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CLASSIFICATION OF THE STABLE HOMOTOPY TYPES
OF STUNTED LENS SPACES FOR AN ODD PRIME

JESUS GONZALEZ

For an odd prime p we obtain the complete classification of
the stable homotopy types of stunted lens spaces modulo p by
adapting the ideas introduced by Feder, Gitler and Mahowald
in the study of the 2 primary problem. Advantage is taken of
the stable, p-local decomposition of stunted lens spaces. We
check that the classification is realized by J-homology and
cohomology groups as in the case of real projective spaces.

1. Introduction.

Throughout this paper p will denote an odd prime. The infinite dimensional
mod p lens space L admits a CW structure having a cell in each dimension.
Let L® be the btk dimensional skeleton of L, the stunted lens space L} is
defined as the quotient space of L® by L°~!. In this paper we obtain the
complete classification of the stable homotopy types of stunted lens spaces
mod p. The techniques use the well known fact that stunted lens spaces
are either Thom complexes or reduced Thom complexes (i.e. collapsing to
a point the bottom Thom sphere) of multiples of the canonical complex line
bundle over finite dimensional lens spaces, in particular the J order of such
bundles gives sufficient algebraic conditions to obtain stable equivalences
among stunted lens spaces. More precisely two stunted lens spaces each
with NV cells, are stably equivalent provided there is a congruence modulo p?
on the dimension of the top cells, where s is roughly the integral part of the
quotient N/(2p —2). On the other hand by using the Adams operation ¢+
one can see that a congruence modulo p*~! is also necessary. The problem
is to determine the optimal congruence for classification in each case. It is
well known that the congruence modulo p® gives the classification when the
spaces are S-reducible or S-coreducible, and it is easy to see that the same is
true when the total number of complete Moore cells is not divisible by p— 1.
In this paper we show that the congruence modulo p*~! gives the optimal
condition in all remaining cases.

The starting point in the classification of the homotopy types of stunted
lens spectra is the following theorem which is a classical consequence of the
calculation of the Adams’s J groups for finite dimensional lens spaces [7].
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Theorem 1.1 ([7, 8]). Let m,n,k be positive integers with
k=s(p—1)+7r and 0<r<p-1.
a) Ifm=n (mod p*), then Lint3*+e ~ L3328+ for any €,4 € {0,1}
b) If Lymiskte o Lont254¢ for some €,6 € {0,1}, then m =n (mod p°~?),
and if in addition r > 0 or if one of the spaces is either S-reducible or
S-coreducible,then in fact m =n (mod p°)

In view of Theorem 1.1 we can restrict attention to non S-reducible nor S-
coreducible stunted lens spaces where the number of complete Moore cell is
divisible by p—1. Theorems 1.1, 2.2, 3.6, 3.7 and 4.7 of this paper imply that
in such remaining cases the classification is given by a congruence module
p*~! in the notation of Theorem 1.1. The final answer can be sumarized in
the following result

Theorem 1.2. For 6, € € {0, 1} two spaces Lawt 2+ and L7237 which are
neither S-reducible nor S-coreducible are of the same stable homotopy type
if and only if n = m (mod p¢) where e is the integral part of the quotient

(-1/p-1).

The paper is organized as follows, in section two we settle the classification
in some easy cases and identify the obstructions for the existence of (optimal)
stable equivalences. In section three, these obstructions are shown to be
independent of the spaces involved, obtaining a partial classification which
is completed in section four by using the stable, p-local decomposition of
stunted lens spaces into a wedge of p — 1 summands. In section five we
compute the relevant J-groups to show that the classification is determined
by these graded abelian groups just as in [3]. In the final section we identify
the obstructions arising in the classification of the summands in the p-local
decomposition of stunted lens spectra. An analysis of these obstructions will
appear elsewhere.

The paper represents a portion of the author’s Ph. D. thesis written at the
University of Rochester with the guidance of Samuel Gitler. It is a pleasure
to thank Professor Gitler for his useful advise and continuous motivation.

2. Some sufficient conditions.

Let £ be the realification of the canonical complex line bundle over the infinite
dimensional lens space and let ¢ denote its stable class, restrictions of o to
skeleta L will also be denoted by o. The methods used in [5] can be carried
over to odd primes to classify the homotopy types of the Thom spectra and
reduced Thom spectra for multiples of the bundle ot (defined over finite
skeleta of L). It follows from [7] that the classification of the homotopy
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types of such spectra is equivalent to the corresponding one for stunted lens
spectra and therefore we will work towards the classification of the former
ones.

Notation 2.1. Let o denote a vector bundle over L® (for some large enough
number a) whose stable class is o *= . Restrictions of a to lower skeleta will
be denoted by a too.

