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We construct equivariant maps from B? into CP? and prove
the global existence of heat flow of such equivariant harmonic
maps for equivariant initial-boundary data which are not a
priori required to have small range. We also show subcon-
vergence of the solution. This supplies a regular harmonic
extension of the given boundary condition.

1. Introduction.

The boundary value problem for harmonic maps has been studied by many
mathematicians. For target manifolds with nonpositive sectional curvature,
R. Hamilton [H] proved that such a boundary value problem is solvable by
the heat flow method. In the case when the target manifolds have positive
sectional curvature the situation becomes more complicated. If the bound-
ary condition lies in a geodesic convex neighbourhood of the target manifold,
S. Hildebrandt, H. Kaul and K.O. Widman [H-K-W] proved the existence
of the boundary value problem by the direct method of the calculus of vari-
ations.

Although there exist examples to show the optimality of Hildebrandt-
Kaul-Widman’s theorem, one still expects the solvability for the boundary
value problem with large image range when the boundary condition is “suf-
ficiently nice”. In [J-K] and [E-L1] the authors consider the rotationally
symmetric harmonic maps from B™ into S™ whose boundary values lie just
outside of a geodesic convex neighbourhood. Recently, many works have
been written on maps from B® into S? ([Ha], [H-K-L1], [H-K-L2], [H-L-
P] and [Z]). Among them D. Zhang obtained a regular axially symmetric
harmonic extension of B? into S? for any regular axially symmetric boundary
data which omit a neighbourhood of the south pole [Z]. As is well-known
there are only two different kinds of isoparametric hypersurfaces in Euclidean
space: umbilical ones and generalized cylinders. It is interesting to see that
they correspond to the two kinds of reductions given by Jager-Kaul and
Zhang [J-K], [Z], respectively. By putting the problem in this framework
with some essential technical improvement the result in [Z] has been im-
proved in author’s previous work [X2].
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Zhang’s result can also be proved by the heat flow method, as shown in
[G1]. Coron-Ghidaglia first studied harmonic heat-flow into S™ (n > 3) for
equivariant data [C-G]. In addition, there are several works on heat flow
of equivariant harmonic maps; see [C-D], [C-D-Y], [G2] and [G3]. All of
them treated the case when the target manifold is S? which can be viewed
as a complex projective line CP!.

It is natural to study the similar problem when the target manifold is
a higher dimensional complex projective space. This is the subject of the
present paper. We concentrate on the case where the domain is the 3-
dimensional unit ball, and the target manifold is CP?.

Let B® be the 3-dimensional unit ball. Under an S* action the base region
D € R? is given by

D={(rz) eR; r’+2°<1, r>0}

Then 7 = (r,z) : B® — D is an isoparametric map of rank 2. On the other
hand the distance function from a fixed point in CP? is an isoparametric
function ¢ (0 < ¢ < Z). Let f, : S' — S§*, f, : §' — CP' be harmonic
maps of constant energy densities 3‘2-,1 and 322 , respectively. In fact, f; and f,
are harmonic polynomial maps and A\, = k3, A\, = k2, where k;, k; € Z. We
will explain in Section 2 how f, and f, can be used to define an equivariant
map f from B® into CP?2. We obtain the following result.

Main Theorem 1 For any equivariant initial-boundary condition with re-
spect to the isoparametric map T and the isoparametric function ¢, whose
restriction to D is a regular function ¢ (0 < ¢ < %, ¢(0,2) =0) on D
and is of order O (rv*””\? as r — 0, there exists a unique global solution
to the evolution equation for the boundary value problem of harmonic maps
from B® into CP2. Furthermore, this solution subconverges to an equivariant

harmonic map as t — 0.

Remark. It is well-known that for complex projective space with the
Fubini-Study metric, the sectional curvature lies between 1 and 4, the radius
of the geodesic convex ball is § and its diameter is 7. The boundary condition
in our theorem overpasses the convex ball and can reach any possible range.

The reminder of the paper is organized as follows:
2. The Geometry of CP";
3. Construction of the Equivariant Maps into CP?;
4. Heat Flow;

4.1. Short Time Existence,

4.2. Barrier Functions,
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4.3. Proof of the Main Theorem;
5. Final Remarks.
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2. The Geometry of CP".

Let m : §?»*! — CP" be the usual Riemannian submersion with totally
geodesic fibers S'. For any Z € S?™*! there exist X € S*» ! and Y € §*
such that

(2.1) Z = (Xsin¢g,Ycosg), 0< ¢ < g—,

where ¢ is an isoparametric function on S?"*! which is equivariant with
respect to Riemannian submersion w. This induces an isoparametric function
on CP" . We denote it by the same letter ¢. The level hypersurfaces of ¢
are given by

(2.2) My = §*!(sing) x S (cos ¢)/S",

T
O<¢<§

with the focal point A € CP" and the focal variety CP"~*. One can easily
see that M is the geodesic sphere at the distance ¢ from A.

