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‘We prove imbedding and multiplier theorems for discrete
Littlewood—Paley spaces introduced by M. Frazier and B.
Jawerth in their theory of wavelet-type decompositions of
Triebel-Lizorkin spaces. The corresponding inequalities for
discrete spaces defined in terms of characteristic functions of
dyadic cubes, with respect to an arbitrary positive locally
finite measure on the Euclidean space, are useful in the the-
ory of tent spaces, weighted inequalities, duality theorems,
interpolation by analytic and harmonic functions, etc. Our
main tools are vector-valued maximal inequalities, a dyadic
version of the Carleson measure theorem, and Pisier’s factor-
ization lemma. We also consider more general inequalities,
with an arbitrary family of measurable functions in place of
characteristic functions of dyadic cubes, which occur in the
factorization theory of operators.

1. Introduction.

Let @ = {Q} be the family of all dyadic cubes in R". Let w be a non-
negative locally finite Borel measure on R" such that [;,dw = 0 for all

Q€ Q Weset Q = {Q € Q:|Ql, # 0}, where |Q|, = [,dw; |Q| will
stand for the Lebesgue measure of Q). For any ) € Oy, we denote by X its
normalized characteristic function ¥q = |Q|;/

w

For —o0o < a < 00, 0 < p < 00, and 0 < g < oo, we define the discrete
Littlewood-Paley space f = £2%(w) ([7], [8]) as the space of sequences of
reals, s = {sg}geo,, such that

1/q

WD) sl = || X (1@ Isql %)’ < co.

QeQo
LP(dw)

Note that we use the normalized characteristic functions ¢ in the defi
nition of f spaces in order to have the duality relation [f*?(w)]* = £,*? (w)
with the usual pairing (s,t) = Y. st (s € £79(w), t € fp-,aq,), at least for
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l<p<ooandl<g<oo. (Herel/p+1/p' =1and 1/g+1/¢ =1.) We
will also follow the convention that ¢’ = oo for 0 < ¢ < 1. Then, as we will
see, the duality relation holds for all 0 < ¢ < cc.

Our goal is to characterize both forward and reverse imbeddings of f
spaces into classical {" spaces with weights. Let w = {wg}geqg, wg > 0, be
a fixed sequence of scalar weights. Then ["(w) (0 < r < 00) is the sequence
space with quasi-norm

1/r
|80l wy = (Z [SerwQ) :

QeQ

We set " = ["(w) in the unweighted case wg = 1. Let ¢g9 =
|Q|—o/m wél/T)ZQ. (Note that ¢ is a constant multiple of xg.) Let us assume
that wg = 0if |Q|, = 0. Then clearly the imbedding £3*(w) C I"(w) is valid
if and only if the inequality

i/q 1/r
(1.2) <Z |5QIQ¢QQ) >C (Z ISQIT>

Q Q
(dw)

holds, where the sums on both sides of (1.2) are taken over all @ € 9, =
{Q c Q : ’(UQ 75 0}

In the same manner, the reverse imbedding I"(w) C f;*(w) is equivalent
to the inequality

1/q 1/r
(1.3) (Z |5Q|q¢qQ> <C (Z|3Q|T> -
Q Q
Lr(dw)

(Here we assume that |Q|, = 0 if wg = 0.)

Similar estimates, sometimes with some other functions in place of con-
stant multiples of x¢, appear in the theory of wavelet and atomic decom-
positions, tent spaces, weighted norm inequalities, interpolation by analytic
and harmonic functions, Banach space geometry problems, operator theory,
etc. (See [1], [2], [4], [7]-[11], [14]-[19], [21].) Several special cases of (1.2)
and (1.3), mostly for dw = dz, are known. For some values of the indices
p,q,r these inequalities are equivalent to duality theorems for f spaces, or
dyadic versions of the Carleson measure theorem (see [2], [7], [10], .[17],
[19], [21], and the discussion below). In certain difficult cases the proofs use
“local maximal functions” [7], or “stopping time” arguments [14], [15].

Our approach is to consider (1.2) and (1.3) simultaneously, making use of
certain duality relationship between them, for all p, q,7 > 0 and w. The main
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tools are a generalization of the Fefferman-Stein vector-valued maximal the-
orem [5], the dyadic Carleson measure theorem [19], and Pisier’s lemma [18]
proved in the context of the factorization theory of operators (see Theorem
A below). Even in the known cases some of our proofs seem to be new and
easier than the original ones. (Note that there is a gap in the proof given
in [7] for the duality theorem for £3¢ in the case 1 <p <ooand 0 < ¢ < L.
This theorem, which is used in 7] to obtain the corresponding duality result
for the distribution spaces F, is equivalent to a characterization of (1.2)
in the case r = 1 and dw = dz. See Sec. 3 where we give a proof in a more
general setting using Pisier’s lemma and the results of [21].)

It is also of interest to look at the relations between f spaces and weighted
[" spaces from a more general point of view. Let I be an index set, and let
{¢i}icr be a fixed family of non-negative measurable functions on a measure
space (X, dw). For the three indices, 0 < p < 00,0 < ¢ < 00,and 0 < r < oo,
we consider the following inequalities,

1/q
(1.4) <Z Isi|q¢?) < Cllsllir,
iel Le(dw)
and
1/q
(1.5) (Z lsil"#) > C |islli,
iel Lo (dw)

for all s = {s;}icr (with finitely many nonzero reals s;).
It follows from (1.4) that

sup ||| e (aw) < 00,
el

and similarly (1.5) implies
inf||¢i] | L (aw) > 0-

The converse is true for certain values of p,q and r (see Lemma 2 below),
but generally the problem of characterizing (1.4) or (1.5) is known to be very
difficult.