Remark. The essential property we need on « is that it has order p*
over L*®-1 but order p*~! over L?*(P-1)~1, There is another natural choice
for such a budle: Following [2] the usual action of ¥, on CP restricts to
an action on the hyperplane z; + --- + 2, = 0 and defines a representation
¥, = U(p — 1) giving rise to a p — 1 dimensional complex vector bundle
B over BY,, then the realification of the restriction of 8 under the map
BZ/p — BY, produces a vector bundle o with the required properties. The
referee of the paper has observed that the classification of homotopy types
of stunted lens spectra could equally be obtained by working directly with
the bundle § to obtain stable identifications among stunted (BE,,)(p) spaces.
Section 6 of the paper uses this approach to obtain sufficient conditions for
the existence of optimal stable equivalences among stunted (BE,,)(p) spaces
with both top and bottom integral cells.

We will say that the top cell of L® is integral (torsion) if b is odd (even),
likewise L? is said to have an integral (torsion) bottom cell when a is even
(odd). The next theorem together with 1.1 b) gives the classification for
stunted lens spectra with no integral cells, it follows the ideas of [5]. The
notation “ T ” means pinching the bottom integral cell of the Thom spectrum
T.

Theorem 2.2. Let k = s(p—1), t = p*! and « is as in 2.1. For any
integer n there is a stable equivalence

(L) = (LR,

Proof. (n + t)a is classified by the composite
L 2y [k x [ X5 [2k » §% "2% BO x BO — BO

where 0 fits in the following diagram since ta is trivial over L?*~! in view of
the calculations in [7]

ta

L1 — L% BO(t|al)

S2k
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It is well known that (52’“)9 = St Uy etlelt26 Let g = (1 x ¢) © A,
T(g) = Thomification of g, and g’ the induced map by 7'(g9). Then one has
a diagram

(L2k)(‘n.+t)a (sz)na A (S2k)9 (L2k)"°‘ A Stlcx] <1L-_I_9(L2k)"'o‘ A StlaH—Zk—l

T(g)
1pmch (¢ + n)la] + 2k l(pmch) Al Ti/\ 1
W [(sz)"a A (S2k)9 (L) A Stlel <1 gnlal A gtlal+2k-1
g/
(t+n)lal+1
N A

T

where the second space of the bottom row stands for the (¢ + n)|a| + 2k
dimensional skeleton of (L*)"* A (5?*)° with the bottom cell collapsed to
a point. Here rows pointing backwards are cofibrations. Clearly the right
square commutes and <y is null homotopic, so that we get the retraction r as
shown. Using the definition of g we can see that r-g’ induces isomorphisms
in mod p cohomology, except possibly in the top dimension (which is the
first dimension where there are two generators mapping non trivially under
g'). Therefore it suffices to check that r*(Unoy* A Us) = Unay® A Us where
U, denotes the Thom class of A and y is the generator in H? (L, Z/p). This
follows easily using naturality of the Bockstein operator 3 together with the
fact that B(U) = 0 for both Thom classes and the formula g(zy*~') = y*
where z is the generator in H* (L, Z/p). ]

Same type of techniques can be applied to classify stunted lens spaces
with integral top cell. The following result identifies the “obstruction” for
the existence of a stable equivalence among two such spaces.

Proposition 2.3. Let k = s(p—1) and let o be as in 2.1. Let 3, € w5, _, be
a generator of the p-local component of ImJ. If the composite

gnlal+2k Bsy omjal+1 2, (L2k)™

is stably null homotopic then for any integer t with v,(t) > s — 1, there is a
stable equivalence
(L2R+1) (L2k+1)("+t)°‘_

Proof. The proof is similar to that of 2.2 with minor differences: We consider
the diagram

L2k—1 _— L2k+1

e lo

SZk \V; S2k+1 Szk
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Here 0 exists because m,44(BO) is 2-torsion and ta is an element of p-
torsion, moreover, killing in advance any other torsion, we can choose 6 so
that J6 is a multiple of 3,. Now we continue as in the proof of 2.2 to get

(n+t)a| +2k +1

[(L2k+1)"°‘ A (S2k)9] (L2k+1)(n+t)a
T (n+ t)laf +1
,
(L2k+1)”°‘ A Stlal
pinch A J@
’YT \
(Sn[al v, Sn[a|+1) A St|a|+2k~—1 inl (L2k+1)n°‘ A Stla[+2k—-1

where the column is a cofibration. Similar considerations as in 2.2 together
with the present hypothesis show that -y is null homotopic and we have a
retraction r as shown. In order to see that reg’ is isomorphism in mod p
cohomology, we need to check that the behavior of r* on the last two top
cells is the correct one, namely, we want A to be zero in

1) T*(Uncx ' yk A U9) = Una : yk A UO + A (Una A UG : 1) and

i) 7*(Upa 2y* AUp) = Upo - zy* AUg + A (Upo -z AUp - 4)
where z and y are the usual generators for the mod p cohomology of the
infinite lens space and ¢ for the sphere.

