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Let ¢ : k > A and f: A = R be ring morphisms, R a real
ring. We prove that if f : A — R is étale, then the correspond-
ing mapping between real Riemann surfaces S, (f) : S, (R/k) =
S,.(A/k) is a local homeomorphism. Several preparatory re-
sults are proved, as well. The most relevant among these are:
(1) a Chevalley’s theorem for real Riemann surfaces on the
preservation of constructibility via S.(f), and (2) an analysis of
the closure operator on real Riemann surfaces. Constructible
sets are dealt with by means of a suitable first-order language.

1. Introduction.

Let k be a real ring. In this paper we study a sufficient condition for two
real k-algebras A and R to have homeomorphic real Riemann surfaces. More
precisely, here we show that if f : A — R is an étale morphism, then the
corresponding mapping between real Riemann surfaces S,(f) : S.(R/k) —
S,(A/k) is a local homeomorphism (Theorem 9). In order to prove this
theorem, we need several previous preparatory results, some of which are
interesting on their own. Namely,

(a) the functorial character of S, (Theorem 4),

(b) a Chevalley’s theorem for real Riemann surfaces (Theorem 6), which
guarantees that if f is finitely presented (in particular, if f is étale) then
the image by S, (f) of any constructible subset of S, (R/k) is a constructible
subset of S,(A/k),

(c) a good knowledge of the closure operator on real Riemann surfaces
(Theorem 1) and of the constructible subsets of real Riemann surfaces in
terms of the first-order language of ordered valued fields,

(d) a result relating the notions of constructible, Tychonoff-closed, Tycho-
noff-clopen, closed and stability of a subset under specialization in real Rie-
mann surfaces (Proposition 8) and, finally,

(e) the known result that if f is étale then Spec.(f) : Spec,(R) —
Spec,(A) is a local homeomorphism. This theorem is due to M. Coste and
M.-F. Roy.
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Two facts should be pointed out here. First, the étality of f is essen-
tial in our proof of Theorem 9 at two stages: (1) when we invoke the
Coste-Roy theorem and (2) because the étality of f provides a homeomor-
phism between the fibers 7;'(3) and 7' (@) of corresponding points 3 and
o = Spec,.(f)(B) (Proposition 5), where ¢ is the natural projection from
S-(C/k) onto Spec,(C), for C = A or R. Second, our proof of Chevalley’s
theorem for real Riemann surfaces uses a result from model theory that al-
lows elimination of quantifiers in the theory of real closed fields endowed
with a non-trivial compatible valuation divisibility relation.

2. Notations and Background.

(RR) All rings appearing in this paper are commutative and have an
identity element. We call them rings, for short. Ring homomorphisms that
preserve the identity are simply called morphisms. When a base ring k is
given, morphisms are assumed to preserve the k-algebra structure. By an
ordering on a field K we mean a total order relation on K. A ring A is said
to be real if A has a prime ideal p such that the quotient field of the integral
domain A/p can be ordered. Such a prime ideal is called real, as well.

(FOL) Given a first-order language L, variables are denoted by v;,v,,
v3,... and greek letters ¢, 1, 6, n,... denote formulas of £. An expression
@(v1, ... ,v,) means that ¢ is formula whose free variables are a subset of
V1,...,U,. For any family of elements %;,...,%, in an L-system R, the
expression ¢[t;, ... ,t,] denotes the element in R obtained as a result of the
substitution in ¢(vy,... ,v,) of t; by vy,... and ¢, by v,.

(CVR) Let K be an ordered field and & a subfield of K. If B is a convex
valuation ring of K, then the set of ideals of B is totally ordered by inclusion.
Every ideal of B is convezx. Any convex valuation ring B' in K containing B
satisfies B' = B, for some prime ideal p of B. Moreover, the set of convex
valuation rings of K/k (i.e., valuation rings of K which contain k) is totally
ordered by inclusion. These facts follow from various classical results on
valuation rings, realizing that convexity is preserved through the proofs; see
[A], [E], [K], [Ri] or [Z-S] for general valuation theory and [B-C-R] or [La]
for results on convex valuation rings.

