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The quantum FE(2) group is one of the simplest known
examples so far of a locally compact noncompact quantum
group. The existence and uniqueness of an ‘invariant mea-
sure’ on this group has been proved in this article. Using
the invariant measure, we compute certain orthogonality re-
lations, which then tells us that any unitary representation
can have both square-integrable and non square-integrable
matrix entries.

1. Introduction.

The notion of a compact quantum group has now reached more or less a
final form after extensive investigations by several people. This, however, is
far from true in the case of noncompact quantum groups, where one is yet
to arrive at a satisfactory definition. In order to be able to give an appro-
priate definition of a noncompact locally compact quantum group, specific
examples are being investigated. E,(2), the ¢g-deformation of the group of
motions of the Euclidean plane, is one example that has been studied by
various authors ([2], [6], [7]). It is known to have many features not exhib-
ited by any classical noncompact locally compact group. It will be shown in
this article (see Section 2) that, like any locally compact group, E,(2) also
has an invariant ‘measure’. As we shall see, the form of the haar weight is
quite easy to guess, if we know the haar state for the group SU,(2) from
which E,(2) comes via the contraction procedure([7]). But the proof of its
invariance properties and uniqueness is quite involved. In the third section,
we list all the irreducible unitary representations of E,(2), and compute the
orthogonality relations between their matrix entries. As a consequence, it is
observed that any unitary representation of E,(2) can have matrix entries
which are square-integrable as well as those which are not. Such a situa-
tion can never arise for a locally compact unimodular group. The modular
operator associated with the haar weight is written down explicitly in the
last section. This enables us to use the Radon-Nikodym theorem for weights
due to Pedersen and Takesaki ([4]) in order to prove the uniqueness of the
invariant weight.
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We retain most of the notations in [7]. Places where they differ are the
following. The deformation parameter is denoted by g here; u denotes the
comultiplication map for the group E,(2); C? denotes the closure of the set
{¢*z : k € Z,z € §*}; Cy(E,(2)) denotes the algebra of continuous vanishing-
at-infinity functions on E,(2), and C,(E,(2)) denotes the multiplier algebra
of Cy(E4(2)). For an element a in Cy(E,(2)) and a bounded functional p on
Co(E,(2)), p * a denotes (p ® id)u(a) and a * p denotes (id ® p)u(a).

Let {e;} be the canonical orthonormal basis for ¢,(Z). We denote e; ® e;
by e;;, e;®e; ®ex by €k, and e;®@e;Qe; ®e; by e;;. Let £and N denote the
operators e; — ex_; and e; — ke; respectively. v and n are the operators
introduced in [7]. Denote by 7 the automorphism a — vav* of Cy(E,(2)).

Let us denote by A, the C*-algebra 7"(C(SU,(2))), where r € Z. Let A
denote Cy(E,(2)). For any a € A, define p,.(a) = 7" (Isy7"(a)Isy). Then
pr(a) is a projection onto A4,, i.e. p, maps A onto A,, and satisfies p,? = p,,
and ||p-(a)]| < |la|| Va € A. Clearly, 0 < p,(a) < pr41(a) < a for any positive
a of the form f(n).

Call an element a € A compactly supported if a = p,.(a) for some r, i.e. if
a € UA,. A continuous functional p on A is said to be compactly supported
if there is an 7 € Z such that p.(a) = 0 implies p(a) = 0.

2. The Haar Weight.

Define a weight h on A as follows:

(2.1) h(a) = Zq%(eio, aeip), a€ Ay.

i€Z
Let hgy be the haar state for SU,(2). It is easy to see that
(22) h(a) = rll}l{.lo(l - q2)_1q—2rhsu(ISUT_T(a)Isu).

Let A% = {a € A} : h(a) < ©}. A contains all compactly supported
positive elements, and hence is dense in A,. Therefore the linear span A"
of A" is dense in A and contains U, A,. For each r € Z, hp, is a bounded
positive functional, and h(a) = sup, hp,(a) whenever a > 0. Therefore h is
a lower semicontinuous weight.