The following theorems of B. Maurey and G. Pisier treat the special cases
g=r of (1.2), and ¢ = 7 or ¢ = oo of (1.3). We denote by D(w) the set of
all “densities” F' € L'(dw) such that F > 0 and [ Fdw < 1.
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Theorem A. Let 0 <p<r <oo and s = {8;}scr-

(i) The inequality
1/r
(Z |Silr¢f)

el

(1.6) < Clisller

LP(dw)

holds for all finitely supported s = {s;} if and only if there exists F €
D(w) such that

-1/p 4.
) oo [0y <
where dwy = Fdw.
(ii) The inequality
(1.8) sup (|s;| #:) < Clislle-
el L7 (dw)

holds if and only if there exists F € D(w), such that

(1.9) sup ”F‘l/” b; < 00,

i€l

L7 (dwo)

where L™ (dwy) 1s a weak L" space with respect to the measure dwy =
Fdw.

Theorem A plays a central role in the Nikishin-Stein-Maurey-Pisier theory
of factorization of operators. It also has interesting applications to weighted
norm inequalities (see [9, 21]). Statement (i) of Theorem A is proved in
[16]; statement (ii) is obtained in [18], where also a different proof of (i) is
given. It can be shown that, if p < 7, then (1.4) actually does not depend
on q for 7 < ¢ < co. Hence the “weak type” condition (1.9) characterizes
(1.4) in this case. The following theorem is also proved in [16].

Theorem B. Let 0 <r <p < oo. The inequality

1/r
(Z |si|” ¢§>

iel

(1.10) > C|ls|ler

LP(dw)

holds if and only there exists F € D(w), such that

(1.11) inf | F~2/7 g,

iel

> 0,

L"(du)o)
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where dwy = F dw.

It seems to be no general duality relations known for the inequalities
(1.4) and (1.5). We will show below (Sec. 2) that actually Theorem B is a
consequence of the usual duality theorems for the mixed norm spaces L?(19),
and the Hahn-Banach theorem. We do not know whether there is a similar
proof of Theorem A, or a dual version of part (ii) of Theorem A. (It follows
from some recent results of N.J. Kalton and S.J. Montgomery-Smith [12]
that the sufficient condition inf;cs ||[F /P ¢;||Lr1(dwo) > O is not necessary for
(1.5) in the case 1 < g <r.)

We observe that the characterizations given in Theorems A and B are
implicit. In the following theorem we give some sufficient conditions in order
that (1.4) or (1.5) hold for an arbitrary family of functions {¢;}, and a wide
range of p,q and r.

Let 0 < p<00,0< 7 <o0o0and0<q< oo. Without loss of generality
we may assume ¢; € LP(dw), ¢; > 0. We set

(1.12)
[sup, (6 @N6dn )] i 0<r<q<o,
F()(.T) =

(r—q)p/q(r—p)

— q/(r—q) .
= (@) i 0<g<r<on,

in the case p < r, and

(1.13)
—r p/(p—7) .
[sup: (6@ /N tilEiay)] if 0<g<r<oo,
Fo(z)=

J(q—r)] (@=T)p/a(p—7)
)qq ] , if 0<r<g<oo,

PACCYTA

in the case p > r.
Note that if r < g in (1.12), or ¢ < r in (1.13), then Fy(z) is a generalized
maximal function associated with the family {¢;(z)}.

Theorem 1.
(i) Let0 <p <r < oo, and let Fy be defined by (1.12). Then (1.4) holds
if Fy € L} (dw).
(i) Let 0 <7 <p < oo, and let Fy be defined by (1.13). Then (1.5) holds
if Fy € L' (dw).
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Theorem 1, along with some other vector-valued inequalities of this type,
is proved in Sec. 2. In Sec. 3 we show that for functions {¢;} that are
constant multiples of characteristic functions of dyadic cubes the converse
to Theorem 1 is also true.

Theorem 2. Let {Q;} be a family of dyadic cubes in R™. Suppose ¢;(z) =
cixo: (), where {c;} is a fized sequence of non-negative numbers.
(i) Let0 < p < r < oo. Then (1.4) holds if and only if F, € L'(dw),
where Fy is defined by (1.12).

(ii) Let 0 < r < p < oo. Then (1.5) holds if and only if F, € L'(dw),
where Fy is defined by (1.13).

Some special cases of Theorem 2 (i) were obtained in [21]. Similar “upper
triangle” inequalities of type (1.4) in the case ¢ < p < r and dw = dz are
due to E. Amar and A. Bonami [2]. See also [14] and [15] where some
inequalities of type (1.5) are given for dw = dz with different proofs.

Theorem 2 yields a characterization of both forward and reverse imbed-
dings of f2?(w) spaces into [” spaces with arbitrary weights. We observe
that Theorems 1 and 2, as well as Theorems A and B stated above, cover
the so-called “upper triangle” case, where p < r in (1.4), or p > r in (1.5).
In this case the “only if” statements are usually more difficult to prove than
the “if” counterparts.

In the “classical” case, where p > r in (1.4), or p < r in (1.5), the
corresponding results are equivalent via duality to dyadic versions of the
Carleson measure theorem. (See Theorems 3 and 4 below.)

In Sec. 4 we consider a more difficult problem of characterizing multipliers
for a pair of f spaces. We show that this is equivalent to certain two weight
inequalities for general dyadic maximal or integral operators. (See [19]-[22].)

We wish to thank Professors William Cohn, Michael Frazier and Nigel
Kalton for valuable discussions.

2. Some remarks on vector-valued inequalities.

In this section, we discuss some dual versions of the inequalities (1.4) and
(1.5), and give a proof of Theorem 1 and Theorem B.

Let J be any countable (or finite) subset of the index set I. For a positive
locally finite measure w, we denote by L?(l?, dw) (sometimes we omit dw in
this notation) the space of vector-valued functions g = {g;};es such that

1/p

p/e
llgllzz ey = /(Z lgj|q) dw{ < oo,
J
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with the usual convention

p 1/p
lgllr ey = [/ (SQP |9;‘|> dw}
J

in case ¢ = co. Suppose 0 < p < 00, 0 <7 < 00, and 0 < g < oo. For any
fixed sequence of real-valued functions {¢;},;c; and ¢ > 0, we set

(21) ¢](x) :¢§(.’L‘), ﬁ:p/tv (j:(I/t, f:T/t
Lemma 1. Let0 < p <o00,0<r <oo, and 0 < ¢ < oo. Then for any

t (0 <t < o0) such that t < min(q,r), and t < p, inequality (1.4) holds if
and only if the inequality

Fy

1/#
) < Clgll ()

22) (z [ Bigsa

holds for all g = {g;};jes, J C I, with C independent of g and J. (Here
1/s+1/s'=1,1<s<00.)