(RS) Nowadays, the following definition is well-known to specialists in
real algebra. Let A be a ring. The real spectrum of A, denoted Spec, (A),
is the collection of pairs (pg, <g), where pg is a real prime ideal of A and
<g is an ordering on the quotient field of A/pg. We write 8 instead of
(pg, <p). Clearly, Spec,(A) is non-empty if and only if the ring A is real.
For example, if A = K is a field then ps = (0), for all 5 € Spec, (K), and so
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any (3 € Spec,(K) is simply an ordering on K. Moreover, if K is real closed,
then Spec,(K') consists of just one point.

If 3 belongs to Spec, (A), then let A[B], A(B), 5(8), a(B), A'[A] and |a(B)|s
respectively denote the ring A/ps endowed with the restriction of the order-
ing <z, the quotient field of A[f] endowed with <g, the real closure of A(f)
(it is unique, up to order-preserving A(/3)-isomorphism), the image of a € A
in A[B] by the canonical epimorphism A —» A[S], the image of A' C A
in A[B] by the same epimorphism and max{a(3),—a(8)}. Expressions of
the form a(8) >4 0, |a(B)|s and the like are simplified to a(8) > 0, |a(B)|,
respectively.

We consider subsets of Spec, (A) of the type U, := {8 € Spec,(A) : z(8) >
0}, where z runs through A. Then we take in Spec, (4) the minimal topology
U (respectively, minimal boolean algebra C) that contains the sets U,’s. The
topology U is the usual topology considered on Spec,.(A). The topological
space Spec,(A) has some very interesting properties we proceed to recall.
As customary, the elements of U are called open sets. The elements of C are
given a name too: they are called constructible sets. We further consider the
minimal topology 7 on Spec, (A) that contains the constructible sets. It is re-
garded only as an auxiliary tool for the study of Spec,.(4). This topology on
Spec,.(A) is called the Tychonoff topology (also called the constructible topol-
ogy). Its elements are called Tychonoff-open sets. A subset F' C Spec_(A)
is Tychonoff-closed if and only if F' is an intersection of constructible sets.
Tychonoff-clopen means both Tychonoff-open and Tychonoff-closed, obvi-
ously. We have that F' C Spec,(A) is Tychonoff-clopen if and only if F is
constructible. Moreover, it is not hard to show that Spec,(A) endowed with
T is a quasi-compact Hausdorff topological space. Now, comparison of both
topologies yields that U is finer than 7. Therefore, Spec,(A) endowed with
its usual topology is quasi-compact.

In order to present the constructible subsets of Spec,(A4), the framework
of first-order logic may be used, as an alternative. Namely, consider the
first-order language L, of ordered fields. A subset L of Spec,(A) is con-
structible if and only if there exists a quantifier-free formula ¢(v,... ,v,)
in £, and elements t;,...,t, in A such that L equals {8 € Spec,(A4) :
A(B) E @[t1(B), .. ,ta(B)]}. Notice that @[t;(8),... ,t.(B)] simply consists
of finitely many conditions ¢;(8) > 0, t;(8) = 0 and t,(8) < 0, joined by
conjunctive and or disjunctive symbols.

Back to the general properties of the real spectrum of a ring A, it is not
Hausdorff, in general (an exception to this is when A is a field, in which case-
T = U). Therefore, one important question is to describe the closure of a
point 3 in Spec,(A). It is shown that it looks like a spear, i.e., the closure
of a point is a totally ordered set and has a unique mazimal element. The



430 M.J. DE LA PUENTE

points in the closure of 3 are called specializations of 8 and (3 is said to be
a generization of each of them. Given a subset F' of Spec,.(A), we say that
F is stable under specialization (respectively, generization) if the conditions
B € F and 7 is a specialization (respectively, generization) of 8 imply v € F.
The following statement holds true: if Y C Spec,(A) is Tychonoff-closed and
F CY, then F is closed in'Y if and only of F is Tychonoff-closed and stable
under specialization in Y.

Further properties that deserve to be mentioned here are the functo-
rial character of the construction as well as the naturality of the mapping
Spec,(A) — Spec(A) given by 8 — pg. The real spectrum of a ring was
introduced in 1979 by M. Coste and M.-F. Roy. See [B-C-R] or [B] for
details.