The first relation follows by using the Bockstein operator as in 2.2, the
second one is the main trick of [5] and [3]: Under the present hypothesis
the top cell to be attached in the above diagram (i.e. the one corresponding

to Upg - T A Uy - 1) actually splits off over (L2%)"* A §t%l so that r induces a
————7a
retraction r’ from the cofiber of y' : (7ol v Snlal+1) A Gtlal+2k-1 _, (L%) A

VAT

Stlel into (sz) A Sl and this forces A\ = 0 in ii) above, moreover r'
restricts to a retraction like the one used in the proof of 2.2, thus the final
conclusion follows from the next lemma. O

Lemma 2.4. Suppose X and Y are stable finite p-local CW complezes with
respective attaching maps S™ =% X and S™ =5 Y for integral top cells in
the respective cofibers X' and Y'. Suppose given maps f and h fitting in the
diagram

sr —X— x - X'
b b %
sn Y Y'

Y
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If f and h induce isomorphisms in mod p cohomology, then X' ~Y'.

Proof. Let g be the homotopy inverse for f; multiplying by g both sides of
femx ~ wyeq yields mx ~ (¢°g)° 7y . But since ¢ is prime to p, ¢- g is still
a homotopy equivalence so that the map it produces from the cofiber of 7y
to that of mx induces isomorphisms in integral homology and is therefore a
stable equivalence. O

3. Symmetric maps.

In this section we use the ideas of [4] about projective classes, as suggested
by [5] to obtain information on the stable classification of stunted lens spaces.
We use the following conventions: whenever we refer to a space we mean
the corresponding suspension spectrum, in particular the degree p map on
a given space makes sense and will be denoted simply by p. The Moore
spectrum S°~' U, e® will also be denoted by P*(p).

We start with the following well known result (cf. [2, 10]).

Proposition 3.1. For each positive integer | there is a map L? 2 [~2(r-1)
such that L? 2y [2-200-1) < L2 ggrees with the degree p map on L%,

moreover the restriction of g1y, to L factors as L2 & L[2-2(p-1) L2’+2.

If no confusion arises we will simply denote the map g; by g. Consider the
following diagram where columns as well as the diagonal are cofibrations

oL

S2l—1 Up e2l 521—2p+2

Y ) i
S2l_1 L2l L2l—2p+2
L2l—2 o L2l—-2p+1

If the composite S#~1 — §%-1y, e — $2-2P*2 js null homotopic then
there is a map f as shown. Say [ = a(p—1)+5b 0<b<p-1
Since p*~'o?, as an element of KU(L*~?**?), is the image of some non
zero element p € KU(S%~%+2) and 0 # p®0® € KU(L*), it follows that
f*(u) # 0, thus f* is monic, but this is a contradiction to the fact that any
positive dimensional element in the stable homotopy groups of the sphere is
nilpotent (in the case b = 0 take p®~20”~! rather than p®~'¢®). Thus after
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pinching the proper skeleta the map g : L — L*~2P*2 induces an extension
A: P%(p) — S*-27*2 of the Adams map A.

We use the previous remarks to choose explicit generators of I'mJ as done
in [4] for the mod 2 case. Let 6; be a vector bundle over S2(*~1) that pulls
back to o= € KO(L?**~2) and such that J#, is a generator of the p-local
component in the image of the J-homomorphism. Let 8, = J#, (= A) and
suppose chosen fy, ... ,3; such that
(1) B; lies in the stem 2i(p—1) — 1
(2) 18i € (ﬂi—laAap) 1> la and
(3) B; = JO; is a generator of the p-local component in the image of the

J-homomorphism where 6; is a vector bundle over S?(?—1) that pulls
. -1 .
back to pi~lo"T € KO(L*®-V).

S2s(p—1)+2p—2

o L

§2s(p—1)+2p—3 A §2s(p—1)+2p-3 i, P2(S+1)(p—1)(p) _A, §2s(p—1) bs, BO

R j

L2+ (p-1)-1 s [2(s+1)(p—1) [2s(p—1)

We construct the next 8,,;. Since KO (§2*(P~1+2r=3) = 0 the composite
6, - A is null so that the Toda bracket of (2) makes sense and there is a map
f as shown. The commutativity of the right square says that f is a multiple
prime to p of a generator of KO(S2¢+)(®-1). Let m(k) be the order of
J(S?%) and let n(k) = m(k)/p*»(™®), If f represents the integer [, pick an
integer = such that ! + zp = 0 mod n((s +1)(p—1)). Let 0541 = f + zp.
Then 6,,; still pulls back to p°c"z , J#,., is a generator of the p-local
component of J(S2(+1)(»-1)) and by constructlon JO,41 € (B, B, D), sO we
can take B3 = JOs;.