Every geodesic emanating from the point A lies in certain complex pro-
jective line passing through A. It follows that these projective lines are
the integral manifolds of the distribution {n = grad ¢, Jn}, where J is the
complex structure of CP*. We know that CP' = S%(1) of constant sec-
tional curvature 4, which is totally geodesic in CP". The integral curves of
n = grad ¢ are geodesics in CP". Thus CP' has the metric form in polar
coordinates

2
(2.3) de¢® + (%sin2¢) do?,

where 0 < a < 2x. It follows that Jn lies in the principal direction corre-
sponding to the principal curvature —2 cot 2¢.

For any Z in a level hypersurface M, we draw a geodesic y(¢) connecting
the points A and Z (vy is unique and perpendicularly intersects My, since the
cut locus distance is Z), then extend it to the focal variety CP"~*. This yields
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a unique intersection point A’ € CP"~!. These two points A and A’ uniquely
determine a complex projective line CP' = S?(3) which perpendicularly
intersects the geodesic sphere My at S*(3 sin 2¢). Therefore, in CP" there are
geodesic polar coordinates (¢, a, Z'), where a is another coordinate on CP!
from A, and Z' is the coordinates on the focal variety CP"~!. Choosing a local
orthonormal frame field in CP"~! near A’ then parallel translating it back to
the Z along -y(¢), it can be proved that all of those lie in principal directions
corresponding to the principal curvature —cot ¢ (see author’s previous paper
[X1]). Hence, we have

Proposition 2.1. The geodesic sphere My = S**~!(sin¢) x S*(cos ¢)/S*
in CP™ has principal curvatures — cot ¢ of multiplicity 2n—2 and —2 cot 2¢.

3. Construction of Equivariant Maps into CP?.

Let (M, g) and (N, h) be Riemannian manifolds with metric tensors g and h,
respectively. Harmonic maps are described as critical points of the following
energy functional

(3.1 By =3 [ e+,

where e(f) stands for the energy density. The Euler-Lagrange equation of
the energy functional is

(3.2) 7(f) =0,
where 7(f) is the tension field. In local coordinates
i OFPOFY\ O
— a o

where I'G denotes the Christoffel symbols of the target manifold N. Here and
in the sequal we use the summation convention. For more detail knowledge
of harmonic maps please consult [E-L2].

Let 7 : M — M, 7, : N = N be Riemannian submersions. If f : M — N
is a fiber-preserving map, namely for the points z;, o, € M, my(f(z,)) =
7o (f(z4)) provided m;(z1) = mi(z2), then f is called an equivariant map
with respect to Riemannian submersions 7; and m,. Due to the structure of
the Riemannian submersion there are vertical vector fields which are tan-
gent to fiber submanifolds and horizontal vector fields which are orthogonal
complements of the vertical vector fields. A map f is called horizontal if it
maps any horizontal vector field to a horizontal one [X1].
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Now we are going to define a concrete equivariant map from B? into CPP?
and apply the reduction theorem in [X1] to obtain a reduced harmonicity
equation.

Let B® be the open unit 3-dimensional ball in R®. For any Z € B® there
exist X € S§* and (r,2) € D, such that

Z = (TX’ z),
where

D={(rz)eR, r*+22<1, r>0}.

It can be verified that 7 = (r,2) : B> — D is an isoparametric map of rank
2 with fiber submanifold S*(r). In D we define a usual flat metric dr? + dz?
such that 7 : B* \ {r = 0} — D is Riemannian submersion [X2].

On the other hand, on the target manifold CP?, as described in the last

section, there is an isoparametric function ¢ with focal point A and the focal
variety CP!.
Let f; : S — CP! be a harmonic map with the constant energy density
, f2:8' — S! be a harmonic map with the constant energy density
. Now we define a map f : B> — CP? as follows. For any Z = (rX,z2) €
\ {r = 0} we join A and f;(X) € CP' by the unique complex projective
line which intersects a level hypersurface My,,,) at a circle S*(1 sin2¢). By
then using f, we have a point f(Z) € My, € CP?, where the smooth
function ¢(r, z) on D will be determined later by the harmonicity equation.
It is easily seen that f is an equivariant map with respect to Riemannian
submersions in both domain and target manifolds. It induces a harmonic
map between fiber submanifolds. It is also a horizontal map.

