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FOURIER MULTIPLIERS FOR L,(R*) VIA ¢—VARIATION

QuaNHUA XU

We give a new sufficient condition for a function to be
a Fourier multiplier of L,(R") via its g-variation on dyadic
rectangles. This solves a problem posed by Coifman, Rubio de
Francia and Semmes, who had considered the one-dimensional
case.

1. Introduction.

Let I be an interval of R. For 1 < g < oo we denote by V,(I) the space of
all the complex-valued functions of bounded g¢-variation on I, that is, V(1)
consists of the functions m on I such that

1/q
Imllv, ) = sup (Im(wo)lq + ) Im(zi) — m(xk)l") < oo,

k>0

where the supremum is taken over all increasing sequences {z }x>o in I.

In [2], Coifman, Rubio de Francia and Semmes proved the following con-
siderable improvement of the classical Marcinkiewicz multiplier theorem for
L,(R).

Theorem A. Let I;, = [2%,2¥"] and J, = [-2F+1, —2*] for every k € Z.
Let m € Lo(R). If supgcz(llmllv, 1) + lmllv,ay)) < 00 for some 1 < q < oo,
then m is a Fourier multiplier for L,(R) for every 1 < p < oo satisfying
L-d<t

The ingredient of the proof of Theorem A in [2] is Rubio de Francia’s
generalized Littlewood-Paley inequality for arbitrary families of disjoint in-
tervals (cf. [7]). Let us emphasize that the above theorem is one-dimensional,
while the classical Marcinkiewicz theorem holds as well in the multiple di-
mensional case. The problem of extending Theorem A to R* was left open
in [2]. The purpose of this note is to solve it.

Let us define the space of functions of bounded g¢-variation on a rectangle
of R*. We consider only rectangles with sides parallel to the axes, and also

we restrict ourself to finite rectangles. Now let R be such a rectangle. Write
R = [T;_,[ax, br]. Let m be a function defined on R. Define Ag by

Ag(m) = Aﬁlll) Ai) ce Ag:) m(ay, s, ,an),
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where h; = by — a; and where A®) is the usual difference operator in the
k-th variable (with all the others fixed), i.e., for any function f on R™ and
any positive real number h

Agk)(f)(mla"' ’mn) = f(xla"' yTk—1, Tk +hazk+1,"' ,zn) - f(ml"" amn)'

Now for 1 < g < oo we define V,(R) inductively in n. We already have the
definition for the case n = 1. Thus suppose n > 2. Let m be a function on
R. We say that m is of bounded g-variation on R if the following properties
are satisfied:

(i) for each 1 < k < n —1 the function m(z,,--- , Tk, k41, " ,an), CON-
sidered as a function of the first k variables, is of bounded g-variation
on the k-dimensional rectangle [T5_, [a;, b;];

(ii) the condition analogous to (i) is valid for each permutation of the
variables z1,x3, - , Ty;

(iii) for the full n variables we have

1/q
sup (Z IAQ(m)I"> < o0,

QEQ

where the supremum runs over all decompositions Q of R into sub-
rectangles of disjoint interior.

We define ||m||v,(r) as the sum of all the quantities appearing in (i) - (iii)
and denote by V,(R) the space of all functions of bounded g-variation on R.
This is a Banach space equipped with the norm || - ||y, (r)-

Remark. Vj(R) is the usual space of functions of bounded variation on
R; moreover, m € Vi(R) if m is n times continuously differentiable in the
interior of R and satisfies the following

(i) foreach1<k<n-1

/b1 /~b;e
ay Qe

(ii) the condition analogous to (i) is valid for each permutation of the
variables z,,Z5,* ,Z,;

(iii) and
A

dzx; ---dz; < 00,

*m
Bml---amk(xl"” 1 Tky Qg41," " * aan)

dz,---dzr, < oo.
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Also observe that we can slightly weaken the above condition (iii) by requir-
ing only that m be n — 1 times continuously differentiable on R and that
a—f}"g—x:(arl, -+« ,,) exist (in a reasonable sense) and be absolutely Riemann
integrable on R.