If we define h by (2.1) on the von-Neuman algebra M = A" generated by
A, then
(i) h is semifinite, i.e. M% is weakly dense in M.,
(ii) p-(I) € M Vr, p,.(I) increases to I strongly (o-finiteness),

(ili) h is o-normal, i.e. is a countable sum of positive normal functionals.
It is immediate from (2.1) that 7%(A") C A" for all k£ € Z, and

(2.3) ht*(a) = ¢7**h(a) Va € A"
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The next theorem describes the invariance properties of this functional
under right and left convolutions.

Theorem 2.1. For any a € A" and any bounded functional p on A, both
ax*p and p*a are in A", and the following equalities hold:

(2.4) h(a * p) = h(a)p(I) = h(p * a).

Remark. Notice that although the C*-algebra A does not have iden-
tity, (2.4) makes sense because any continuous functional on A admits an
extension to the multiplier algebra M (A).

We break the proof into several propositions. Let us begin with the fol-
lowing proposition.

Proposition 2.2. Let a € A and p be a continuous functional on A. If
both a and p are compactly supported, then a and a * p are both in A", and

h(a * p) = h(a)p(I).

Proof. Observe that Co(E,(2)) is a type I C*-algebra, so that any representa-
tion is a direct integral of the irreducible ones. Therefore any representation
of the C*-algebra Cy(E,(2)) can be written as a direct sum 7y @ €y, where
U and V are two unitary operators acting on the Hilbert spaces H and K
respectively, and my and ey are representations acting on #;(Z) ® H and
¢,(Z) ® K given by:

Ty :

v 4Q1 vV
€y :
n—gd"QU n—0

Therefore any positive functional p is of the form
(2.5) a — (u, 7y(a)u) + (v, ey (a)v).

Denote by p, y the first term on the right hand side above. If H = £,(Z),
and U = ¢*, then we will simply write p, instead of p, . Let {fi} be an
orthonormal basis for H. Denote e;, ® f; by ey;.

Step 1. Take a € (Ao)4, and p = p,,. u-

(2.6)
|hps.(a * p) — h((id ® p)(7°" ® T°")usu (7% a))|

=Y ¢*ew, (axp— (¥ @ pr*7)pusu(r7 a))ei)

i>-3r

=Y eiomn (1d® mp)(u(a) — (1% @ T )psu (77 a))eiomn)| -

i>—~3r
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Suppose for the time being that the right hand side above tends to zero as
r goes to infinity. Now,

h((id ® p)(7*" & T°" sy (77 a))

= hr¥ ((id ® p°")psu(17"a))

= ¢ h((id ® p7°")usu (77 a))
=(1-¢")"q¢ % (hsy ® pr*")usu (77" a)
— (1 _ q2)-—1q-—6rhSU(T—31‘a)pT3'r (ISU)

= (1 -¢*) " hsu(a)pr® (Isv)

= h(a)pr* (Isv).

Since p7r® (Isy) tends to p(I) as 1 — o0, lim, o hps.(a * p) = h(a)p(I).
Therefore a * p € A" and

(2.7) h(a * p) = h(a)p(I).

We now proceed to show that the right hand side of (2.6) indeed goes to
zero as r tends to infinity.

Remark 2.3. The contraction formula, proved in [7], merely tells us that
lim |lu(a) = (7" @ *")psu(r™a)|| = 0,
but it does not say anything about the rate of convergence, which is what

we need here.

Let t = [T;2,(Isv —¢**B*B) and X = 3717 cx(—gB* ® B)* (v ®v)~*, where
¢, = [Ti, (1 — @)1, Write A for psy(t~'/2at™1/2). Then by equation (30)
of [7], u(a) = X*(t @ t)*/2A(t ® t)*/2X. Therefore,

(2.8) (€iomn, (id ® mv)(u(a) — (T°" @ T )usu (T a))€iomn)
6
= Z(eiomn, (id ® WU)EueiOmn)7
v=1
where

E, =X"(tot)'?At®t)'/? (X - Z c.(—gB* ®B)° (v ® 'v)“) ,

8=0

E, = (X - v) (g8 ﬁ*)3> (t® 1) At ® 1)/

=0

S c(~aB" ® B (v @ v)~",

§=0
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E; = (}1: cs(v @) (-8 ® ,8*)5) (t @) V2A(t @ t)'/?