(RRS) Once persuaded that the real spectrum of a ring A is a useful
tool and that it deserves to be studied and understood, soon we noticed that
some facts taking place at points 3 of Spec,.(A4) are ultimately explained by
means of convex valuation rings of the corresponding residue fields A(f).
The very long remark 10.3.5 in [B-C-R] fully justifies our latter statement.
With this and certain applications in mind, we introduced the notion of
real Riemann surface of a ring in [Pu]. Notion and name were inspired on
both the real spectrum construction and the so called Riemann surface of
a field extension K/k, introduced by Zariski, see [Z-S] VI §17, (and later
named Zariski-Riemann space of K/k in [Li]). In fact, in [Pu] we began by
introducing a more general space, called the Riemann surface of a ring, for
which no reality conditions were required. Other authors have also defined
such latter spaces (under the name of valuation spectrum of a ring) and
studied them; see [H], [H-K] or [S].

Back to our presentation, given a ring morphism ¢ : k — A, the real
Riemann surface of A/k is the set S,.(A/k) consisting of all pairs (3, B)
where 8 € Spec,(A) and B is a convex valuation ring in A(f) finite over
¢(k)[B] i.e., B contains ¢(k)[5]. Clearly, S,(A/k) is non-empty if and only if
A is real, since convex hulls of intermediate rings are convex valuation rings
(see the next paragraph). The set S,.(A/k) is endowed with the minimal
topology containing the sets of the type U,, := {(8,B) : y(8) > 0 and
zy~'(B) € B}, where z,y run through A. The choice of this topology is in
full accordance with both the usual topology of the real spectrum and the
topology given to the Riemann surface of a field extension K/k by Zariski.
In particular, the projection onto the first factor 74 : S,.(A/k) — Spec,.(A)
is a continuous mapping.

Just as in the real spectrum setting, we may consider the constructible
subsets of S, (A/k) and then the Tychonoff topology on S,(A/k). Then it
is proved that S,(A/k) is Tychonoff quasi-compact, whence quasi-compact
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with its usual topology. In addition, w4 has several continuous sections,
the images of which are (non-necessarily disjoint) homeomorphic copies of
Spec,.(A) lying inside S,(A/k). This ensures that every phenomenon taking
place inside Spec,(A) is taking place in S,(A/k) too. A first instance of
such sections of 7,4 is the mapping ¢4 : Spec,.(4) — S,(A/k) where t4(8) =
(B,A(B)). We call it the trivial section since A(3) is the trivial (convex)
valuation ring of A(B). Other instances of these sections are the mappings
par, which arise by considering convex hulls of intermediate rings of the ring
extension A/¢(k). More precisely, for any intermediate ring A’ and any
in Spec,(A), consider Og(A’) := {z € A(B) : |z| < |a| for some a € A'[F]}.
Clearly, Og(A’) is a convex valuation ring of A(B3). It is shown that the
mapping par : Spec,(A) — S.(A/k) given by pa(B) = (8,05(4')) is a
section of 74 having the mentioned properties. The most relevant cases are
obviously A’ = ¢(k) and A’ = A. Clearly, Og(A) is the smallest convex
valuation ring in A(f) finite over A[3]. All these facts are proved in [Pul].
Moreover, the contractions of the ideals of Og(A) to A[B] are precisely the
convex ideals of A[B]. It follows that if J is a convex ideal in A[g], then
JOgz(A) N A[B] = J. In particular, if p is a prime convez ideal in A[f3], then
pOs(A) is prime.

Let us now briefly look at the fibers of m4. Given 8 € Spec,(A), the set
73 (B) is simply the collection of pairs (3, B), where B runs through all
the convex valuation rings of A(3) which are finite over ¢(k)[3]. As seen in
(CVR), such a set is totally ordered by inclusion. It has both a minimal and
a maximal element, namely Og(¢4(k)) and A(fB), respectively. On the other
hand, Spec, (x(8)) reduces to a point, say 3, and therefore S, (k(8)/k) equals
W;(lﬁ) (B). By a well-known theorem, there is no content relation between two
extensions B’ and B" of a valuation ring B of A(f3) to the algebraic extension
k(B) of A(B). Thus, (3,B) — (B, O3(B)) defines a bijection from 72 (B)
onto S,(k(B)/k). The inverse mapping is given by (B,C) — (B,C N A(B)).

