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THoMAS I. VOGEL

Assume that J and J are smooth functionals defined on
a Hilbert space H. We derive sufficient conditions for I to
have a local minimum at y subject to the constraint that J is
constantly J(y).

The first order necessary condition for I to have a constrained minimum
at y is that for some constant A, I;, + AJ; is identically zero. Here I, and
J,, are the Fréchet derivatives of I and J at y. For the rest of the paper, we
assume that y in H satisfies this necessary condition.

A common misapprehension (upon which much of the stability results for
capillary surfaces has been based) is to assume that if the quadratic form
I+ XJ} is positive definite on the kernel of J; then I has a local constrained
minimum at y. This is not correct in a Hilbert space of infinite dimension;
Finn [1] has supplied a counterexample in the unconstrained case, and the
same difficulty will occur in the constrained case. In the unconstrained case,
if (as often occurs in practice) the spectrum of I/ is discrete and 0 is not
a cluster point of the spectrum, then I} positive definite at a critical point
y implies that I, is strongly positive, (i.e., there exists £ > 0 such that
I(z) > k|jz||* holds for all x), and this in turn does imply that y is a
local minimum (see [2]). However, in the constrained case, things are not so
easy. Even if I/ + AJ)' has a nice spectrum (in some sense), it is not clear
that I.) + AJ) being positive definite on the kernel of J; implies that this
quadratic form is strongly positive on the kernel, nor that strong positivity
implies that y is a local minimum.

In [3], Maddocks obtained sufficient conditions for I}/ + AJ,' to be positive
definite on the kernel of J;. As Maddocks points out, this is not quite enough
to say that I has a constrained minimum at y. Remarkably, essentially
the same conditions as Maddocks obtained for positive definiteness do in
fact imply that I has a strict local minimum at y subject to the constraint
J = J(y), as we shall see.

For any h € H we may say J(y+h)— J(y) = J,(h) + 3J; (h) + e (h)|[h]1%,
where €, goes to zero as ||h| goes to zero. If we consider an h for which
J{y + h) = J(y), then of course 0 = J;(h) + 3J.'(h) + e (h)||h||>. Now, for
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that h we have
1
Al =1(y+h) —I(y) = I,(h) + -2-1;’(h) + e||All?
! 1 "
&y = —MJy(h) + 51, (h) + el A

= S+ M) + O + )R

Since I,/ + AJ,/ is a bilinear form, there is a linear operator A defined on
H so that (I,) + AJ,)(u,v) = (u, Av). Similarly there is some element of
H, call it VJ, so that J; applied to a vector h is (h, VJ). Let o(A) be the
spectrum of A. There are three cases which often arise in practice:

Theorem 1. Ifo(A)N(—0o0,c] =0 for some c > 0, then I has a constrained
minimum at y.

Proof. From (1) we may write Al as (h, Ah) + (\e; +€;)||h||%. But (h, Ah) >
c||h||* (this is easily verified using the spectral theorem, see [5]), so for h
sufficiently small, AT is positive. a

Theorem 2. Suppose that o(A) N (—oo, €] consists of a single negative
eigenvalue \o for some € > 0. Let ¢ solve A( = VJ. (A will be invertible.)
I has a constrained minimum at y if J,(¢) = (¢, A¢) < 0, and I does not
have a constrained minimum at y if J,({) = (¢, A¢) > 0.

The proof of Theorem 2 will proceed in a series of steps.

Step 1. Assume that (¢, AC) < 0. Then I;) + A\J,' is strongly positive on the
kernel of J;.
Proof. Take z in the kernel of J;. As in [4], z may be written as v+a(, where
v is perpendicular to (g, the eigenfunction corresponding to Ag. (The key
to this calculation is that (¢, o) # 0. But if { is orthogonal to ¢y, it can be
shown that ({, A¢) > 0.) One can verify that (z, Az) = (v, Av) — a*((, A(),
so that (z, Az) > (v, Av).

Let {E\} be the spectral family associated with 4, so that A = [%_AdE,.
By our assumption on o(4), A = A Ey, + [~ AdE,, where E), is orthogonal
projection onto ¢,. Therefore,

(v, Av) = (0, Ao Es, (v)) + / || Exvl?.
The first term vanishes, so that

. Av) 2 e [ dIBwIE 2 [ dlBwl? > el
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Therefore, (z, Az) > €||v]|?.

To conclude the proof that I + A\J) is strongly positive on the kernel
of J,, we need to show that |[v|| > k||z|| for some fixed positive constant
k. Assume without loss of generality that ||z|| = 1. For any fixed z, ||v||
is greater than or equal to the distance from z to the line {¢{ : ¢ € R}.
Consider the projection of z onto (. Its length is |(z, (/||C||)|. We may write
¢ as BVJ + ¢, where C is perpendicular to VJ. We cannot have 8 equaling
0, since by assumption, (¢, A¢) = (¢, VJ) < 0.