8=0

: (Z cs(—gB* ®F)°(v® v)")

=0

- (Z drs(v @ v)°(—gB ® ﬂ*)’) t®t) At e 1)/
. (Er: ds(—gB8" @ B)°(v® v)“s) ,
B = (Z ds(v @) (—gBR )t t) - (v 'v)srlﬁsu(a*sr)>

A do(—gf" @ B (v ® )",

8=0

Es = (v ®v)¥ psy(a®)A

: ((t ®1)'/ }f:d”(—qﬂ* ®B)' (v ®v)™ — psu(@™)(v® v)“‘”) ,

Eg=(1"® 7'3’)(us;?:;*“t"mat"l/zaa') — psy(v™%av®)), and

o = (H(l - q”)) / (H(l - TTo - q‘“’)> .
Assume, for the time being, that
(2.9)

Tliglo q° iglipg)r {eiomn, 1 d @ Ty)E,€iomn)| =0 for v=1,2,
(2.10) i
Tl_iglo Z @ {e;omn, (@ Ty)E,€iomn)| =0 for v=23,...,6.
i>—3r

These, together with (2.8), will then ensure that the right hand side of (2.6)
tends to zero as r approaches infinity. So let us now prove (2.9) and (2.10).

v = 1. For any integer k,

3" e(—aB" @ 1y (B))* (v ® Ty (v)) *eiomn

s>r+1

q—krsup

1
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—kr sup Z Cs(_l)sqS(i+m+2s+1)(I RIRI® U*)sei+ssm+sn
s>r+1

i+8>0
m+s>0

(

=4q
1/2

< q—kr sup E : c§q23(i+s+1)+2s(m+3)
: s2>2r+1
i+s5>0
m+s>0

1/2
< ( Z c§q2s+s(2m+s)+sz—2kr> ,

s>r+1

and now, clearly the right hand side tends to zero as r goes to infinity. Using
this for k = 6, we get (2.9) for v = 1.

v = 2. Similar to the previous case.

v = 3. In this case,

z g*(€iomn, (id ® my)Es€iomn)

i>—3r

quzi

i>—r

(t @y (t)?(id ® 7y ) A(t @ Ty (t))/?

<mz S (cucr — dradp)(v ® 70 ()" (~gB ® 70 (B"))"

5=0 s’=0

(=" ® 1y (B))* (v ® Ty (v))~* m>

zr: i (Cscs’ - d'rsdrs’)

s=0V(—i)V(=m) s'=0V(—i)V(—m)

g2 (2 D ([ @ T @ T @ U) eitssmpons

(ld ® Wu)((t ® t)1/2A(t ® t)l/z)(I RIRI® U*)SIei-f-s’ s! m+s’n>

" sup (¢, — dys),

0<s<lr

< const.¢™?

and the right hand side here goes to zero as r approaches infinity.

v = 4. We shall need the following lemma.
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Lemma 2.4. For any integer k,

S s ® 1 (B))* (® 10(@))"* (v ® 75 (1)) eiomn

lim ¢~ *"su
r—)ooq ~p

1

s=r+1
= 0.
Proof.
3r
Z drs(_q,B* ® WU(,B))S(CV ® 7rU(a))3’“s('v ® ﬂU(v))_sreiomn
s=r+1 ) ”
< const. ( > disq23(i+m+23+1)-2kr)
s=(r+1)V(—i)V(—m)
3r 1/2
< const. ( Z c§q28(i+8+1)+s(2m+8)+32—2kr)
s=(r+1)V(=i)v(-m)

1/2
< const. ( Z ‘123+s(2m+3)+82_2”) .