We study the symmetric properties of the generators of ImJ by using the
previous construction. In [9] the definition for a map to be symmetric is
given and it is shown that any stable class in the homotopy of spheres is
realized in some dimension by a symmetric map. We will need a slightly
different notion of stable symmetricity. Recall that a map f: S?"*! — §?™
is symmetric if it factors through the map m,.; : S*™t!' — L™+ that
attaches the top cell of L?"*+2, Then to say that f is stably symmetric would
mean in [9] that for some ¢ > 0, £? f can be factored through the attaching
map Top gy @ S2T2HL 5 [2n+26+1: instead we will require the factorization
through X% m,, ;. The second difference is that we will use Thom complexes
of a to represent stunted lens spaces (cf. 2.1 and its previous remarks). The
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following definition of stable symmetricity is more restrictive than the one
used in [9].

Definition 3.2. Let o be as in 2.1 and k = s(p— 1). A map S™lol+2k-1
S™lel is called stably symmetric if it can be stably factored through a map
homotopic to the attaching map S™el+2k=1 —y (L26=1)™% whose cofiber is
(L2k)ma.

Proposition 3.3. Let k = s(p — 1) and let B, and Bsy1 be as in (2). If
Bs
Smlalt2k—1 Bey omial o stably symmetric, then so is Smlel+2k+2p-3 T,

gmal,

Proof. By [7] we have J(c) = J(uf) where u is prime to p (see 2.1 and its
previous remarks), let t = (s + 1)(p — 1), then for some e > 0

EQmu+2e (L2t)m°‘ — Zm|a|+2e (th)muﬁ — 2m]a|+2eL§mu+2t
mu

Bs
and Smlel+2e-1 1 gmlal i stably symmetric if and only if its 2mu + 2e th

suspension stably factors through the attaching map

Em[a|+2e . Sm|a|+2mu+2t+2e—1 ; 2mla|+2eL2mu+2t—1

Tomu+2t—1

Similar considerations hold with 8, and k replacing (., and t respectively.
Thus we need to show that the existence of a stable commutative diagram

Bs

SZmu+2k—1

SZmu
7r2mu+2k—1\ [,2mu+2k—1 /¢’

implies the existence of the corresponding one for F,.;:

,33+1

SZmu+2t— 1

S2mu

R4
7r2mu+2t—l\ Lzmu+2t_1 '

Consider the following stable commutative diagram (where the map g is
as in 3.1 and | = mu)
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A

s
SZl+2t—1 P2!+2t SZ!+2k

L21+2t g9 L2l+2k
2—1L2l+2t-—1 c SZl+2t—2 s L2l+2t—-2 L2!+2k—1 gé SZI
12‘17"214—2!—1 I [W ]7r21+2k—1 ’

G2+2t—2 p G+2t—2 i, p2+at-1 g2+2k-1 Bs, g2
C 4

A

Since both bottom rows in the diagram start with cofibrations, it follows
that a representative of (f3;, A,p) can be factored through 7y o;—;. The
indeterminacy of this Toda bracket is given by (suspensions of) maps of
either of the following form

i) S2+2t-1 __1’_>Szl+2t—1 — S or

i) Su+2-1 _y Ga+2k-1 By g
since in case (i), p factors through 7y 9;_1, all such composites factor in the
same way. On the other hand, all composites in (ii) are null homotopic since
B, is p-torsion but the p-component of the 2p — 2 stem is trivial. The result
follows from (2). a

The next proposition starts the induction suggested by 3.3 to show that
certain maps are stably symmetric.

Proposition 3.4. Let k = s(p — 1) and let ¢ and m be positive integers
with ¢ < k < 2q + 1. If ma is trivial over L?? but not over L?*, then
B, : Smlal+2k=1 _y gmlal js stably symmetric

Proof. Let a = v,(m) with m = p?l (so that a < s). By hypothesis there is a

vector bundle p over L3¥,, that pulls back to ma under the collapsing map.

Then p' = p*~*~ 1y pulls back to ta where t = Ip*~.