For stating the analogue of Theorem A for R™ we need recall the notion
of dyadic rectangles, used in the classical Littlewood-Paley theory (cf. [8]).
First for n = 1 a dyadic interval is an interval of R from one of the sequences
{Ix} and {J;} introduced in Theorem A. Then by a dyadic rectangle of R"
we mean a rectangle R which is a product of n dyadic intervals. Let D
denote the family of the dyadic rectangles. Let us also recall that A(R") =
Ap(R x --- x R) denotes the class of the Muckenhoupt A,-weights on R" in
the product sense (cf. [4]).

For a function m € L. (R"), the corresponding multiplier operator is
denoted by T,,, i.e., T/m-(f\) = mf, where f is the Fourier transform of f.

The result of this note is the following theorem, which solves the problem in
[2] for R™.

Theorem.

(i) Let1l < q < oo and m € Loo(R*). If supgpep [[mllv,(r) < oo, then
m is a Fourier multiplier for L,(R") for any p € (1,00) satisfying
I-l<t

(i1) If m satisfies the above condition with ¢ = 2, then for any w € A} (R™)
we have

[ In(D@F (o) da
<O sup [mlfym [ 1F@)Pw@)dz, V€ Lw),

where C is a constant depending on w.

Remark. In particular, if ¢ = 2, then m is a Fourier multiplier for L,(R")
for all p € (1, 00). Recall that the classical Marcinkiewicz multiplier theorem
corresponds to the case ¢ = 1.

2. Proof.

Now we proceed to prove the theorem. As in [2], the ingredient of our proof
is again the generalized Littlewood-Paley inequality of Rubio de Francia [7].
The new point is a simple observation: a function of bounded g-variation
on a rectangle can be regarded as a vector-valued function of bounded g-
variation on an interval (see Lemma 1 below). This observation allows us to
iterate one-dimensional results.
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Let us first extend the definition of ¢-variation to functions with values in
a Banach space B. This is done just by replacing the absolute value by the
norm of B. Thus if I is an interval (say, I = [a, b] a finite interval), V, (B, I)
is the space of all functions m from I to B such that

1/q
Imllv,s.y = _ sup (Hm(a)ll" + ) Im(zeys) - m(wk)ll"> < oo.

a=z0<z1< -<b E>0

Note that the above V,-norm is not equal but equivalent to that introduced
at the beginning.

Now let R be a rectangle in R*. Write R = [[;_, Ix with I} = [ay, bg].
Then we can introduce the space V,(V,(--- (V,(I,) ), Iz),I1) of functions
on R. This space is denoted by 17q(R) For example, if n = 2, a function
m on R = I, x I, belongs to Vq(R) iff for all z; € I, the function m(z,,-)
belongs to V,(I;) uniformly in z; € I; and the vector-valued function z; —
m(z1,-) € V,(I,) belongs to V,(V, (L), ).

The following lemma is elementary and almost obvious.

Lemma 1. For any 1 < g < oo and any rectangle R in R" we have
V,(R) C V,(R) of inclusion norm < 1.

By Lemma 1 it suffices to prove the theorem for I7q in place of V.

To continue the proof of the theorem we need introduce another space U,
related to V,. Let B be a Banach space and I an interval of R. Denote by
£ the family of all step functions m from I to B which can be written as

K
m = Z ArXIi»
k=1

where {ax} C B and {I;} is a finite sequence of disjoint intervals with
I = U, Iy (x. standing for the indicator function of a subset e). For m € £
as above set

K 1/q
[m] = (Z: ”ak”q)

and
J J
llm“U"(B,[) = lIlf Zl[m]]] m = ij’ mj € 8, 1 S] S J, J Z 1;.
j=1 j=1
Then || - ||lv,(B,1) is @ norm on €. The completion of £ with respect to this

norm is denoted by U,(B, I). If B = C, U,(C,I) is simply denoted by U,([).
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It is trivial that U,(B,I) C V,(B,I). Clearly, the inverse inclusion is not
true. However, we have the following

Lemma 2. Let B be a Banach space and I an interval. Let1 < p < q < oo.
Then V,(B,I) C U,(B,I) of inclusion norm bounded by a constant depending
only on p and q.

This lemma is proved in [2] for B = C. The same proof works for any B.
Note that Lemma 2 was already known to the authors of [6]. It follows from
more general results on the real interpolation spaces between the V,-spaces
(see [6] and [9]).