Proof. Note that (1.4) is “invariant” under the transformation (2.1). In other
words, it remains true (with a constant C* in place of C) if one replaces ¢ and
p,q,r by, respectively, (Z) and p, 4,7, for any ¢t > 0. Since 0 < ¢t < min(p, q,r),
we have p > 1,4 > 1,7 > 1. By duality for spaces with mixed norms,
LP(17, w)* = L¥ (17, w). Hence (1.4) is equivalent to the inequality

< Clislles lgll# gy

/Z s; $i(z) g;(z) dw

Using duality again, we see that this is equivalent to (2.2). The proof of
Lemma 1 is complete. O

Remark 1. In the case 0 < ¢ < min(p,7), there is another dual form of
(1.4). Letting t = g, so that ¢ = oo, and g = sup; |g;|, we see that (2.2)
holds if and only if

o\ Y
) <C ”g”Lﬁ'(dw)’

(2.3) (Z I/ $7 g duw

for all functions g € L? (dw), where ' = p/(p — q) and # = r/(r — q).

The following statement shows that reverse estimates of the form (1.5)
can be derived from the forward ones.
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Corollary 1. Let0 < p < 00,0 <7r <00, 0 <g<o00, and 0 <t <
min(g,r),t < p. Let ¢,(z) = ¢f_t(m)/||¢>i|]’£p(dw). Then (1.5) holds if

1/q’
(2.4 (Z 1sji‘7’¢§’> < Cllslle,

L# (dw)
for any finitely supported s = {s;}. Here p,q,7 are defined by (2.1).

Proof. By Lemma, 1, it follows that (2.4) is equivalent to the estimate

N\ U/F
) < Cllgllzrqays

(25) (z [ wodo

for all g € LP(l%, w). Letting g = {s;¢}} in (2.5), and taking into ac-
count that [;g;dw = s;, we get (1.5). The proof of Corollary 1 is com-
plete. O

In the following lemma we list the cases where an explicit characterization
of (1.4) and (1.5) is possible.

Lemma 2.

(a) If0 <r < min(p,q), then (1.4) holds if and only if sup; ||¢;||Le(dw) <
0o.

(b) If max(p,q) <r < oo, then (1.5) holds if and only if inf; ||¢:||Lr(aw) >
0.

(¢) Ifgq=p<r, then (1.4) holds if and only if 3, |j¢>,.”2’§/(f;‘)’” < 0.
(d) Ifg=p>r, then (1.5) holds if and only if ¥, |¢:ll ;rEs ™" < oo.
(e) If r = oo, then (1.4) holds if and only if ||(X; #7)/9||Lr(aw) < 0O
For other values of p,q,r, a complete characterization of (1.4) or (1.5)
seems to be nontrivial.

Proof of Lemma 2. (a) Suppose sup; {|¢;||Lr(4w) < 00. If 0 < g < p, then by
the integral Minkowski’s inequality

(;L%lq ¢?)1/q < (; (/ I5:[7 &7 dw) lI/p) 1/q

1/q
= <leil" ||¢‘i“qLP(dw)> < Clsller.

Lr(dw)
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The last inequality holds since ¢ > r. In the case p < ¢ < 00, we have

1/q 1/p
” (Shat) (St ar)
¢ ¢ L7 (dw)

i/p
= (leilp”¢i”lzp(dw)> < Cllsller,

i

<

LP(dw)

since p < r. Thus (1.4) holds. The converse statement is obvious.
Statement (b) can be proved in a similar manner, or derived from (a).
Indeed, suppose inf; ||¢;||Lr(aw) > 0. Choose 0 < ¢ < min(p,q,r) and set
p = p/t. Define ¢,(z) = d)f_t(a;)/lld)illi,,(dw), as in the proof of Corollary 1.
Then sup, ||9;]] Lo/-0(aw) = sup; ||$illzs(an) < 00- By part (a) we conclude
that (2.4) holds, which implies (1.5) by Corollary 1. The converse statement
is obvious, as well as the remaining cases (c), (d), and (e). The proof of
Lemma, 2 is complete. O

Now we prove Theorem 1(i). Suppose 0 < p < r < 0o. From Lemma 1 it
follows that we may assume p > 1,¢ > 1,7 > 1. Suppose Fy € L'(dw), where
Fy is given by (1.12). Let g = {g;} € L¥ (17, dw). By Hélder’s inequality
with exponents r and 7', we have

[/¢j g; dw " < (/lqﬁjl”dw)rl—l/(¢j|(r~p)(r'—1) Igjlr'dw.

Hence

Z < /Zlgjlrl Y; dw,

/(bjgjdw

where

bi(z) = 7P (@) s 15y

We estimate the right hand side of the preceding inequality. Let F, be
defined by (1.12). If ¢ > r, then Fo(z) = sup; d);’(r_l)/(r—p) (z). By Holder’s
inequality with exponents p'/r’ and (p'/r')’ = p(r — 1)/(r — p) we get

[ E ol vy < [ supy, Slosl o

, (r—p)/p(r-1)
<lollw ey ([ Foao)
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, (r—p)/p(r—1)
< lallwae, ( [ Fod) .

The last inequality holds since ¢' < 7'.
Analogously, if ¢ < r, then ¢’ > r'. Applying Holder’s inequality twice,
we obtain

1—7"/q

o'/d
[ Sl o< | (Z lgm’> (Z«p;(“”/“-“) o
J J J

, (r—p)/p(r-1)
S”g”ZP'(lq’) (/FOdw> .

Thus we have

Tl
< Cllgllgy -

)y

By Lemma 1, this completes the proof of Theorem 1 (i).

Now we prove statement (ii) of Theorem 1. Suppose p > r, and F;y €
L'(dw), where F, is defined by (1.13). Since (1.5) is “invariant” under the
transform (2.1), we can assume p, ¢, > 1, as in the proof of (i). (Otherwise,
we choose 0 < ¢t < min (p, ¢, 7), and replace ¢; and p, ¢, by, respectively, (ﬁ-
and P, §,7.)