BO +

ta

sz—l LZk 75

l l SZk 6
_ J
L2k 1 Lg§+1 l

2q+
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Since L?*=1 — LZ*71 is monic in KO-theory, p' restricts trivially under
the inclusion map j and we can choose a vector bundle 8 over $%* that
induces ' under the collapsing map LZ*,, — S?* and such that J6 is a
generator of the p-local component of ImJ.

ma ma e [
(L20)™ —— (L) (L35s1)" — S
~ lgo l ps—a—l
7 6,
: o) —"— &

L
R —— (S2k)0

Here the first three spaces on the top row form a cofibration and the com-
posite of the last two maps is null homotopic. The maps 6, and 8, fit in the
Puppe sequence defining the corresponding reduced Thom spectra (which
are taken so that all Thom classes are zero dimensional). Since k < 2¢ + 1,
the space L3F,, is a double suspension and from [4, 3.3 and 3.4] both spectra

(L3k,,)" and (L3 +1)“I are equivalent to the suspension spectrum of L3},
(with zero dimensional bottom cell), furthermore there is a stable equiva-

lence ¢ : (L3%,,)" — (L35,,)" that yields the above diagram commutative.
It is then clear that J6e°c is null homotopic, from which the results follows.

As in the proof of 3.3 let J(o) = J(uf) with p not dividing u. The
following result is the key to get the classification of stunted lens spaces
with at most one integral cell. 0l

Corollary 3.5. Let k = s(p—1) and u as above. If s > v,(un+k+1) then
the composite Srlel+2k Py gnlal+ _ty (L2¥+1)™ 45 stably null homotopic.

Proof. Let m be a positive integer such that um + un 4+ k£ + 1 = 0 mod
p°, then a stable dual of (L2++1)™ is (L%)™". Thus, it is enough to

prove that the composite (L?)™% 5 gmlal+2k Bey gmlal+t g stably null
homotopic provided s > v,(m). Note that the previous composite is stably
null homotopic if and only if g, : S™lel+2k—1 — gmlel ig stably symmetric,
thus by 3.3 we can restrict to the case s = v,(m) + 1. If v,(m) = 0, the
result follows easily from the action of the Steenrod operation P! on the
cohomology of the lens space. If v,(m) > 1, take ¢ = v,(m)(p — 1) in 3.4 to
get the result.

The next result together with 1.1, completes the classification for stunted
lens spaces with integral top cell.
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Theorem 3.6. Let m and n be positive integers and k = s(p — 1), let u be
prime to p and such that J(a) = J(ué) as in 3.5.
1. The space (L?*+1)"* is S-reducible if and only if v,(un + k+ 1) > s.
2. Two lens spaces (L2k+1)™* and (L2¥+1)"* which are not S-reducible,
are stably equivalent if and only if v,(m —n) >s—1.

Proof. The first claim is well known, for the second let t = p*~1, if there is a
g€ {0,1,...,p— 1} such that the composite

S(n+qt)|a}+2k. _E!_) S(n+qt)la|+1 _1) (sz)(n-q-qt)a

is stably null homotopic, then we are done by 2.3 (note that in such situation

the spaces involved are not S-reducible), otherwise whenever (L2k+1)("+ee
is not S-reducible, we have by 3.5 and 1 of this theorem, a factorization of

i°(3, in the form
S(n+qt)|a|+2k

S(nat)|al+2k Bs S(n+at)al+1 i ( sz)(n+qt)a

where 7, is the attaching map for the top cell of (L2k+1)""®%  Oyr as-
sumption implies v,(f,) = 0 so that m, and the composite 7 ° 3, are equal

up to a unit in the (n + gt)|e| + 2k homotopy group of (L2*)"** thus =,

is independent of q and so is the cofiber (L2++1)™"9)* In detail, a stable
commutative diagram

S(ngtt)lal+1 i eqlal(—LEk‘)”ﬁ?f def L
g J
G(ng+t)al+1 i th_)& def L,

where h is a stable equivalence and u, is prime to p, can be extended to

T orii\ N (n+qt)a
the following diagram provided neither (L%“) nor (L2k+1) % are s-

reducible (the dimension of the spheres has been suppressed)
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f1 S

S 2 S ; L,
Uz
Uy Uy f2 S h
x
S 2 - S ; L,

where 7; are the corresponding attaching maps and where u, is taken (prime
to p) so that
four =usfi (mod |miop dim (L2)1),

it follows that he°m = m, °uy and an application of 2.4 to the square formed
by 71, 72, us and h finishes the proof. O

Dually we have the classification of stunted lens spaces with bottom inte-
gral cell.

Theorem 3.7. Let m and n _be positive integers and k = s(p — 1)
1. The lens space (L**)™ is S-coreducible if and only if v,(n) > s.
2. Two lens spaces (L**)" and (L*)™" which are not S-coreducible,
are stably equivalent if and only if v,(m —n)>s— 1.