s>r+1
It is clear now that the required limit is zero. O

Now, using the binomial expansion for pugy(a*3"), we get

i>—3r

l Z q2i<ez’0mn7 ('ld ® 7‘.U)-E4ei0mn)

E q <ezOmn7 Z(i®7r(1) (Zdrs 'U®’U)
i>—r =0
. ((t ® t)1/2 _ (v ® ,U)Sr—s(a* ® a*)Sr——s)

) (_q:6 ® ﬁ*)sA(t ® t)1/2 Z drs’(—qﬂ* ® :8)3’ (’U ® v)_SI> eiOmn>

§'=0

3r
> ¢ <ei0mn, (id ® my) ( Y d(v @) (0" @) (—gB ® F7)°

i2—37‘ s=r+1

A Y des(—aF @) (v 0 v)-S’) m>

8'=0

0<s<r E>3r—s+1

< const. ¢”?" sup (1 - JI «a —q2k)1/2)
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+ const. ¢~ %" sup|l(id ® 7y )

: ( Z drs(—gB" ® B)* (@ ® )" (v ® v)“”) €iomn

s=r+1

The first term obviously goes to zero as r approaches infinity. By Lemma, 2.4,
the same conclusion holds for the second term also. Therefore (2.10) holds
for v =4.

v = 5. Similar to the previous case.

v = 6. Let us denote by P, the operator [1;5s,4,(1—¢*¥***)"1/2®I. Then

Z 7 (€iomn, (1d ® Ty) Egeiomn)

i>2—3r

Z q” (€it3rom3rn, (1d ® my)(usu(a” 3T)A,MSU(CV‘%)

i>~3r

— usu(v_e’ravsr))@ﬂsro m+3rn)

Z q2i<ei+3r0m+3rna (Zd ® WU)#SU(Tﬁsr(PraPr - a))ei+3r0m+3rn)
1>—3r

= q_sr(l - qz)-lthU(T_sr(PraPr - a’))l
= (1 - ¢*) Yhsy(P.aP, — a)|.

Therefore (2.10) holds for v = 6.

Observe that in all the estimates above, we have used crucially the fact
that m is not allowed to go too near minus infinity. Essentially the same
calculations can therefore be used to show that the conclusion holds even
when p is of the form p, 7, where

(211) u= Z )\ijeij, m € Z.

i>m

Step 11. Take a € (Ap)4+, and p compactly supported.

In this case, it can be shown that p must be of the form p, i + (w, ey (-)w),
where u is as in (2.11). For p = p,y, the proof is already done in step I
Let us now prove the equality for p = (w, ey (-)w). It is easy to see that
in this case, a x p € Ay and a * p = (id ® p)usy(a). Therefore h(a * p) =
(1 = ¢*) Y (hsv ® p)usv(a) = (1 = ¢*)"*hsu(a)p(I) = h(a)p(I).
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Step 111. Take a € (A,)+, and p to be any compactly supported state. Ob-
serve that 77 "a* pr" = 77 "(a* p). Since 777a € (Ap)+ and p7" is compactly
supported, we have h(7"a * p77) = h(r""a)p7"(I) = ¢*"h(a)p(I). On the
other hand h(77"(a * p)) = ¢*"h(a * p). Therefore h(a * p) = h(a)p(I). As
UpA, is just the linear span of the (A,),’s, and any compactly supported
continuous functional is a linear combination of compactly supported states,
the equality above holds for any compactly supported a and any compactly
supported continuous functional p. il

Let F, be the function introduced by Woronowicz in [6]. Denote by f}'
the kth Fourier coefficient of the function z — F,(g"2), i.e.

e = / F(q"2)z"* dz.
S1
The identity below involving these Fourier coefficients follow from the above
proposition.
Corollary 2.5. Y, *f 5t 5" =6, Vrkel.