Back to the constructible sets, it holds that 7, is Tychonoff-continuous.
The latter statement simply means that if L C Spec,(A) is constructible,
then w3'(L) is constructible. This is proved in [Pu). We may make use of
first-order logic again, in order to deal with constructible subsets of S, (A/k).
This time we are to talk about systems (K, B), where K is an ordered field
and B is a convex valuation ring of K. For technical reasons (namely, the
use of [Pr] Theorem 4.20), we should rather talk about systems (K, |), where
| is a compatible valuation divisibility relation. Each convex valuation ring
B gives rise to a compatible valuation divisibility relation |g, and conversely;
as follows: for all a,b € K we have a|gb if and only if there exists ¢ € B
such that b = ac. In view of such systems (K, |), we consider the following
first-order language £, = {+,, <, |,0,1}. If (K, |), (K1, |1) are L,-structures,
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then (Ki,|;) is an extension of (K,|) if K C K, is an extension of ordered
fields and alb if and only if a|;b, for all a,b € K. The latter condition is
equivalent to saying that B = K N B;, where | = |g and |; = |g,. Then a
subset L of S,(A/k) is constructible if L is of the form {(3, B) € S,(A/k) :
(A(B),|B) E ¢[ti(B),... ,ta(B)]}, where ty,... ,t, € A and ¢(vy,... ,v,) is
a quantifier-free formula of £,. The set above will be denoted Ly, . 4.
Notice that ¢[t,(8),... ,t.(8)] consists of a finite collection of conditions
t:(8) > 0, t;(8)|pt;(B) and their negations, joined by conjunctive and or
disjunctive symbols.

Let us remark here that in [Pu] we allowed B to equal K, the trivial valu-
ation ring of K; in fact, this was an essential requisite to prove compactness.
However, the presence of trivial valuation rings prevents us from directly
applying [Pr] Theorem 4.20 in our proof of Theorem 6.

(EM) Etale morphisms are defined by mimicking the implicit function
theorem, which is clearly false in the algebraic case. The notion comprises
both non-ramification and smoothness. Concerning language, when a mor-
phism f : A — R has been fixed, we loosely say that R is étale over A
instead of saying that f is étale or that f makes R étale over A.

The concept is very simple in the field case: an étale extension of fields is
just a finite separable extension. Two results emphasizing the local character
of étality are to be pointed out. First, the étale property is local on Spec(R),
ie, if f : A > R is a morphism and for every q € Spec(R) there exists
an element g € R\ ¢ such that Ry is étale over A, then R is étale over A.
Second, we have the so called local structure theorem for étale morphisms,
which guarantees that every such ring of fractions R, is A-isomorphic to a
standard étale Ay-algebra, for some h € A\ Spec(f)(q) and that the satisfac-
tion of all these local étality conditions implies that f is étale. A standard
étale C-algebra is simply a C-algebra of the type (C[X]/(j));, where X is
transcendental over C, j,! are polynomials in C[X], with j monic and the
class of the formal derivative j' in (C[X]/(j)); invertible. It is also impor-
tant that étality transfers to the fibers of f. See [A-K], [I], [M] or [Ra] for
details.

3. Specializations in Real Riemann Surfaces.

Let ¢ : k — A be a morphism of rings. Recall that the topology of S,(A/k)
is generated by the sets U, , where z,y run through A. The very definition
of this topology yields that given points (3, B) and (v, C) in S,(A/k), then
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(v, C) is a specialization of (8, B) if and only if

(1) forallz,y€ A, [y(y)>0andzy '(y)€C|
imply [y(8) > 0 and zy~"(B) € B].

Obviously, for § = «, condition (1) reduces to C C B. So, when restricted
to m,* (), specialization just means inclusion of the valuation rings. This is
in full accordance with [Z-S] VI §17.

Now, if v # [, then it follows from (1) that v is a specialization of 3.
Conversely, if vy is a specialization of 3 then p, D ps and A[y] is naturally
order-isomorphic to A[3]/p,A[B]. Let Ag. be the localization of A[F] at
p,A[B]. Then there exists a natural order-preserving epimorphism 75, :
Ag ., — A(v) fitting in the following commuting diagram

A

Ve N
Al —»  AD]

Lo !
Ay = A(Y)

where the vertical arrows are canonical. Namely, 75, (zy~'(6)) = zy~'(v),
for z,y € A with y(vy) # 0. We may regard 75, as an evaluation on ~.
Evidently, 75 5 is the identity on A(8). The existence of 75, implies that (1)
is equivalent to

(2) v is a specialization of 8 and 7;}(C) € B
and to
(3) v is a specialization of 3 and Og(Tﬂ_,,IY(C)) C B,
since B is convex, and finally to
(4) 7 is a specialization of 8 and (8, 0s(75:(C)))
is a specialization of (3, B).
We have thus characterized the closure of the point (3, B) as follows.