4. Stunted lens spaces with two integral cells.

The only stunted lens spectra we are missing to classify are those of the
form L3"*+2k+1  Their p-localization decomposes as a wedge of p — 1 sum-
mands. By 1.1 (b) we only have to consider the case £ =0 (mod p— 1) and
under such condition the integral cells belong to different stable summands,
therefore the desired classification is an easy consequence of the last two
theorems. The section begins with an explicit calculation of these remarks.
In the sequel q denotes 2(p — 1) and all spaces will be localized at p.

It is well known that L stably decomposes as a wedge of p — 1 spaces
B(i) 1 < i < p—1 where the it wedge summand has a CW structure
with a cell in every positive dimension congruent with 2¢ — 1 and 2¢ modula
g (the spaces B(i) as well as the decomposition are realized after a single
suspension, moreover B(p—1) is the p localization of the classifying space for
the symmetric group in p letters). We denote the stunted spaces obtained
from B(i) as follows
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Notation 4.1. Let B(:)™ denote the skeleton of B(i) formed by the first n
positive dimensional cells, thus B(z)?" is a complex of dimension 2i+ (n—1)q
whereas B(7)?"*! is 2i — 1 + ng dimensional. Let B(4¢)?, denote the quotient
space of B(i)" by B(1)™ !. We will say that the top cell in B(z)? is integral
if n is odd and that its bottom cell is integral if m is even. B(p — 1)* will
be denoted by B},.

To simplify the statement of the next result we adopt the following con-
vention: For positive integers ¢, n and m with m <nandi=a(p—1)+7r
where 1 <r <p-—1, B(4)?, will stand for the stunted space B(r)xt%:. Thus
the bottom cell of B(i)5%™ lies in dimension 2i + (m — 1)q and the top cell
in dimension 2¢ — 1 + ngq.

Proposition 4.2. Let €, § € {0, 1} and let a, | and i be positive integers.
Define p(I) =1+p+--- +p'~1. Then there is a stable equivalence

. . . 2a+2p(1)+2l+e
B@)%Zi%” ~ B(1 + 1)2a+22(1§+6 :

Proof. By 1.1 (a) we have a stable equivalence

Li = L
Each one of these spectra decomposes as a wedge of p — 1 summands in
such a way that two given stable factors have no cells in a common dimen-
sion. Therefore the above identification yields stable equivalences among
the respective summands. In particular, since 2p' = gp(l) + 2, the required
equivalence for § = 0 and € = 1 follows by looking at the summands carrying
the lowest (and highest) cell. The general situation follows by pinching the
bottom cells or removing the top cells. d

Iteration of the equivalence in 4.2 yields

Corollary 4.3. With the notation as in 4.2, there are stable equivalences

1
B(i)3ats™ = B(1)aeiopis

Using 2.2 instead of 1.1 in the proof of 4.2 we obtain the classification of
stunted B spectra with no integral cells.

Theorem 4.4. Let a,b,l and © be positive integers.

1. There are stable equivalences B(i)3ets ~ B(i + 1)223’;8:3“.

2. The spaces B(i)3¢1% and B(z)ggﬁl are stably equivalent if and only if

v(ia—b)>1—-1.
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Proof. The existence of the equivalences follows as in the proof or 4.2 apply-
ing 2.2; that they are optimal follows from standard arguments using Adams
operations (eg. [5]). O

Note. In [2] the stunted spectra B33f7' are identified as reduced Thom

. . ! .
spectra, from which equivalences B32{3! ~ ngi;;’,l’f are obtained.

Similarly, 3.7 is the key for the classification of stunted B spectra with an
integral bottom cell.

Theorem 4.5. Let a,b,i and | be positive integers.
1. B(i)32*? is S-coreducible if and only if v ((a —1)(p — 1) +1) > L.
2. If neither B(1)22** nor B(i + 1)321%8:3”1 are S-coreducible then
they are stably equivalent.