If R = [I;_, I is a rectangle in R", as for V, above, let

Uy(R) = Ug(Uy(- - (Ug(Ln), -+ ), I2), In).-

This is a space of functions on R. We have the obvious inclusion [Z,(R) C
V,(R); also Lemma 2 implies that V,(R) C U,(R) for 1 < p < g < co. The
following lemma is the n-dimensional analogue of a lemma in [2].

Lemma 3. For any m € Uy(R*) and w € A2 (R") we have

1/2

1/2
([ mmf@Pu@ds) " < Clmllgen ([ f@Pu@ds)
Vf € L2 (’ll)),

where C' is a constant depending on w.

Proof. 1t is based on Rubio de Francia’s inequality. Let us recall this in-
equality (in its weighted form; see [7] and [2]). Let {I;} be an arbitrary
sequence of disjoint intervals in R. Let S;, denote the partial sum operator
associated to I (i.e., Sy, is the multiplier operator with symbol x;,). Then
for any w € A;(R)(= A} (R))

(%) / (2 |sfkf|2) w<C / fPw, V¥ f € Ly(w),

where C is a constant depending on w only.

Now we show Lemma 3 by induction on n. The case n = 1 is just (x).
Then suppose the lemma is true for n — 1 (n > 2). Let w € Aj(R*) and
m € U,(R") of norm 1. By convexity, we may suppose m is a step function
as in the definition of U,(B,R), where B = U,(R*™!) (in the last n — 1
variables). Thus m is a finite sum

m($1,$2’ t ?xn) = Z Akak(x% te ,fﬂn)XIk (‘Tl)’
k
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where q; € (L(R"“l) of norm 1, {I;} are disjoint intervals and \; > 0 are
such that 3~ A2 < 1. Let T} and S; be the multiplier operators with symbols
Xr @ and Xy, xr=-1 respectively. Then

Tm = Z AkaSk.
k

Recall that if w € A} (R™), then w(z,,) € Aj(R""!) uniformly for all z; € R
and also w(-,z3, -+ ,z,) € A;(R) uniformly for all (z,,---,z,) € R*" !,
Therefore, by the Fubini theorem, the induction assumption on n — 1 and
(*) we obtain

[ TafPo <3 [ TSP
R” k R"
= E /d:cl/ [T (St f)|Pwdzsy - - - dz,,
= Jr Rn-1
50}2/ dzl/ IS4 f 2w des - - - da,
— JR Rn-1

=C dzg---d:cn/Z|Skf|2wd:c1
R

Rn-1

500’/ dz2---dmn/|f|2wda:1
Rn-1 R

—cc / 1 Pw.
R'ﬂ
Thus the lemma is proved. O

Now we can deduce the theorem from Lemmas 2 and 3. Recall that if R
is a rectangle, Sp denotes the associated partial sum operator.

Proof of the Theorem. Let us first prove (ii). Fix w € AJ(R"). Then by the
reverse Holder inequality w® € A}(R™) for some a > 1. Let 1/0 = a and
g = 2c. Then0 < 0 < 1and g > 2. We claim that for any m € U'q(R"), T, is
bounded on L, (w). This follows from Lemma 3 by interpolation. Indeed, let
us consider the bilinear operator B defined by B(m, f) = T,,f. By Lemma
3, B is bounded from U,(R*) x Ly(w®) to Ly(w®); on the other hand, B
is obviously bounded from L., (R") x Ly to L,. Therefore, by the complex
interpolation (see [1]), B is bounded from (Lo (R"),U(R")), X La(w) to
Ly(w). Thus if m € (LOO(R"),U}(R”))(}, then T, is bounded on L,(w); it

is however clear that U,(R*) C (Loo (R*), U, (R"))o, from which follows our
claim.
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Now with the claim and Lemma 2, the proof of (ii) can be finished by a
standard argument. Let m € Lo (R") be such that supgcp Mgy < 1.
Set mp = myg. For f € Ly(w) choose g € Ly(w) of unit norm such that

Ta(Dllzsir = [ Tl

Note that

T, = ZSROTMOSR.