Theorem 1. Let (8, B) belong to S.(A/k). Then, the closure of (8, B) is
the set {(7,C) € S.(A/k) : v is a specialization of B and (B, 0s(75:(C)))
a specialization of (8, B)}.

Note that “y is a specialization of §” is a statement about Spec,.(4). On
the other hand, the condition “(8, Os(75,(C))) is a specialization of (8, B)”
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takes place in the fiber 7;'(3). The latter is related with the so called
secondary specializations in [H-K].

Notation 2. If § and -y belong to Spec,(A) and 7 is a specialization of
B, let Op ., denote the localization of Og(A) at p,0s(A). Clearly, Op , is a
convex valuation ring of A(S) and thus Og(Ag,) C Og,,.

Corollary 3. Let (8, B) belong to S.(A/k) and let v be a specialization of
B. If Os., C B, then m, () is contained in the closure of (3, B).

Proof. Let (7, C) be in w3" (7). The obvious inclusion 75 (C) C Ag,, implies
Og(rﬂ“’;(C)) C Op(Ap,4) € Og,y, by convexity. d

4. The Relationship between the Real Riemann Surface and the
Real Spectrum of a Ring.

Let A and R be rings, R real and f : A — R a morphism. We know
that f induces a continuous mapping Spec.(f) : Spec,.(R) — Spec,(4).
Namely, given 3 € Spec,(R), then Spec,.(f)(5) is, by definition, the point
(f Y (ps), <o) where <, is defined by letting a <, b if and only if f(a) <p
f(b), for all a,b € A. Moreover, Spec, is a contravariant functor from the
category of rings to the category of topological spaces. Similarly, we have
the following:

Theorem 4. Let ¢: k — A and f: A — R be morphisms, R a real ring.
Then f induces a continuous mapping S.(f) : S.(R/k) — S.(A/k). Thus,
S, s a contravariant functor from the category of k-algebras to the category
of topological spaces. In addition, 7 is a natural transformation from S, to
Spec,.

Proof. Let (8, B) belong to S, (R/k) and consider the point & = Spec,(f)(5).
There exists a unique order-preserving morphism fz such that the following
diagram commutes

A —L. R
b
Aa) =" R(f)
where the vertical maps are canonical. The mapping fz is defined by
fa(z(a)) = f(z)(B), for all z € A. Moreover, it is routinely checked that

f5'(B) is a convex valuation ring in A(a). Then we let S.(f)(8,B) =
(o, f51(B)), by definition.
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In order to prove continuity of S,(f), it is sufficient to show that
S+(f)"'(U,,) is open in S.(R/k), for all z,y € A. Actually, we prove the
equality S,(f) ' (Us,y) = Uj(e),5(v)- First, given z,y € A, by definition of o
we have y(a) > 0 if and only if f(y)(8) > 0. Moreover, zy~!(a) € f7*(B) if
and only if fz(zy~(a)) = f(z)f(y)"*(B) € B, for all z,y € A. From this,
the desired equality follows.

Now the diagram

S,(R/k) =L s,(A/k)

Wnl TA l
s
Spec,.(R) Spee ), Spec,.(A)
is commutative, showing that 7 is a natural transformation. (]

Proposition 5. Let ¢: k — A be a morphism, R a real ring and f : A — R
an étale morphism. Given (3 in Spec,(R) and o = Spec,.(f)(8), then x(B) is
isomorphic to k(a) and S,(f) maps wx'(B) homeomorphically onto 7' ().

Proof. Clearly, ps belongs to Spec(f)™'(p,) and fg : A(a) = R(B) is an
ordered-preserving morphism of fields. By [Ra] p. 33 Propositions 10 and
11, if R is étale over A, then R(3) is étale over A(c), which amounts to
saying that R(() is a finite separable extension of A(a), via fg. In particular,
R(B) and A(a) have isomorphic real closures k(3) and k(a); we will identify
them. As explained in (RRS), n3'(8) and 7;'(a) are both homeomorphic
to S.(k(B)/k) and the resulting composite homeomorphism maps (3, B) to
(o, C) if and only if B and C have the same convex hull in x(3). If we
further identify A(«) with its image in R((), then B is the convex hull of C
in R(B). d

5. Chevalley’s Theorem for Real Riemann Surfaces.

We give a version of Chevalley’s theorem, for real Riemann surfaces, which
we will use in our proof of Theorem 9. The ideas in the proof of the following
theorem are partially due to R. Huber, who kindly discussed with us about
this, back in 1991.