3. Two spaces B(1)32™ and B(i)2%™, which are not S-coreducible, are
stably equivalent if and only if v(a—b) > 1 — 1.

Proof. Part 1 is easily proven by identifying B(i)32** as the stable summand

carrying the bottom cell in a stunted lens spaces. Part 2 is proven as in 4.2
using 3.7. For part 3 we need to identify the non coreducible spectra among

. . -1 . -1
B(i)3a*, B(i)saiam"™ Bliaiop ™

If neither of these is coreducible, the result follows by iteration of the
equivalences in 2; otherwise only one of them is coreducible, say B(i)5¢"%,
then by 2 we get equivalences

. 2a+2p(1—1)+21 2a+4p(i—1)+21 Y 2a+gp(l—1)+21
B(i+ 1)22+2Z(l )y = ~ B(i + 2)2Z+4§§l—1§ ~---~B+p- 1)2Z+Z£(l—1)

but by 4.2 we have for j =1,... ,p— 1:

- \2a42jp(l-1)+21 ~2a+425p(1—1)—25p(1)+21 __ .\ 2a—2j5p' "1 421
B(i + )2a+2;Z(!——1) ~ B( )22+2;Z(1—1)—2;Z(1) = B( )22—2;'2'—1
giving the desired identifications. 4.4 implies that these are best possi-
ble. O

By S-duality (or using 3.6) we get the classification of stunted B spectra
with top integral cell.

Theorem 4.6. Let a,b,i and | be positive integers.
1. B(:)32t1*! is S-reducible if and only if v((a+1)(p — 1) +14) > L.

2. If neither B(i)2213* nor B(i + 1)321358_1;1?“1 are S-reducible then

they are stably equivalent.
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3. Two spaces B(4)32127 and B(i)23, which are not S-reducible, are

stably equivalent if and only if v(a —b) > 1 — 1.

The classification of stunted lens spectra with integral top and bottom
cell is now a consequence of 4.5 and 4.6.

Theorem 4.7. Let m, n and s be positive integers and let k = s(p — 1).
1. The stunted lens space L22F+1 s
i)  S-reducible if and only if v(n+k+1) > s.
ii)  S-coreducible if and only if v(n) > s.
2. Two spaces L2211 and LZ™+25+1 which are not S-reducible nor S-
coreducible, are stably equivalent if and only if v (m —n) > s —1.

5. Classification by J-groups.

In this section we show that the classification of the stable homotopy types
of stunted lens spaces is determined by their J homology and cohomology
groups, just as in the 2 primary case [3]. Heuristically, J gives the right
answer since the stable classification of stunted lens spaces is given by Adams
operations and S-reducibility and coreducibility. For the definition of J we
follow the notation of [2] and [10]. When localized at p, bu decomposes as
a wedge of suspensions of a spectrum ¢ whose homotopy is a polynomial
algebra in a generator v; of degree ¢ and Adams filtration 1. If b € Z
represents a generator of the units in Z/p? then the Adams operation °—1 :
£ — ¢ lifts over v, : 39 — £ defining a map 6 : £ — ¥9. J is defined as
the fibre of 6.

Lemma 5.1. For integers a, b and e, a =b (mod p°) if and only if

min{e, v,(: + a)} = min{e, v, (i + b)} Vi > 0.

Theorem 5.2. Stunted B spaces with at most one integral cell as well as
stunted lens spaces are stably classified by their J-homology and cohomology
groups (with the proper shift in dimensions). In detail:
a) Stunted spaces with no integral cells are stably classified by their J-
homology groups; they are also classified by their J-cohomology groups.

b) Stunted spaces with integral top cell are stably classified by their J-
homology groups.

c) Stunted spaces with integral bottom cell are stably classified by their
J-cohomology groups.
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d) Stunted lens spaces with two integral cells are stably classified by both
their J-homology and J-cohomology groups.

Proof. By S-duality and in view of the stable decomposition of stunted lens
spaces, it suffices to consider parts a) and b) for stunted B spaces. Let m
and n be integers with 0 < m < n and set s = n —m + 1 (=no. of Moore
cells in B2"_,). In [10] it is shown that for 1 > 0,

J(i+n+1)q—l (B2m 1) z /p

where a = min{s,v,(i + n+ 1) + 1}, thus the first part follows from 5.1.
For spaces B3~ the cofibration B2? , — Birt, —3 §(m+1)4-1 jnduces
isomorphisms

Jiq~1 (322:711—1) —;) Jiq—l (32277;]_11)

thus according to 4.6 we need to verify that J-homology distinguishes S-
reducibility on the spaces B3%",. The fibration defining J induces exact

sequences (¢ > 0)
6 n n
(1) E(H—n—{—l)q—l (ng@tll) — e(i—{-n)q-—l (B22m+11) - J(i+n+l)q—2 (Bgmtll) —0

where the first two groups are isomorphic to Z, @ Z/p°. Let z denote the
integral generator and y the torsion generator in the first group, similarly let
z' and y' denote the corresponding generators in the second group. Using
naturality of the action of @ in the cofibration BZ" | — B2nth — G(n+l)e-1
together with the well known action of 8 on spheres and on stunted B-spaces
with no integral cells (e.g. [10]), it is easy to check that

o 0(z) = upp* Pz’ +ay’

o 0(y) = mprry
where a, u; and u, are integers and both u; and u, are prime to p. Using
again naturality of  in the inclusion BInt} — BI™2 it follows that a =
uspu(i+n+1) _ u2pu(z’) (mod ps)_