We set 9;(z) = ¢§-’_1(m)/||¢j||’£p(dw). It is easily seen that

/(j)jgjdw

¢; (@) _ ¥ (z) .
R s I T TN e

(Note that p’ < r'.) From the preceding inequality it follows that the func-
tion Fy(z) defined by (1.13) can be rewritten as

r—p g p’/(rl—p,) .
[sup, (4] @512, )] : if 0<g<r
Fy(z)=
o) (' =a)#' 12 (')

o ' ¢/(r'=d") .
= (5 @Il )] it 0<r<q

Since Fy € L'(dw), then by part (i) of Theorem 1 proved above we have

1/¢
(Z sl w;’) < sl

LP' (dw)
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for all s = {s;}. By Corollary 1 (with ¢ = 1), this implies (1.5). The proof
of Theorem 1 is complete. O

The proof of the following lemma is based on the Hahn-Banach Theorem.

Lemma 3. Suppose 0 <r<p<ooand0<r<g<oo. Letp, =p/(p—r)
and q; = q/(q—r). Then (1.5) holds if and only if there exists g = {g;} such
that Hg“LPl(l‘H) S ]., and

(2.6) inf / \g:] &7 dw > 0.

Remark 2. If 0 < g =r < p < oo, then setting g(z) = sup, |g:(z)| and

/(p—~7)
F(z) = (|J9(@)/ 9]l Loso-m (awy) "

we see from (2.6) that there exists F' such that
2.7) /Fdw <1, and inf|[FP ¢iflirran > 0.

This proves the “only if” part of Theorem B (see the Introduction; the “if”
part of Theorem B is obvious).

Proof of Lemma 3. Suppose 0 < r < p. As in the proof of Theorem 1,
we make use of the fact that (1.5) is “invariant” under the transform (2.1).
Letting ¢t = r in (2.1), and replacing p, g and ¢; by, respectively, p = p/r,q =
g/r, and ¥; = ¢!, we may rewrite (1.5) as

1/§
(z ISZIW?)

i€l

>C

L (dw)

.
i

29 I

Let £ denote the subspace of L? (1%, w) consisting of all finitely supported
vector functions of the form s = {s;;}cs, for all real {s;}. The preceding
inequality means that the linear functional defined on £ by G{s; ¢} = ¥, s:
is bounded. Let B = [L?(19, w)]*. Since p > 1, we have B = L (I, w) if
g >r,and B = LP(I*, w) if ¢ = r. By the Hahn-Banach theorem, there is
an extension G = {g; }ic; of G defined on B so that |G|z < 1/C, where Cis
the constant in (1.5), and G coincides with G on £. The latter means that

/Zsigizﬁidw:Zsi,
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for all finitely supported s;, i.e., [ g;9;dw =1 for all i € I. Hence
(29) inf [ lgi s do = inf [ 19,/ 7 do > 1.
Setting g = C' G, we see that ||g||s < 1, and (2.6) holds.

Conversely, suppose there is a g = {g;} such that ||g||zr1a) < 1, where
P =p/(r—p), ¢ = q/(g—r), and (2.6) holds. Then using (2.6) and applying

Holder’s inequality twice we get
1/q
dolsi"<cC /ZIS;-I’M l9:|dw < C (Z |s:]? W)
The proof of Lemma 3 is complete. O

T

LP(dw)

Remark 3. Lemma 3 remains true for r = p < ¢ < oo (the case r =p > ¢
follows from Lemma 2). If r = p and ¢ = oo, there is a deeper version of
Lemma 3 due to L. Dor [4]. We can set g = {xg,} in (2.6), where {E;};c;
(E; C X) is a family of disjoint sets. Thus, for all 0 < r < oo, the inequality

(2.10) [ su (s ¢ dw > C Y Isil
X i€l ;
holds if and only if there exists a family of disjoint sets {E;} so that

(2.11) inf/ ¢ dw > C.
i E;

This result for the functions {¢q}geg has interesting connections with the
dyadic Carleson measure theorem discussed in the next section (see [17], and
also Corollary 2 below).

3. Imbedding theorems for f spaces.

Let Q = {Q} be the family of all dyadic cubes in R*. To any Q € Q we
associate a fixed non-negative number cg. Let ¢o(z) = cg xo(z), for all

z € R™. Note that
> dalz) = cq,
Q zeQ

where the sum on the right-hand side is taken over all Q containing z.

The following theorem generalizes Theorem 2 (i) and gives a characteri-
zation of the imbeddings of weighted /" spaces into f2?(w) spaces. (See the
Introduction.)
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Theorem 3. Let0 < p < 00, 0<r <00, and 0 < ¢ < 0o. Let w be a
positive locally finite measure on R™. The inequality

1/q
(3.1) (Z sl CE’,;) < Cllsll

z€Q
Lr(dw)

holds for all scalar sequences s = {sq} if and only if one of the following
conditions holds.
(a) 0<r <min(p,q), and

(3.2) sup cg |Q|Y/? < oco.
Q

(b) 0<gq<r<p, and for all dyadic cubes P,

r/(r—q)
(3.3) Z (CQQ|Q|W) g < C|P|r-9/p(r=0),
QCp

(¢) max(p,q) <r < o0, and

p— p(r—q)/q(r—p)
q/(r—q
(3.4) / {Z (L) } dw < 0.
T€EQ
(d 0<p<r<g<oo, and
p/(r—p)
3.5 /su ¢ |Qlo dw < 0.
(3.5) sup (¢ 1Ql.)

Proof. Statement (a) follows from Lemma 2. In case (b), we use a dual
characterization given by (2.3). For the family {¢q}, where ¢pg = co X0, the
latter boils down to the inequality

(3.6)

(E (cé |Qlw)r/(r—q)

Q

(r—q)/r
1 / d r/(r—q) < C “ ”
— g aw s gilLe/(p-9) (dw)-
|Qlw Q (@)

We observe that (3.6) is a dyadic form of the Carleson inequality (see [17],
[19]); and (3.3) is a discrete version of the Carleson-Duren condition (see
[10]). The necessity of (3.3) for (3.6) is obvious (use a test function g = xp);
sufficiency is proved, for any measure w, using a standard technique involving
weak type estimates and interpolation (see [9], [19]).
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Now we prove statement (c). It follows from Theorem 1 (i) that (3.4) =
(3.1). Indeed, for the family ¢g = cg xg, the function F, defined by (1.12)
is in L'(dw) if and only if (3.4) holds.