Theorem 6. Let ¢ : k — A be a morphism, R a real ring and suppose
that f : A — R is a morphism that makes R finitely presented over A. #
L C S.(R/k) is constructible, then S.(f)(L) is constructible.

Proof. As remarked in (RRS), L equals Ly, .. +., for a certain quantifier-
free formula ¢(vy,... ,v,) of £, and some ¢,,... ,t, € R. By hypothesis, R
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is the quotient of a polynomial ring A[X] modulo a finitely generated ideal
J and f is the composite of the canonical morphisms ¢ : A — A[X] and
e : A[X] — R, where X = (Xy,...,Xn), m € N. We choose a finite family
{P(X) :1=1,...,l} generating J and, for each s = 1,... ,n, we choose
a preimage T,(X) of ¢, in A[X]. Let {E, € A: h =1,...,9} be the set
of coefficients of the polynomials P,,... , P, Th,... ,T,. We write z;, e, for
the class of X;, E;, modulo J and z for (z;,... ,2,).
If (8, B) belongs to L then

l

() AP@)B) =0 A ¢[t(B),... ta(B)]

i=1

is a quantifier-free statement about (R(f),{g). It can be obtained by sub-

stitution of e,(8),... ,€,(8),z1(8),-.. ,Zm(B) by w1,... ,ug,wi,... , W, in
a quantifier-free formula ¥(uy,... ,uy,wq,... ,wy) of £,. In other words,
(5) coincides with

[61(/6)’ .- :eg( ) xl(ﬁ)a vmm(ﬂ)]

Let 6 := 3w, ... w,, ¥. Then 0 is a formula of £, whose free variables are
a subset of uy, ... ,u,. By [Pr] Theorem 4.20, the theory of real closed fields
with a non-trivial compatible valuation divisibility relation admits elimina-
tion of quantifiers. Then there exists a quantifier-free formula 7, equivalent
to 6, the free variables of which are a subset of uy,... ,u,.

In order to show that S,(f)(L) is constructible, we will prove that the
following equalities hold true:

S.(f)(L) =Ly =Ly =Ly =Ly = Lyp,,.. 5,
where

Ly = {(e,C) € S,(A/k) : (K, |p) = 0[E\(c),... , Ey(a)]

for some extension (K, |p) of (A(a), |C)}
Ly := {(0,C) € S, (A/k) : (K,|p) | 0[Er(a),... , Ey()]

for some extension (K, |p) of (A(a),|c), K real closed, D non-triviall,
Ly = {(,C) € S,(A/R) : (K, |p) = 1lEx (@), , By (0)

for some extension (K,|p) of (A(e), |c) K real closed, D non-trivial},
Ly = {(a, C) € S,(A/k) : (K, |p) E nlEr(), ... , Ey(a)]

for some extension (K, |p) of (A(a), |C)}
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Proof of S.(f)(L) C L;: Let (3,B) belong to L and write (a,C) for
S (f)(B,B). Then,

(6) (R(8),|5) = 0er(B), - - - 1 eq(B)]

holds true, since we can take w; equal to z;(8), for j = 1,... ,m. Consider
the point (a;,C;) := S,(€)(8, B), where ¢ : A[X] — R is the canonical epi-
morphism. Since S, is functorial by Theorem 4, then we have a commutative
diagram

2

A <4 AX] - R
[
A(e) 3 A[X)(az) <> R(B)

where the vertical maps are canonical and f3 = €gto,. Thus, (A[X](aa),]c,)
is an extension of (A(a),|c). Since (6) holds, § equals Jw; ... w,, ¥, and ¥
contains no existential quantifiers then, taking w; equal to X;(a;), we see
that

(AlX](e1) ley) | OB (), - -, Ey(@)]-
Thus (e, C) lies in L;, because (A[X](a1),]|c,) is an extension of (A(a), |c).