Proof. Take p to be the functional a — (ex_; ¢, a€r4x-1,) and let b = v"g(n),
where g is the function ¢*z — Ij0}(k)2™", k € Z, z € S*. Using equation (12)
of {7], it can be shown that

(2.12)
(eijrts p(a)erstu)

2onf ﬁ_iﬂf ;lztlz(eun,ﬂm @Criy—itnstu-itn) HI—T—8—u

0 otherwise.
Use this to evaluate b* p. Now, use the relation A(b* p) = h(b)p(I). W

Proposition 2.6. For any a € A%, and state p, we have h(a * p) < h(a).

Proof. For any a € A, lim)|p,(a) — a]] = 0, and for any state p on A,
lim pp,(a) = p(a) for all a. This, along with the fact that u(A) C A® A,
yields that p,(a) * pp, converges to a * p in norm. Also, for a and p positive,
all these quantities remain positive. Since p,(a) and pp, are compactly
supported, we have h(p,(a) * pp,) = hp,(a)pp.(I). Therefore, combining
all these observations together, we get

h(a x p) < lim hp.(a)pp, (1)
= h(a) lim pp,.(I)
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= h(a).
a

Let (L2(h),nn,ms) and (H,,7,,7,) be the GNS triples associated with the
weights h and a — h(a * p) respectively. We shall very often identify a and
nr(a) for a € {b € A: h(b*b) < co}.

Proposition 2.7. Let gj be the function on C? defined by q"z — Ij;(r)2*,
r€Z,z €S Then {g77v'gjr(n) : 4,5,k € Z} is a complete orthonormal
basis in Ly(h) and {q77n,(v'g;r(n)) : 3,5,k € Z} is an orthonormal system
of vectors in H,.

Proof. The first part is easy. We prove the second part here. Write a; for
v’g;r(n) and a, for v"g,(n). Then from the first part, h(a}a;) < 0o, i =1,2.
Now, using Proposition 2.6, we get
[(ns(a1),m,(a2))| = |h(alaz * p)|
< |h(ajay * p)|'/%|h(a3az * p)|*/2
< |h(ajar)[?|h(a5a,)| "

< o0.

Next,
(Up(th), np(a2)> = h(a’IGZ * P)
= 1&1_1)130 hpm(ajasz * p)

= lirfznl; q” (e, (ajas * p)er)
>—m

= limp ( D @ pe * ai‘dz)

I>—m
= linIP P(Tm),
where T, = Y15 _,, 4% ey * a7a2. Now using (2.12), we get
Peyo * a;a2 = i,r+t—k6',s+t—kvk—tv';&—k (ftlz-lt-ti-_.;i_lklhlfﬁ-li-l_l ® I))

where Vp, is the unitary appearing in the polar decomposition of n, and
f'** denote the operator ex — f;*e;. Therefore

1>2-m

_ k—tyst—k 2l fN+t—k+1—1 N+1-1
T = ijryt—k0j,s+t-k0" Vi (Z /[ P St A ®I>-
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Now using Corollary 2.5 one can show that for any positive functional p of
the form Pu,Us hmp(Tm) = 6ir6j85ktq2j”u”2' Since 6V(frlm) = éir‘sjsdktqz’j for
all m > —j, it follows that

M, (v'g;x (1)), 7, (V" gt (1)) = 6:r0;50100°,

which proves the assertion. ]

Proof of Theorem 2.1. Take a € A", and p to be a state. Define a map
S from L,(h) to M, by the prescription a — 7,(a). Then by the above
proposition S extends as an isometry to the whole of L,(h). Therefore, for
any a € A%, ||Sa'/?|| = ||a'/?||, which means h(a * p) = h(a) = h(a)p(I). By
taking linear combinations, the same conclusion holds for any a € A" and
any continuous functional p.

Proof of the other equality, namely, h(p * a) = h(a)p(I), is exactly simi-
lar. O

Uniqueness of this weight will be proved in the last section.