To prove (3.1) = (3.4), we will need an analogue of the Fefferman-Stein
vector-valued maximal inequality [5] for the dyadic maximal operator

1
d _
(3.7) M2f(z) = itelg TR /Q || dw,

where w is an arbitrary locally finite measure on R". (The supremum in
(3.7) is taken over all Q € Q, containing z.)

Theorem C. Let 1 <p<oo andl < q < oo. Suppose w is a locally finite
measure on R®. Then

1/q

1/q
(3.8) (Z (Mffj)q> <C (Z lfj|q> ,
! LP(dw) I LP(dw)

for all {f;} € LP(19, dw).

Theorem C is possibly known, but we were not able to find a reference
and sketch a proof below. (As was pointed out by the referee, the original
proof given in [5] in the case dw = dz should be modified, at least in the
case p < ¢, if w does not have a doubling property.) We note that in the
case p > q the proof of Theorem C given in [5] for dw = dz basically remains
valid for M? with arbitrary w. The idea is to use duality together with
a weighted inequality for the scalar maximal function (Lemma D below).
Then we reduce the case p < ¢ to p > ¢ by means of a more sophisticated
duality argument, making use of Lemma D again. (In [5], for p < ¢ and
dw = dz, (3.8) is derived from a weak type vector-valued estimate based on
the Calderén-Zygmund lemma.)

Proof. We will need the following weighted inequality.

Lemma D. Letl <r < oo. Let w be a locally finite measure on R™. Then
(3.9 [aasy gaw<c [ i (i) v,

where C does not depend on f and ¢ (¢ >0, ¢ € L (dw)).

The proof of Lemma D is similar to that given in [5] in case dw = dz and
is outlined below for the sake of convenience.
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Proof. We prove the following weak type estimate. Let t > 0 and E; = {z :
M2 f(x) > t}. Then

IR > [ 171 M o

First we assume that all dyadic cubes have side length less than N. Then
E; = UQ, where Q are pairwise disjoint (maximal) dyadic cubes such that
1QIZ" Jo Ifldw > t. (See [19].) As in [5], for all Q in this collection we have

tf ddo< 1ok /. £1do) [ ¢dw < [ \f1M2pd

Thus

dw = dw < Ml¢dw.
[, =31 [ dados [if1Mpds

E,

Letting N — oo, we obtain the weak type estimate. Then (3.9) follows by
a standard interpolation argument for all 1 < r < oo, since it is obviously
true for r = oo. The proof of Lemma D is complete. Ul

If p > ¢, then we complete the proof of Theorem C by applying Lemma
D with r = p/(p — q), as in [5]:

1/q||?
(Z (Mffj)q>

7 LP(dw)

= sup {/Z (Mffj)q $pdw : ||¢”Lv/<r-q)(dw) < 1}

< C'sup {/Z [fil* M3pdw 2 || pllor-o (aw) < 1} :
J
Since M@ in bounded in L?/(P~9(dw), we have
“Mj(,ZSHL,,/(,,_q)(dw) < Cl|¢|lLP/(P—q)(dw) <C.
Then by Holder’s inequality with exponents p/q and p/(p — ¢q) we get

1/q||?
[ Sl migan<c (Zlfjl")

LP(dw)
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1/q 1/q
()| sel(zu)]

LP(dw) LP(dw)

Thus

which proves Theorem C in the case p > gq.
Now suppose p < ¢g. We choose 1 < r < p. Then by the duality relation

[Lp/r (lq/r, w)]* — [p/(p=7) (lq/(q—r), w)
we have

1/q||"
-

LP(dw)

= sup {/ Z (M2£;)" b5 dw : 1 {; HlLorto=m arca=nry < 1} .
J
Applying Lemma D again, we get
[ S @ain) a0 <0 [ 315 Migs e
J J
By Holder’s inequality,
/Z {f]lTMgQS] dw < ||{fj}||21=(zv) “{Mﬁ(ﬁj}”LP/(F—")([ql(q—r)) .
j
Since p/(p — ) > q/(q — r), it follows from the case considered above
”{Muc)id)j}“LP/(P—r) 19/(a=r)) = <C ||{¢.7}”LP/(P ri(la/(a=r)) < C.
Thus

1/q 1/q
(Z (Mjfj)") <C (Z |fj|q)

7 Lr(dw) ’ Lr(dw)

for p < ¢, which completes the proof of Theorem C. a
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Now we return to the proof of Theorem 3 (c). We may assume again
without loss of generality that p > 1, ¢ > 1, and r > 1. By Lemma 1, it
follows that (3.1) is equivalent to the inequality

/ 9q dw
Q

for all g = {gg} € L¥ (I*). Since r > max (p,q), we have ' < min (p',q').
Setting g = ¥y (Yo > 0), and ' = p'/r', § = ¢'/r' B > 1,§ > 1), we

rewrite (3.10) in the equivalent form

1/r
) < Cliglie (1' ),

(3.10) (Z ch
Q

610 Y (olel)” (I I dw)r < Clllor goy,

Q

for all o = {¥g} € L7 (17, w).
By Hoélder’s inequality, obviously (3.11) holds if

(312 > (cl@l)” QI [ tods < Cl¥lr o,
Q Q

for all ¢ = {¢pg} € L7 (17, w). Let us show that, conversely, (3.11)=(3.12).
Let ¥ = {1o} € L? (17, w). Then, by Theorem C, M) = {M)} €
L7 (17, w), and
“Mgwum'(ﬁ’) < C“"p”Lﬁ’(li’)-

Applying (3.11) with M%) in place of ¢, we obtain

!