Proof of S.(f)(L) 2 L,: Suppose that (K,|p) is an extension of (A(a),|c)
and that

(7) (K, |p) E 0[Ei(c), - .. , Eg(a)].
Let Wy,... ,W,, € K be elements satisfying

(8) (K’ID) }: "r/)[El(a)a"- aEy(a)’WI"" 1Wm]'

We extend the canonical morphism A — A(a) to a morphism p : A[X] - K
by mapping X; to W;, for j = 1,... ,m. Let -y stand for the fixed order in K.
Then K = K(v) and Spec,(p)(7y) is a point in Spec,(A[X]); let us denote
it by ;. Write W = (Wy,...,W,,). Since the conditions 0 = P;(W) =
p(P;(X)) are implicit in (8), then p factors through R, yielding a morphism
¢ : R — K such that pe = p. We consider the point (8, B) := S,.(¢)(v, D).
We have a commutative diagram

A S AX]-» R
Lol ]

Ala) > K < R(fB)
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where f = e/ and the unlabelled vertical maps are canonical. It follows from
the diagram that (o, C) = S,(f)(8, B). Moreover, since ¢, is injective, ¢ is
a subformula of 1 and v contains no existential quantifiers, then (8) implies

(R(B) |8) = ¢[t1(B), -, ta(B)],

since in K the element t,(3) equals a certain polynomial expression in the
Eh (a)’s.

Proof of Ly = Ly: Clearly, Ly D L,. On the other hand, let (K, |p) be an
extension of (@, C) such that

(K,|p) F O[Ei(a), ..., Ey(a)].

Let K, be the real closure of the simple transcendental extension K (Y') of K,
where the field K (Y) is endowed with the ordering that makes Y positive and
infinitesimal with respect to K. Then K; has a non-trivial convex valuation
ring D, such that D = K N D,. Then

(Kl, ID1) ‘: G[El(a)’ e aEg(a)])

since (K, |p,) is an extension of (K, |p) and # contains no universal quanti-
fiers.

Now, Ly = L3 holds again by [Pr] Theorem 4.20, and the proof of Ly = L4
is similar to that of L; = L,, done above.

Proof of Ly C Ly, .. g,: If (K,|p) is an extension of (A(a),|c) satisfying

(K, |p) EnlEy(a),... , Eg(a)],

yeos

then it follows that

(A(a)le) EnlEi(a), ..., Eg(a)],

since 7 contains no existential quantifiers.

(A(a),lc) E nlEr(a), ... , Ey(o)]

holds true, then

(K’ lD) t: n[El(a)v v 7Eg(a)]

follows, since 1 contains no universal quantifiers. O

Remark 7. Coste and Roy have proved that Spec,(f)(L) is constructible,
for every constructible subset L of Spec, (R), when f is finitely presented, see
[C-R 2] and [C-R 1]. Bearing in mind the existence of continuous sections
of m4 and mr which are homeomorphisms onto the image, as remarked in
(RRS), the Coste-Roy theorem follows from our Theorem 6.
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6. The Local Homeomorphism Theorem for Real Riemann
Surfaces.

The following result has been proved in [Ro] and [A-R]: let ¢ : k — A
and f : A — R be morphisms, R a real ring; if f is étale then Spec,(f) :
Spec, (R) — Spec,(A) is a local homeomorphism. Using this theorem, here
we prove an analogous statement for real Riemann surfaces. In order to do so,
first we need a result relating the notions of constructible, Tychonoff-closed,
Tychonoft-clopen, and closed, as well as the stabilility under specialization,
for a subset of S,.(A/k).

Proposition 8. Let ¢: k — A be a morphism, A a real ring. Then

(a) F CS,.(A/k) is Tychonoff-closed if and only if F' is an intersection of
constructible sets,

(b) F CS,(A/k) is Tychonoff-clopen if and only if F' is constructible,

(c) Y CS,.(A/k) is Tychonoff-closed and F CY, then F is closed in' Y

if and only if F is Tychonoff-closed and stable under specialization in
Y.

Proof. Analogous to the proof done for the real spectrum. O

Theorem 9. Let ¢:k — A and f : A — R be morphisms, R a real ring.
If f is étale, then S.(f) : S.(R/k) — S.(A/k) is a local homeomorphism.