ReD

Then using the self-adjointness of Si we get

T Hgw= | > Tna(Srf)Sr(gw);

R” peD

and so

T () ||,,z(w)<(/ S I Tona (SehP )(/ 3 18a(gu)w” )

Observe that gw € Ly(w™!) and w™! € A5(R"). By the weighted Littlewood-
Paley inequality (this can be obtained by the standard argument as in the
un-weighted case, see [4] or [8]),

1/2
( /s nsR@w)Pw-l) < Cllgllzaw < C.
R

Also, by the condition on m, mp € Va(R) and is of norm < 1; so by Lemma
2, mg € U,(R") for the above ¢ = 2c. Thus it follows from the previous
claim that

/ | T (Srf)Pw < C / |Srfl>w, VReD.

Putting together the preceding inequalities, we obtain the boundedness of
T,. on Ly(w). This is (ii) of the theorem.

The proof of (i) is now easy. First we show (i) for ¢ = 2. This is done
by (ii) and the elementary fact that for any g € L,(R™) (r > 1) there exists
w € L.(R") such that w € A}(R"), |g| < w and |lw|, < 2|lg||, (see [4]).
In particular, if supgep ||mllvyr) < 00, m is a Fourier multiplier of L,(R")
for all 1 < p < co. Then interpolating this with the trivial case where
m € Lo (R") and by an argument similar to that at the beginning of the
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present proof, we deduce that (i) is true with U, instead of V. Therefore,

by Lemma 2, we finally get (i) in its full generality. a
Remarks.
(i) The preceding proof also yields the following vector-valued version of

(ii)

(i)

the theorem. Let 1 < ¢ < oo and {m;} be a sequence of functions in
Lo (R*) such that M = sup, Supgeyp ||mellv,(r) < 00. If 1 < p < o0

and |1/p —1/2| < 1/q, then
1/2
(S
k
p

where C' is a consatnt depending on p and gq.

<CM

4

» {fie} C Ly(R?),

1/2
] (Z 'ka fk |2)
k

As the reader may observe, the preceding proof is essentially the iter-
ation of a one-dimensional argument. Its pattern is the same as that
of {2]. This is not surprising if one remembers that the Marcinkiewicz
multiplier theorem in R™ is an iteration of one-dimensional results as
well.

Let us point out that the generalized Littlewood-Paley inequality of
Rubio de Francia was extended to R* by Journé [5]. At first glance,
one might think that Journé’s extention should suit to the proof of our
theorem better than the preceding iteration argument. However, this
apparently cannot lead to our final goal (at least, the author has not
succeeded in proving the theorem by Journé’s inequality).

The case ¢ = 2 in our theorem is of special importance (the result
in the general case then follows by interpolation, as the above proof
shows). If we just interpolate the case ¢ = 1, to which the classical
Marcinkiewicz theorem applies, with the trivial case ¢ = oo as above,
we can only obtain the following weaker fact: under the condition of
the theorem (i), m is a Fourier multiplier of L,(R") for 1 < p < oo
such that |1/p — 1/2| < 1/(2qg).

3. An example.

The following example is classical. Let

Y-,
e'l"”l

(].-l-—lil,‘lz)b (a>0,b>0).

m(z) =

Then m is a Fourier multiplier for L,(R") whenever 1 < p < oo and |1/p —
1/2| < 2. We will obtain this by our theorem. To that end, it suffices
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to show that m belongs to V,(R) uniformly in all dyadic rectangles R for
any ¢ > na/(2b). For that let us allow b to take complex values. Thus let
b be a complex number with Re(b) > na/2. Then it is clear that for any
o= (o, ,0p,) withay =0or1

o*m

o>

x&

(T1,-+ ,2,)| < C (14 [Im(®)))™, VzeR",

where 5‘?%- = =l and z% = z7t - x7t. It follows that for any dyadic
T 9z, *---0zy

rectangle R, m belongs to V;(R) and is of norm bounded by C(1 + |Im(b)|)™.
Multiplying m by a function like e*°~¢" (for a suitable 8 € (0,1)), one sees
that the new function is in V;(R) uniformly in dyadic R for all complex
b with Re(b) > na/2. Then interpolating this with the trivial case where
Re(b) = 0 (then m € L), we obtain the desired result.

Remark. Recall that the above result is optimal, that is, if |[1/p—1/2| > 2,
then m is not a multiplier for L,(R™). This shows that our theorem is also
optimal. However, it does not cover the critical case where |1/p—1/2| = 2.

In this case, m is still a Fourier multiplier for L,(R™) (cf. [3]).

Acknowledgement. We are grateful to the referee for some valuable sug-
gestions.
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