Then the projection has length at most ||||[|¢]|/|I¢|l. But ||€]| < [I¢]| (since
B # 0). Letting v equal [|€||/[|¢]l, we have v < 1 and the length of the vector
component of z perpendicular to ( is greater than or equal to /T — 2. But
|lv]| is greater than or equal to the length of that component, so we get our
k to be /1 — 42, concluding step 1.

Step 2. If (¢, A{) < 0, then I has a minimum at y subject to the constraint
J=J(y).

Proof. Take an h for which J(y + h) = J(y). Now h need not be in the
kernel of J, but we may write h as h; + a(, where h; is in the kernel of
J;, by taking a to be (h,VJ)/(¢,VJ). (Note that (¢, VJ) = ((, A¢) # 0.)
Substituting into equation (1),

(2)  AL= L{hy, Ahi) +a(hi, AQ) + 50*(G, AQ) + O + e)IBIE,

However, (h;, A() = (h1,VJ) = 0, causing this term to vanish. We have
0 = AJ = J,(h) + es]|hll, where €3 tends to 0 as ||k| tends to 0. Thus
a? = €2||h||?, and we conclude that

1
AI = §<h1,Ah1) + €”h“2

where € tends to zero as ||h|| tends to 0. From Step 1, A is strongly positive
on the kernel of J;, so

k
AT 2 Slhl® + ellh)”.

Since h = h, +a(, with o = —es||h||, it is easy to see that for ||h|| sufficiently
small there holds ||h.|| > 3||A||. Thus

AL > [lA (§ +e)

which must be greater than 0 for ||h|| sufficiently small. Therefore I has a
minimum at y subject to the constraint J = J(y), concluding the proof of
step 2 and the first half of Theorem 2.



560 THOMAS I. VOGEL

Step 3. Suppose that ((, A() > 0. Then I does not have a minimum at y
subject to the constraint J = J(y).

Proof. First, I) + AJ,/ is no longer positive definite on the kernel of J'.

_ {90, V) __ _ (p0,VJ)
@3y = T (cag » but

Indeed, n = o + ¢( is in the kernel of J; if ¢ =
one can verify that (n, An) < 0.

Now consider f(r,s) = J(y +rn+ sVJ) — J(y), a differentiable function
of r and s. Then V£(0,0) = (0,]|VJ||?), so the zero set of f is tangent to
the r axis at the origin. From this we conclude that there is a function s(r)
so that J(y +rn+ s(r)VJ) — J(y) = 0, with lim, o ‘i(-}l = 0. From equation
(1), for h = rn + s(r)VJ we have

AL = (I" + XJ")(rn + s(r)VJ) + (Aey + &)||rn + s(r)VJ||?

so that AT = r?(n, An) + o(r?). Thus, for all r sufficiently small AT < 0,
indicating that we do not have a constrained minimum, concluding the proof
of Theorem 2. O

Theorem 3. If o(A)N(—00,0) consists of more than one point, I does not
have a constrained minimum at y.

Proof. Suppose that v and p are in o(A)N(—00,0), with v < u. Let E) be the
spectral decomposition of A, so that F, is not constant in any neighborhood
of v nor in any neighborhood containing p. Take an € > 0 so that the two €
neighborhoods around v and p are disjoint and contained in (—oo0,0). Then
E,..— E,_. is nonzero, i.e., is a nontrivial projection. Therefore there is
some g # 0 so that (E,1. — E,_) o = @o. I claim that (pq, Ape) < 0.

Indeed, (o, Awo) = (o, ffooo AEx (o)), which is ffooo Ad(Ex (o), ®o),
where the latter just a Stieljes integral. But beyond v + €, Ey\(po) = ©q, S0
we only get a negative contribution. It is certainly strictly negative, since
for A < v —e¢, Ex(po) =0.

Now find a ¢, for p in the same fashion. We need to show that (yg, Ap;) =
0. But (po, Ap1) = [ Ad{po, Exip1), and it is routine to show that
(o, Exepy) = 0 for all A.

We may take ¢q and ¢, not both zero, so that cyp + 10, is perpendicular
to VJ. Then {coipo + c11, Acopo + Acypr) = 2o, Apo) + 2 (p1, Apr) < 0.
The proof now proceeds as in Step 3 of Theorem 2. O

Note. It often occurs in practice that the spectrum of A is discrete and
may be written as Ay < A\; < Ay < ..., with 0 not a cluster point of o(A).
In this special case, the parts of the hypotheses of the above theorems which
relate to o(A) are as follows. In Theorem 1 we require that 0 < g, in
Theorem 2 we require that A < 0 < A; (in addition to the hypotheses on
(), and in Theorem 3 we require that Ay < A; < 0.
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