> (eolQl)” (1" [ (M) o)

Q
(3-13) S C “Mg¢”1,ﬁ’(la') S C“"p“Lﬁ’(ﬁ’)-

For all dyadic cubes @ and ¢g > 0 clearly

lQIZ! /Qf/’deS (|Q|;1 /Q(Mf%bcz)l/rl dw)rl

Combining the preceding inequality and (3.13), we see that (3.12) holds.
Thus (3.11) is equivalent to (3.12). It remains to note that by duality (3.12)
can be rewritten in the form ¢ € L?(19, w), where ¢ = {cf, |Q|., ™" xo}, which
coincides with (3.4). This completes the proof of statement (c) of Theorem
3.
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In case (d) Theorem 3 was proved in [21]. For the sake of completeness,
we give a sketch of the proof here. Note that, as in case (c), it follows that
(3.5) = (3.1) by Theorem 1 (i). To prove the converse, we make use of
Pisier’s lemma [Theorem A (ii) ]. Suppose (3.1) holds for p < r. Then there
exists F' € L'(dw), F > 0, such that

(3.14) sup cq ”F'l/” Xo
Q

Lo (Fdw)

Set f(z) = F~/?(z) xq(z) and dv = F dw. Note that ||f||zr(a) = |Q|/7.
Suppose p < s < r,and 1/s = t/p+ (1 —t)/r, where 0 < ¢ < 1. Applying
the elementary interpolation inequality

I1f

Loav) S C ”f”LP(du) ||f”L"°°(du)’

we have

—t

1/
(/ Fs/ett dw) < CIQ’t/p ”F 1Py X0
Q

Lreo(Fdw)

Letting 8 = s/p—1 > 0, and combining the preceding inequality with (3.14),
we obtain

r/(r— 1/8
(col@i)™ ™ ikt [ Faw) " <0 <o

By Holder’s inequality,

G / F—‘*dw)l/ﬂ G / Ffdw)l/e >1,

for all ¢ > 0 and 8 > 0. Hence

r—p) 1/e
(calei)” " <0 (1@ [ Fraw)
Q
and
pr/(r—p) €
J Fo@dw= [sup (cqlQU/) do < O IMEF

Suppose 0 < € < 1. Since the dyadic maximal operator M? is bounded in
LY¢(dw), we get Fy € L*(dw). The proof of Theorem 3 is complete. O
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Remark 4. It follows from the proof of Theorem 3 that the best constant
C in (3.1) satisfies the inequality A;x(c) < C < A,k(c), where A;, A, are
positive constants that do not depend on ¢ = {cg}, and k(c) is defined
in terms of the quantities given by (3.2)-(3.5): k(c) = supy cq|Q|Y/? if
0 < r < min(p,q); k(c) = CC~9/ if ¢ < r < p, where C is the best
constant in (3.3);

0 (r—q)/er
97/ (T4
K(c) = (2 (col@L) ) ,
T€EQ
LP"/("—P)(du)
if max (p,q) < r; and
K(c) = sup (cq|QIY") ,
z€Q Lre/(p=7)(dw)
fp<r<g.

Now we state the following theorem which contains part (ii) of Theorem
2, and yields a characterization of imbeddings of f7(w) spaces into weighted
" spaces.

Theorem 4. Let 0 <p < o0, 0<7r < o0, and 0 < g < 00. Suppose w is
a locally finite measure on R™, and {cg}qeco (cqg > 0) is a fired sequence of
reals. Then the inequality

1/q
(3.15) (Z lsQI"CZ’g) > C|s]lir

z€Q
L?(dw)

holds for all s = {sq} if and only if one of the following conditions holds.
(a) max(p,q) <r < oo, and

(3.16) inf co QI > 0.
(b) p<r<gq< o0, and for all dyadic cubes P,
—-r/(g—r)
(3.17) Z (ch ,Q,w) ¢ < ClPl:(q—p)/p(q—r).
QcPpP

(c) 0<r<min(p,q), and

(3.18) / [Z (cg |Q|w)_q/ =)

TEQ

p(g—r)/q(p—r)
:| dw < oo.
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(d) g<r<p,and

(3.19) [ (1L

—p/(p—r)
) dw < 0.

Remark 5. We observe that, as in the case of Theorem 3 (see Remark 4),
it follows from the proof presented below that the best constant in (3.15)
satisfies the inequality A;k(c) < C < A, k(c), where A,, A, are positive
constants which do not depend on ¢ = {cg}, and «(c) is defined in terms of
the quantities (3.16)-(3.19): x(c) = infg cq |Q|%/? if max (p,q) < r; k(c) =
C—(a=n/a" if p < r < q, where C is the best constant in (3.17);

-1

) (g—7)/qr
r —qr/\g—r
K(e) = (Z (col@I) ) :
°€Q LP"/(P"‘)(dw)
if 0 < r < min(p, q); and
-1 -1
K(c) = [sup (cqQIY") ,
z€Q LPr/(P=") (dw)
ifg<r<np.

Proof. Clearly (3.15) = (3.16) for all p,r,q. Hence we may assume cg # 0
and |Q|. # 0 for all dyadic cubes Q. If max (p,q) < r, then by Lemma 2 (b)
it follows that conversely, (3.16) = (3.15), which proves statement (a).

Let us prove (b). Suppose p < r < ¢, and (3.17) holds. We choose
0 <t<pandsetp =p/lp—1t),n =q/(g—1t),m, = r/(r—1t). Let
do(z) = cg x(z) and ¢Yo(z) = ¢g’t(m)/l|¢qllzp(dw). Then it is easily seen
that g (z) = ¢’ |Q|;* xq(z). By Corollary 1, (3.15) holds if

1/q1
(Z |sol® ‘/’8) < Cllsllem -

=€Q LP1(dw)

By Theorem 3(b), the preceding inequality holds if, for any dyadic cube P,

> [(ca'1@z")" 1l

QCP

]1‘1/(1‘1—!11) < C |P|T1(P1—'(I1)/P1(T1—lll).
—= w

Since r1(p1 — ¢1)/p1(r1 — @) = (g — p)/p(g — r) and tqiri /(1 — q1) =
gr/(q—r), it follows that the preceding condition is independent of ¢ and in
fact coincides with (3.17). Thus (3.17) = (3.15).
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The proof of the converse is similar to that given in {7, p. 77]. For any
dyadic cube P and integer N ({(P) > 27V) , we set s = {sg}, where
s = (c41Ql,) ™Y if @ C P and I(Q) > 27V, and s = 0 otherwise.
Then by (3.15) for all cubes Q, I(Q) > 2=V, we have