Remark 2.8. For a positive, Theorem 2.1 tells us that if h(a) is finite,
then so also is h(a * p), and h(a * p) = h(a). The equality actually holds
always, i.e. if h(a) = oo, then h(a * p) also is infinity. To see this, take a, =
a—(I—-71"(Isy))a(I—7"(Isy)). Then h(a,) = hp.(a), so that h(a,) increases
to infinity. On the other hand, since h(a,) < oo, h(a,) = h(a, * p), and since
a—a, >0, h(a * p) > h(a, * p). Therefore we must have h(a * p) = co.

Remark 2.9. We call h the haar weight for the group E,(2). It is easy to
see that h is faithful.

Let us prove here another identity using the invariance of the weight h
that will be needed in the next section.

Corollary 2.10. ¥, ¢¥fi*" fi+" = §,.¢*0™9) V1’ s € Z.

Proof. Let g be the following function on C?: g(¢*z) = I{_pye (k)2
ke€Z ze S, and let b = v"""g(n). Take p to be the functional a
(€1-r0,0€1_p ). Now use (2.11) to compute h(p=b), and use the equation
h(p * b) = h(b)p(I). O

3. Orthogonality Relations.

For a closed operator T, let V3 denote the partial isometry appearing in the
polar decomposition of T'. Let (b,T") be a pair of closed operators acting on
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some Hilbert space # such that the following conditions hold:

i) T is self-adjoint,
ii) b is normal,

iv) Vo*TVy, =T + 21 on (kerb)*,
v) o(T, |b]) C Z,, where &, = {(r,¢**"/?) : r,s € Z},
o(T,|b]) being the joint spectrum of 7" and |b].

(
(
(iii) T and |b] commute strongly,
(
(

It has been proved in [6] that if (b, T') is such a pair, then F,(¢7/2b®@vn)(I®
v)T®! is a unitary representation of E,(2) acting on #, and conversely, given
any unitary representation w of E,(2) acting on a Hilbert space H, there is
a pair (b,T) of operators on H satisfying the requirements above such that
w = F,(¢7?b @ vn)(I ® v)T®!.

We call a pair (b, T) satisfying (3.1) irreducible if the Hilbert space H on
which they act does not have any nonzero proper closed subspace that is
kept invariant by b, b*, and T'.

Proposition 3.1. Let w be a unitary representation of E,(2). Then w is
irreducible if and only if the associated pair (b,T) is irreducible.

Proof. If the associated pair (b,T) is not irreducible, then clearly w cannot
be irreducible. We now prove the converse.

Simple computations yield that for each m € %Z, there is an irreducible
copy (5™, T(™) acting on £,(Z) given by b(™ = ¢™¢*, T(™ = 2N, if m € Z
and b(™ = ¢g™¢*, T(™ = 2N +1, if m € Z + L. It is easy to see that these
are all the infinite dimensional irreducible copies of (b,7"). Finite dimen-
sional irreducible copies are all one dimensional, and they are (0, m) where
m € Z. Now w(0,m) = v™ € Cy(E,(2)), which means it is a one dimen-
sional representation and hence obviously irreducible. Denote by w(™ the
representation corresponding to the pair (b(™,T(™)), where m € 1Z. We
now show that each w(™ is irreducible. For this, let us first compute the
quantity (e.;;, w™e,). For m € Z we have

(3.2)

m) [ i i=k—r—s,j=l+r—s,
<6m‘j, w eskl> = .
0 otherwise,
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andform€Z+%,

(3.3)

(m) = j—1 ifz=k—7‘—s—-1,J=l+7‘-—s,
< e Skl> {0 otherwise.

Let P be a nonzero projection on £,(Z) such that w'™ (P®I) = (P®I)w!™.
Then for any continuous functional p on Cy(E,(2)), (id ® p)w'™ commutes
with P.