Proof. Given (8,B) in S,(R/k), consider the point & = Spec.(f)(8) in
Spec,(A). Because the étale property is local on Spec(R), (see [Ra] p. 16
Propositions 5 and 6) we may replace R by R,, for some g € R\ps. Now, by
the local structure theorem for étale morphisms, (see [Ra] p. 51 Theorem
1) there exists h € A\ p, such that R is A-isomorphic to a standard étale
Ap-algebra, ie., R ~ (An[X]/(j)):, where X is a transcendental element over
Ay, j,l are polynomials in A,[X], with j monic and the class of the formal
derivative j' in (A4[X]/(j)); invertible.

Since Spec,(f) is a local homeomorphism, there exist an open neighbor-
hood H” of 8 in Spec,(R) and an open neighborhood H* of « in Spec,.(A)
such that H* is homeomorphic to H?. The proof in [Ro] shows further
that H* and H? can be assumed to be constructible. Since 7y and 74 are
both continuous and Tychonoff-continuous, then G® = 73! (H”) and G* =
75 (H?) are open constructible neighborhoods of (3, B) and S,(f)(8, B),
respectively. We will show that G? and G* are homeomorphic.

First notice that, by Proposition 5, =g'(y) is homeomorphic
to 73" (Spec, (f)(7)), for every v € HP. Since we may express G* and G° as
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unions of w-fibers

¢'= U m'()
Ge= {J 71'(@) = J 7a'(Spec,.(f)(7)),

we conclude that S,(f)|ges is a bijection onto G*. By Theorem 4, S,.(f)|gs is
continuous. It only remains to show that S,(f)|gs is a closed mapping. In
order to do so, let F' C G” be closed in G®. We want to show that S,.(f)(F) is
closed in G°, for which it is enough to see that S,(f)(F’) is Tychonoff-closed
in G* and stable under specialization in G®, by Proposition 8 (¢).

Proof of S,.(f)(F) Tychonoff-closed in G*: F is closed in G*, whence Tycho-
noff-closed in G®. Then F equals an intersection ();c; G® N F;, for some
constructible subsets F; of S,(R/k), by Proposition 8 (a). Since S,(f)|gs is
bijective, then S, (f)(F) = ey G*NS,(f)(F;) and S,.(f)(F;) is constructible,
by Theorem 6. Thus, S.(f)(F) is Tychonoff-closed in G, again by Propo-
sition 8 (a).

Proof of S.(f)(F) stable under specialization in G*: Suppose that (é;,D;)
is a specialization of (85, D), with (6;, D) in G* and (d2, D;) in S.(f)(F).
We want to show that (d;, D;) belongs to S,(f)(F). Let us denote 75, 5, by
75. By expression (2), 4, is a specialization of d, and 7;'(D;) C D,. Taking
v: = Spec,(f)~*(d;), for i = 1,2, we have that v, is a specialization of 7,,
since H* and H? are homeomorphic. Then we find points (v, C) in G# and
(72,Cs) in F such that (6;, D;) = S.(f)(vi,C:), for i = 1,2. Let us denote
Tyyya DY Toy.

Clearly, it suffices to show that (v;,C;) belongs to F. By expression (2),
this holds if 7. (C,) C C. By the proof of Proposition 5, we know that after
adecuate identifications, R(y;) is a finite ordered field extension of A(d;) and
C; = O,,(D;), for 1 = 1,2. The following commutative diagrams ilustrate
the situation.

A R
v N N N
A[sy] = Alé] R[v,} — R[]
il 1 l 1
Asy 5, = A(6)) Ry = R(m)
{ 1) )
A(éz) R(’)’l) R(’)’z)

4
R(2)
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Let 2, belong to 7.7'(C}) and consider z; = 7,(22) in C. Since C; = O,,, (D)),
there exists d; in D; such that |z| <,, |di|. Now, d; equals uv~=1(8;) for
some u,v € A with v(d,) # 0. Then v(d;) # 0 and dy = uv~!(d;) belongs
to 7;(Dy) C Dy C C,. Since 7, is order-preserving, then |2;| <., |d;|, and
this finishes the proof. O

Remark 10. Note that Theorem 9 is a strengthening of Roy’s theorem
mentioned above.

We thank M.E. Alonso, C. Andradas, J.M. Gamboa and J.M. Ruiz and
very specially to R. Huber, who visited our department in 1991, for discussing
with us about the material presented here. We are also very grateful to the
last referee of this paper, who pointed out a few mistakes that occurred in
a former version.
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