algebra of
subgroup Z;'. Then A, , = A(e;) and m, ; = m,. Let M, , = M, N Z, and
N.» = N, N Z,. Then P,; = M, ,A'N, > is a standard parabolic subgroup
of Z, for A'. It is easy to see that M, , = Z; = M, = SO(3). By a similar
argument as in Section 13 of [BK1], (cf. p. 113 in [BK1]), it is easy to see
that only the subgroup Z; of Z, is important to the operator Ap, ;. As in
Section 13 of [BK 1], thus we can regard the operator Ap, 2 (on a (K N Z,)-
type) as the tensor product of an identity operator by the restriction of this
operator to a K-type of Z}, (Z; = SL(2,R)). The K-types for SL(2, R) have
multiplicity one, and, thus any standard intertwining operator for SL(2,R)
is scale for a given K-type and given v. Let T5(z) be the restriction of Ap, ,
on E. Using 13.3 and 13.4 of [BK1], by the analysis mentioned above, it is
easy to see that at z = 0,7(z) has only simple zero. It follows that E, = 0.
By Lemma 3.3 we have ker T'(0) # 0, hence, E; # 0.

By s aimilar argument used above, we can prove the lemma for case (A.1).
(For case (A.1), let @ = e; — e3, & = e; + e3 and &” = e4.) The proof is
complete. O

The operator T'(z) is Hermitian for real z, and we can use it as in Sec-
tion 3 of [V1] to define a nondegenerate Hermitian form on E/Ej,:, say
with signature (py,gx). Lemma 4.1 says that p, = ¢q; = 0 for £ > 2 and the
positivity of T'(z) for z > 0 says that go = ¢; = 0. According to Theorem
7.10 and Corollary 7.11 of [V1], the signature on E of T'(z) for small nega-
tive z is (po,p1). Here py = dim(Ey/E,) and p, = dim(E, /E,) = dim(E,).
Thus operator (4.1) is indefinite on any E large enough to contain the min-
imal K-type and a K-type that meets the (nontrivial) kernel of (4.1) at
v = Zcpa. It follows from 8.3 of [BK1] and Lemma 3.5 that for gap (A.1)
U(MAN,o0,%ca) is irreducble when ¢f = 1 < ¢ < ¢o = 2, and for the gap
(A.2), UUMAN, o0, ;co) is irreducible when ¢y = 2 < ¢ < ¢o = 3. Therefore,
by Lemma 4.1, we obtain the following lemma immediately.

Lemma 4.2.

(1) For the case of gap (A.1), J(MAN, o0, ;ca) is not infinitesimally uni-
tary when ¢ =1<c<cy =2.

(2) For the case of gap (A.2), J(MAN, o, ;ca) is not infinitesimally uni-
tary when cg =2 <c<co = 3.

Lemma 4.3.
(1) For the case of gap (A.1), J(MAN,0,ca) is infinitesimally unitary
when ¢ = ¢y = 2.
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(2) For the case of gap (B.1), J(MAN, o0, jca) is infinitesimally unitary
when ¢ = ¢y = 5.
Proof. Let p, = pr, denote the half sum of roots in the set
{reA=AL| (ra) >0}
First we shall show (1). From data of gap (A.1) given by (3.1) we have
Do = hop = (=1,0,0,0), A = %(—3, 1,1,1), po = 1.
Let S = {oq = o, 2} and Ay = A(S). Clearly, a = a; € Ap, and
Ap={%(e;—e;)|2<i<j<4}.
Let A* = {—3(e1 £ e; L e3 +e4)}. Then
Ap(u) = {—e1 L e e; +ej,—er, €1 =2,3,4,5 = 3,4,i < j} UA".
Let AV = {—1(e; + ze; £ e5 — ze4), 2 = £1}. Then
Ap(unp®) = {es,e4,6; £ e, —€1 L €465+ €3,e3 + €4} UAY.
Thus we have 26(u Np®) = (—6,2,2,2). It is clear that
201 = (€3 —€3) + (e2 — e4) — (e3 — €4) = 2(e; — €3) = 2a.
Let A be the parameter defined by (12.4) of [BK1]. Then we have

A=A —26(unpC) = -;-(—3, 1,1,1) - (—6,2,2,2) = %(9, _3,-3,-3).

It is easily verified that (\,8) = 0 for all § € A,. Clearly, AL has real rank
one, so, by Proposition 12.4 of [BK1], J(MAN, 0, ;ca) is infinitesimally
unitary when ¢ = ¢y = 2.

Now, we shall show (2). Let Ay = A(ag,a3,04). Clearly, a = a3 € Ap. If
(2.6.q) holds, then by the results of case (6.B), we have

Ao = -;—(—3, 1,1,0), A =(2,-2,0,0).
By computing, we obtain
201 = 5a, A=A —26(unp°) =(-2,2,0,0) — (-5,5,0,0) = (3,-3,0,0).

It is easily verified that (A, 8) = 0 for all § € A;. Clearly Ay has real rank
one, so, by Proposition 12.4 of [BK1], J(MAN, 0, ;ca) is infinitesimally
unitary when ¢ = ¢y = 5.
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The proof is complete. O

In Section 2 for the cases (4.4.a),(1),(ii) and (3.4),(1),(ii) we give certain
statements for the gaps (A.1) and (A.2) respectively. By these statements,
we can summarize Lemma 4.2 and 4.3 in the following proposition.

Proposition 4.1.

(1) For the case of gap (A.1), J(MAN, o0, ;ca) is infinitesimally unitary
ezactly when 0 <c<cy=1o0orc=c =2.
(J(MAN,o0,q) is an isolated unitary representation.)

(2) For the case of gap (A.2), J(MAN,o,%ca) is infinitesimally unitary
eractly when 0 < c < cy =c¢y = 2.

(From left to right, the circles in the Dynkin diagram of Fy correspond the simple roots

a1, a2,a3 and a4.)

(1)00—(1, 1,0,0) ;¢ —o0o=>o0~o. (1) 0c=(1,1,0,0):¢—~0=>0~—0e.
(2)0c=(0,1,-1,0):o—e=>0—0. (2)0c=(0,1,1,0):0—e=>0—c.
(3)00—(100—1):0—0=>0—o. (83")6c=(1,0,0,1):0—e=>0—oe.
(4) 0 = (0,1,0,~1) ;0 —o=> e —o. (4)0c=(0,1,0,1):0—0=>0—s.
(5) 0c =(1,0,—1,0) : ¢ —e=>0—0. (5)6c=(1,0,1,0):e—e=>0—0.
(6) 6c = (0,0,1,—-1) :@¢—o0=>e—0. (6')0c=(0,0,1,1):¢—0=>0—0.

Table 1.1

(1) 6c = (0,0,0,0) :0—0=>0—0.(2)0c =(~1,-1,-1,1) ;0o —0o=>e—oe.
(3)0c =(1,1,1,1) :0—0o = e—o0.(4) 8c = (2,0,0,0) :0 —0o=>0—0.

Table 1.2
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