Take a nonzero vector u = ) uze;, € P(€2(Z)). Then u; # 0 for some t.
Take any p € Z.
Case I: m € Z. Let p be the functional a — (eg,a€s4p:—p). Then (id ®
PY™ (u) = u f7 e,
Case II: m € Z + . Take p to be the functional a > (ey_1, G€tspt1t—p-1)-
Then (id ® p)w(’")( ) = utfmﬂ’+2
Therefore in both the cases, e, € sz (Z). Therefore P = I. O

Let w(™, r,s € Z, denote the matrix entries of w(™ with respect to the
basis {e;}, i.e. w{™ = (p ® id)w'™, where p is the functional b — (e,, be,).
Denote by f;; the following functlon on C?%: fi(2) = [o Fy(d*zu)u™ du, z€

€. It is easy to see, from (3.2) and (3.3), that

(34) (m) _ 'v"+9fm-—s+],r_.3(n) lf m € Z’
Wy v o siie-s(n) i mEZ+ 3.

Since fi; € Co(C?) for all i,j, we have w{™ € Cy(E,(2)) for all r,s € Z, and
for all m € 1Z. We shall shortly see that they belong to L,(h) also.
The following lemma, will be very useful in the sequel.

Lemma 3.2. {v"fy(n):r,s,t € Z} is a complete set of orthogonal vectors

Proof. Using Corollary 2.10, one can easily compute that
(35) h‘((vrfst(n))*vrr fs’t' (n)) = 0ppr Ogg0 Oppr q2(1_3+t) .

Therefore all we need to prove is {v"f(n) : 7,s,t € Z}*+ = {0}.
Take an operator a € Ly(h) such that h((v®f;x(n))*a) =0 for all 4,5,k €
Z. This implies

(3.6) Zqzr ]+7‘ er—ikyaer()) =0 VZ’J7k
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Write u(2) = 3,q"(er—ik, a€0)2", £8(2) = 3,q"H %1 fI*"2". Then u,¢* €
Ly(S"). From (3.6), (¢5,u) = 0 for all j and k. Therefore if we can show
that {¢¥} ez is complete in Ly(S") for each fixed k, it follows that ae,o =0
for all r € Z, so that h(a*a) = 0, which means a is 0 in Ly(h).

Fix any k € Z. From Corollary 2.10, it follows that {¢};ez is an orthonor-
mal set of vectors. Observe that 2°£%(z) = £§_,(2). Therefore (£§,£F) = djo
implies ¢f(z) # 0 almost everywhere. If P is the projection onto {{" 1 J €
Z}*, then P commutes with all the multiplication operators, and hence is
multiplication by an indicator. Since P¢f = 0 and £} # 0 almost everywhere,
P must be zero. O

We are now in a position to state the following proposition.

Proposition 3.3. The matriz entries w'™ satisfy the following:
(i) wm e Lz(h) VY m,r,s.

(ll) <w(m) wr 1 gl > = 6mm/5r7/6331q2(r—[m])'

rs ?

(iii) {g™"w{™ :r,s € Z,m € 1Z} form an orthonormal basis for Ly(h).

Proof. Follows from (3.4), (3.5) and Lemma 3.2. U

Remark 3.4. Though the matrix entries in the given basis are all in
L,(h), this is not, in general, true; that is, there are vectors u, v such that
((u] ® id)w'™ (v ® -) & Ly(h). One could, for example, take u = 3,5, Ze_,
and v = ;. Thus each w(™ has both square-integrable and non square-
integrable matrix entries.

4. Uniqueness of h.

In this section we deviate a little bit from the C*-algebraic setup in which we
have worked so far. To be more specific, we deal with the von Neumann alge-
bra M generated by Cy(E,(2)). This does not pose any serious problem, as
the comultiplication map p, being unitarily implemented (cf. equation (12)
of [7]), extends readily to M.

To start with, let U be the x-subalgebra of Co(E,(2)) generated by
{v"fu(n) : r,s,t € Z}. It is easy to see that U is contained in L,(h)
and it follows from Lemma 3.2 that it is dense there.

Let P, denote the projection Y, |e,s)(e,s|. For an operator a on £,(Z) ®
2,(Z), denote by a™® the operator P,aP,. Then any bounded operator can be
written as a strong sum of the form Y, 3 a™**. Observe that for a € U,
the first summation is finite, i.e. a =3 ,.cp 3., a"*°, where F is some finite
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subset of Z. Define an operator Ay on U as follows:

Aoa = qu (Z ar+s,s> .