1r
Z@w%ﬁwq

C

QCP

1/q
Cllsllr < (Z lsql? c§ XQ)

P
Qc Lr(dw)

p/a
=‘LPX%MJWﬂ%m}dw

1/p

QCP

By Holder’s inequality, the right-hand side of the preceding inequality is
bounded by

1/q
—q/(g—7)
|P|i}/p—1/q (/P Z (ch lQlw) cH Xa dw)

QCp

1/q
— ]PI&)/P—I/Q [Z (CQQ ,Qlw)—r(q—r)} ‘

QCP

Thus

C

QCP QCP

1/ "
> (cgg!Qlw)_r(q'r)} < |P|i/p-1/a [Z (ch IQIw)_T(q-T):I |

Since the sums are taken over the cubes @ such that [(Q) > 27" the right-
hand side of the preceding inequality is finite, and we get

~r/(g~7) o _r
3 (ch IQlw) < C|P|ra-»)/pa=r),
QcPp

Letting N — oo, we obtain (3.17). The proof of (b) is complete.

Now we prove statement (c). By Theorem 1 (ii) we get that (3.18) =
(3.15), as in the proof of Theorem 3 (c). To prove the converse, note that if
(3.15) holds, then by Lemma 3 there exists g = {gg} such that ||g||pe: ) £
1

, where p, = p/(p —7),q1 = q¢/(q — ), and

(3.20) ﬂM%m=%4mmea
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where C does not depend on Q. From (3.20) it follows that

p1/m p1/m
/ [Z (CTQ]QL,)_ql} dw < C/ Z (ﬁ/Q|gQ|dw)q1:| dw

TEQ TEQ

S C ”M59|]I;1(m) S CHQHTPI(PH) S C

Here M? is the vector-valued dyadic maximal operator. (See (3.7). Note
that in the last inequality we used Theorem C. This part of the proof is
similar to the argument in [7, pp. 78-79].) Thus (3.15) = (3.18), which
completes the proof of (c).

Now we prove statement (d). As in the proof of (c), it follows from
Theorem 1 (ii) that (3.19) = (3.15). We prove the converse first for ¢ = r.
Suppose (3.15) holds. Then by Lemma 3 (see Remark 2) there exists F' €
L'(dw), F > 0, such that

3.21 inf /FH/P 5 dw = inf cf /Fl‘r/”d 0.
(3.21) in bg, dw inf cg A w >
It follows from the preceding inequality

—p/(p—r) 1 p/(p—r)
sup | cy w dw < /su ( / Fl-r/p dw> dw
/xeg ( Q|Q| ) meg lQlw Q

< / (MjF“T/P)p/(p_T) dw < C /Fdw < o0,

In the last inequality we used the fact that the maximal dyadic operator M¢
defined by (3.7) is bounded on L?/(P~")(dw) (see [19]). Thus (3.19) holds.

It is more difficult to show that (3.15) = (3.19) for ¢ < r. Note that by
duality

S sal? [to]9)**
Il = sup (X lsql? [tq]?) ™
t={to} Nellirarcr—o

Hence (3.15) is equivalent to the inequality

1/q
/
(> Isal” ’tQ|q)1 ‘<c (Z |sql” Cé) [[Eliras - -

TEQ
L?(dw)

Letting u = {ug}, v = {vg}, where ug = sgtg and vg = cg/|tg|, we rewrite
the preceding estimate in the following form

1/q
Jullie <C (Z lqu"vé) tllirarc—ar -

T€EQ
LP(dw)
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It follows from the argument given above for ¢ = r that

[|wllss

1/q]|
|(Secq lualt )
Lp(dw)

—p/(p—a) (p—9)/(pg)
- q
< </ ilelg (UQ IQlw) dw) .

Since vg = cg/|tg|, from this we obtain

sup
u={uq}

o/ (p—0) (r—q)/(pq)
(322) (/ Sllg (ltlé c&q IQl;l) dw) <’ ”t”qu/(r—q),
z€

for all t = {tq}. Let py = pg/(p — q), 1 =rq/(r — q), and &g = c3'|Q|5*/*.
Then (3.22) may be rewritten in the form

1/p;
(/ sup (Coto)™ dw) < C#))im -
z€Q

Using the fact that p;r, /(r; —p;) = pr/(p—r), and applying Theorem 3 (d),
we get from the preceding inequality

sup (¢g |Qlo dw=/su co |Qlw
[ (3 1@ sup (1@

Thus (3.15) = (3.19) in the case ¢ < r < p. The proof of Theorem 4 is
complete. O

p1/(r1—p1)
e do < .

)—P/(P—T)

The following properties of discrete Carleson measures are immediate from
Theorem 4 (in the case r = p = 1 and ¢ = 00) and the result of L. Dor
mentioned above (see Remark 3).

Corollary 2. Let {cg}qeo (co = 0) be a fized sequence of reals and let w be
a locally finite measure on R™. Then the following statements are equivalent.
(a) The inequality

/Slelglsol dw>C ) [sqlcq

holds for all scalar sequences s = {sq}.
(b) Yocrpco < C|P|, for all dyadic cubes P.

(c) There ezists a family of pairwise disjoint sets { Eq}qeg such that Eg C
Q and cg < C|Eg|,.
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Remark 6.

(i) Theorem 4 is equivalent to the duality theorems for f spaces proved
in [7] in the case where dw is Lebesgue measure. As was mentioned in
the Introduction, the proof given in [7] for the identity (£37)* = £, %>,
which is equivalent to Theorem 4 (d), is not correct for 0 < ¢ < 1 and
p > 1. (Note that the Hahn-Banach theorem used in that proof fails
for the space L?(l?) in the non-locally-convex case 0 < g < 1; see [13].)
Our proof of Theorem 4 is based on duality and Theorem 3.