From 4.6, B3™" is S-reducible if and only if v(n + 1) > s, thus we have
to check that for integers n; and n, with v(n; +1) > s and ny, = n; + p**
the corresponding cokernels in the exact sequence (1) are not isomorphic;
for instance taking i = p* we get Jitn+1)q-2 (Bamth) = Z/p" D Z/p°,
however the integral generator =’ € £(i4ny)q—1 (Banit}) produces an element
of order p**? in Jij1n,+1)q—2 (Bam2tl). O
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6. Stunted B spaces with two integral cells.

The work done up to now can be considered as the odd primary version
of [5], the cases left out in that paper correspond to the classification of
stunted B spaces with both top and bottom integral cells that we have
not considered. In this section we identify the obstructions arising in such
classification. We will show elsewhere that a number of these obstructions
are null homotopic, the methods however will be different from those used
in [3] in the two primary case.

Recall B = (BY,), and let 8 the vector bundle defined in the remark
below 2.1. If 3, represents the restriction of 3 to B?**!, then Bi"+?*! can
be identified with the Thom complex of n8, [2]. The stable dual for this
spectrum can be obtained by comparing with the dual of a stunted lens space
having it as a stable summand. With this in mind the following result is
straightforward to check.

Lemma 6.1. B22"%%*! s S_coreducible if and only if v(a) > s. It has stable
dual B~3571 .

Remark 6.2. The spectrum BZ2%";._, makes sense in view of 4.3, it has
top cell in dimension —aq — 1.

Let ' denote the inclusion into the next-to-the-bottom cell in (B?5+1)
that is, ¢’ is the composite S(a+1a-1 <y §ag v Gla+D)a-1 y (B25+1) (recy]]
g = 2(p — 1)). The next result is the odd primary version of the geometric
idea of [3], it identifies obstructions for the classification of stunted B spaces
with two integral cells.

af
b

Proposition 6.3. Let n, s, t be positive integers with v(t) > s—1 and let G,
be as in 2.3. Assume that the following composites are stably null homotopic
(the dimension of the spheres is implicit)

Sh s ‘i’> (B2s)"l3 and sh g J'_) (B2s)—(n+t+s+1)ﬁ
Then (B2s+1)"ﬁ ~ (st+1)(n+t)ﬁ.

Proof. t3 is trivial over B2*~! so that there is a map 6 that fits in the diagram

B2st+1 _EE, BO(tq)

Iy

S
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and has J(0) = ;. Since (n +t)f is classified by

B+t 8y prett y prevt 1xg grent o s " po » BO s BO,
the Thomification of (1 x ¢') > A induces a map

A (st+1)(n+t)ﬂ — [ (B2s+1)nﬂ A Stq] U e(ntits)g U e(ntttst+1)g—1
i°Jo i’ °Je

where as above i’ denotes the inclusion of the second cell in £t (B2+1)™
and 7 the inclusion of the bottom cell. As in [3] (or in 2.3), the hypothesis
implies the existence of a retraction r

[(B2$+1)" A Stq} Ue(n+t+s Ue n+t+s+1)g—1 [(B2s+1)n A Stq] U e(n+t+s)q

i°J6 i’ Jg i°Jo

in such a way that the composite r < A induces isomorphisms in mod p coho-
mology except in dimension (n + t + s)g where it looks like a folding map.
The stable dual of this composite is a map (By V §*) U, €° 2 7B, of
degree one on the top cell, where u = —(n+s)g—1, v=—ng—1, w = —tgq,
B, = (B)”("tet8 Bl (Brettym(mHASHUS and my is the attaching map
for the top cell in (B2+1)” "% Define also B, and B, similarly so to
obtain the obvious cofibrations

ST Bl Bl and S'u—l T X ng ¥ sz

Let f: B,VS* — X~"B, be the restriction of g to the —ng—2 dimensional
skeleta. Thus the composite feo(m V J8) agrees with the attaching map
my. Since m, (¥ "%Bs) is generated by ¢’ and i° 3, and since 3, ° 3, is null
homotopic, the second half of our hypothesis implies that the restriction of f
to the sphere §* vanishes when precomposed with f,, therefore the attaching
map 7, equals the composition of m; with the restriction of f to B;. This
produces a map h : B; — L~%B, of degree one on the top cell and which
induces isomorphisms in mod p cohomology in all other dimensions, thus A
is the desired stable equivalence. O
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