One can check that the closure A of this operator is a positive self-adjoint
operator, and is in fact the modular operator associated with the weight h.
That is, we have h(ab) = h(bAa) for a,b € U. The corresponding modular
automorphism group A% is seen to be given by

(4.1) Ata = gg-it % a * €4,

where ¢, is the functional v — 2, n — 0, z € S'. From Proposition 1.4 of
(6], fixed point subalgebra of this automorphism group is {f(n) : f bounded
measurable function on C7}.

Suppose now that h; is a normal semifinite weight on M for which The-
orem 2.1 holds. Also assume that all compactly supported elements of
Co(E,(2)) are in the domain of h;. It is clear from (4.1) that h;A® = h;.
Therefore by the Radon-Nikodym theorem for weights on a von Neumann
algebra (Theorem 5.12 of [4]), there is a positive measurable function f on
C? such that

hi(a) = h(f(n)a)

for all a in the domain of h;. Using the invariance properties of h and h;,
faithfulness of h and the fact that €, * f(n) = f(zn) for all z € S, it is
easy to see that f(zn) = f(n) for all z € S*. This means there is a positive
measurable function ¢ on {¢* : k € Z} such that h, is given by

h’l (a) = Z q2rc(qr) (ero’ aerO)'

rezZ

Notice that each ¢(g") has to be strictly positive. Because, if ¢(¢”) = 0 for
some v, then from the relation h;(pg*a,) = hy(a, ), we get 3, ¢*"c(¢")|f 1|2
= 0, which forces each ¢(q") to be zero.

It follows from Lemma 3.2 and the above observation that {v"fu(n) :
7, 8,t € Z} form an orthogonal basis for Ly(h;) also. Simple computations
give

hl ((vrf"t(n))*vr' fs't’ (n)) = (51'1" 633’ (Stt'c(q1~s+t)q2(l_s+t)7
hy (’v"’ fslt' (’n)(v'fst ('n,))*) = 6”.; 633’ 6tt,c(q1~—r-—s+t)q2(1-r—~s+t).

Therefore, denoting by A(;) the modular operator for the weight h,, we get
An)(v" foe(n)) = g("—I—ZZJflq‘”v’f,,t(n). On the other hand, it can easily

(@)



232 ARUPKUMAR PAL

be verified that A(;)g(n) = g(n) for any compactly supported function g on
C?. Therefore 5%"?1(1—::—:—;2 must be independent of s and ¢, which means there
is a positive real d such that c(¢g") = ¢(1)d". Now it remains only to show
that d = 1.

If we use the weight h; instead of h in the proof of Corollary 2.5, we get

the following identity:
(4.2) S @A R R =60 VR € Z.

Suppose now that d < ¢~'. Let &(2) = ¥, ¢"*ff-T2". One can see that
2°€k(2) = €rys(2) and (&, &) = Okrr. Therefore {€;}rez form a complete
orthonormal basis for L,(S*). Write u(z) = Y., q¢"d"f-72z". From (4.2),
(u,&) = Oro. Hence u € C.&,, which implies that d is 1. If d > ¢},
then taking & (z) = ¥, " *Vd—*ff72" and u(z) = ¥, ¢"Vd-"fI2" and
using the same arguments as in the earlier case, we get u € C.&,, which is
impossible since d > 1. Thus, up to a scalar multiple, an invariant weight is
- unique.

Remark. After the first version of this paper was submitted, the author
came to know of the paper ([1]) by Baaj, in which the invariance of the
haar measure for the quantum FE(2) group has been proved. His method of
proof, however, is different. He essentially uses the cross product structure
of the C*-algebra Cy(E,(2)), and makes use of some g-identities, whereas in
our case, the close relatioship between E,(2) and SU,(2) has been exploited,
and the g-identities are derived as by-products.

Acknowledgements. I thank my supervisor Prof. K.R. Parthasarathy and
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