(ii) In case (b), which contains a discrete analogue of the H*-BMO duality
theorem, our proof is based on the dyadic Carleson measure theorem,
rather than on the “local maximal functions” used in [7].

(iif) Inthe case dw = dz and p < r, it can be shown that (3.17) is equivalent
to the simpler condition (3.16) (cf. [7]). For p = r, as well as for
arbitrary measures w, it can be shown that (3.16) generally does not
imply (3.17).

4. Multipliers of f spaces.

Let w and o be locally finite measures on R". We say that the sequence of
reals ¢ = {cg} is a multiplier for the couple of f spaces, £3¢(0) and £ (w),
if

(4.1) {eq so}llgern () < C {sq}lgae (o)

for all s = {sq} € £2%(0). In other words, c is a multiplier if the correspond-
ing multiplier operator defined by C {sq} = {cg s¢} is bounded. In this case
we write ¢ € Mult (f29(0) — £319 (w)).

In this section we characterize multipliers of f spaces in the “diagonal”
case p = p; and q = ¢q; for arbitrary w and 0. We show that the multiplier
problem is equivalent to the two weight problem for a generalized dyadic
maximal operator considered in [21].

We may assume without loss of generality that the multipliers are non-
negative (cg > 0). It is easily seen that ¢ = {€g} € Mult (f;,"q (o) — £ (w))
if and only if the following inequality holds,

1/q 1/q
(4.2) (Z cg|sQ|q) <C (Z lSqu) )

TEQ z€EQ
LP(dw) Lr(do)

where cg = &g |Q|%/?|Q|;'/2. Thus the following theorem yields a character-
ization of the class of multipliers Mult (£59(c) — £2(w)).
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Theorem 5. Let 0 <p < o0, 0< g < o0, and c = {cg}, cg > 0. Then
(4.2) holds if and only if one of the following conditions is valid.

(a) p=gqand

1QI/”
1Ql/?

(4.3) sup cq < 0o
Q

(b) 0<qg<pand

lQll/q pg/(p—q)
(4.4) sup cQ—2~ do < C|P|,
P z€Q,QCP Q¥

for all dyadic cubes P.
(¢) 0<p<g< oo and

Q|2 rg/(q—p)
(4.5) sup co —= dw < C|P|,
P z€Q,QCP 1Ql/

for all dyadic cubes P.

Proof. Note that (4.3) is clearly necessary in order that (4.2) hold for all p
and q. If p = g, then it is easily seen that the converse is also true since in
this case f spaces turn into usual weighted [P spaces. This proves (a).

Suppose ¢ < p. Then from Theorem 4 (c) with ¢ = co (see Remark 5) it
follows

(Z & |s I‘I) /e _ . (Zach1Ql Isql thlq)l/q
blsa ' .

{te} ”suprQ ltol

T€Q LP(dw) Lra/(P=2)(dw)

Hence (4.2) holds if and only if

1/q
(Zc& QL. 1sol” |tQ1")
Q

1/q
> sl
LPa/(P—a)(dw) T€Q

< C |sup [to]
z€Q
Lr(do)
Applying Theorem 4 (d) with r = ¢, we get
1/q

(Zoch QL Isal” Ital") ) 1QL°

sup 72 < |lsup | cq ltol =577
{sq} )l (ZzEQ ISQ‘q) o) z€Q lQ‘U Lra/(p—9)(do)
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Thus (4.2) is equivalent to the inequality

[Q|1/q
b <CQ ol 1@1“)

(4.6) <C

qu/(p—q)(dg)

sup |tq]
TEQ

Lra/(p—q) (dw)

We define the generalized dyadic maximal operator (see [21]) by

Mf(x)=§lelg (PQ ﬁ/@ |f|dw>,

where the supremum is taken over all cubes Q € Q, = {Q € Q: |Q|. # 0}

containing z, and pg are fixed non-negative reals associated with Q € Qp.
L/

FES
maximal inequality

Let po = co =47 We show that (4.6) is equivalent to the two weight

(47) HMf”LPq/(P_Q)(dJ) < C “f”LP‘?/(P_‘”(dw)'

By setting f(z) = sup,¢o |tg| in (4.7) and taking into account that

o .\l = ltal,

it is easily seen that (4.7) = (4.6). To prove the converse, let

1
o= ior [, 19

in (4.6) and use the fact that the dyadic maximal operator M? defined by
(3.7) is bounded on LP¥(~9(dw). Hence (4.6) holds if and only if (4.7) is
true.

It follows from the generalized two weight maximal inequality [21] that
(4.7) holds if and only if

/P sup pgq/(l’—q) do < C|P|,

7€Q,QCP

for all dyadic cubes P, which coincides with (4.4). This proves statement
(b) of Theorem 5.

We use duality to show that (c) can be reduced to (b). Suppose p <
q < oo. Using the transformation p = p/t, § = q/t, and ¢ = ¢, (t > 0) if
necessary, we see that, as in Sec. 2, we may assume without loss of generality
p>1andg> 1.
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If ¢ = oo, then one can show that (4.2), which may be rewritten in the
form

<(C

Lr(dw)

Sup Cq sq@
z€Q

sup sg
TEQ

Lr(do)

is equivalent to the generalized maximal inequality

sup (cargp [, 1140)

where f € L?(do). (See the proof of the equivalence of (4.6) and (4.7) above.)
Then it follows from [21] again that the preceding maximal inequality is
characterized by

S C “f”LP(da'))

L?(dw)

sup cpdw < C|P|,,
P z€Q,QCP
which coincides with (4.5) for ¢ = oo.
Suppose 1 < p < ¢ < 0o. It follows from the duality theorems for f spaces
(or, which is equivalent, from Theorem 4 (c)) that (4.2) holds if and only if

1/¢' 1/¢'

’ Q w ql ! ’
@) |13 o (1) sl <c|[X 1sol
z€EQ g TEQ
L?' (do) L?' (dw)
Since p' > ¢/, it is easily derived from (b) that (4.8) holds if and only if (4.5)
is true. The proof of Theorem 5 is complete. O
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