Thus, we can use the reduction theorem in ([X1], pp. 273-275) to derive
the harmonicity equation. Let B, be the second fundamental form of the
fiber submanifold M, in CP?. Let {1e} be a unit vector field of S*(%). By
a direct computation

oo

1 1)  MAsingcos¢ Agsin2¢cos2¢
(34) Bg (f*;e, f,,‘;@) = - 2 o2 .

Therefore, the reduced harmonicity equation follows

o ¢ 106 X

(3:5) or? = 022 + ror 2r?

sin 2¢ — 2)‘722 sin 2¢cos 2¢p = 0,

(r,z) € D, 0<¢<Z2T—.
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If ligé ¢(r,z) = 0, then f can be continuously extended to whole B®. Fur-

thermore, f(B®) does not lie in a complex projective line CP! for A; # 0,
since any complex projective line starting from A intersects the focal variety
CP! at only one point. If X, # 0, then f(B?) does not lie in a real projective
plane RP?. We are interested in the general case when both A\, and ), do
not vanish. Our construction is essentially a generalization of that in [Z].

If the boundary data are also equivariant with respect to isoparametric
map 7 and the isoparametric function ¢, then the boundary condition is
also reduced to the boundary 0D. Furthermore, suppose that the function
1 = ¢|sp satisfies the following conditions:

(3.6) 1) =0 when r =0;
s
2) r%%xz/) < 5

Any solution to the equation (3.5) with boundary conditions (3.6) supplies
us a continuous map f from B® into CP?, which is smooth harmonic on
B? \ {r = 0}. One can prove that the map is weakly harmonic on whole
B® by a cut-off function technique. Thus, by main regularity theorem for
harmonic maps (see [Hi] or [E-L2, p. 397]), f is a smooth harmonic map.

4. Heat Flow.

Let us consider the following evolution problem:

(4.1)

0¢ B¢ 0% 106 A . Ay .

Bt a2 + FF) + o -2-;2—81112(}5 - -27§SIHZ¢COS2¢),
(4.2)

¢(10) :(1)0(7",2), 0 < 450 < 22[’
(4.3)

¢('7t)l8D = ¢0|6D = ¢v ¢(07‘z) = 0)
where ¢, is a regular function on D and is of order O (TV A‘“‘?) as r — 0.

4.1. Short Time Existence. We first prove the short time existence for
(4.1) - (4.3). As derived above (4.1) is the reduction equation of the gen-
eral harmonicity equation from B? into CP2. In B® we choose axially sym-
metric coordinates (r,6,z) and in CP? we have geodesic polar coordinates
(¢,a,B,7), where (83,7) are the coordinates in the focal variety CP' of the
isoparametric function ¢. We consider the initial-boundary value problem of
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the evolution equations for harmonic maps f from B? into CP? as follows.

(44) oL =n(p),
(45 £6,0) = £o(), F6Dls: = follse

It is known that for regular f, there exists a unique regular soluton f :
B® x [0,T) — CP? to the problem (4-4) — (4.5), where T € (0,00] is the
maximal existence time (see [H, p. 122]). In our case the initial-boundary
conditions are equivariant. Besides (4.2) and (4.3) we also have the following
conditions.

Ol(',O) = kzg, a(-,t)|52 = k20,
(4.6) B(-,0) = k.8, B(- )]sz = k10,
’Y()O) = Oa ’Y(',t)lSZ = Oa

where \; = k? and )\, = k2.

If we can prove that the solution to the equations (4.4) with the equivari-
ant conditions (4.2), (4.3) and (4.6) is also equivariant, then by uniqueness
we will complete the proof of short time existence for (4.1) — (4.3). To do
this we consider the tension field in the above coordinates. Notice that the
concrete expression of the tension field in each component does not involve
6 variable explicitly, and neither do the cofficients in equations (4.4). The
solution to the equations (4.4) is invariant under translation of the 6 vari-
able. Due to the equivariant initial-boundary conditions and uniqueness of
the solution, a priori we can assume that the solution has the following form:

¢ = ¢(T, z,t)7

(4.7 a = ky0 + a(r, z, t),
ﬂ: k10+5(’f‘,2,t),
Y= ’7(7‘,Z,t),

where ¢(r,2,0) = ¢o(r, 2), @(r,2,0) = 0, B(r,2,0) = 0, §(r,2,0) = 0. Let
hi; be the metric tensor in the geodesic polar coordinates on the target
manifold CP? as described above and h;; = diag(l, sin’¢cos®¢, sin’g,
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sin® ¢sin’ 3 cos? 3). The equations (4.4) then become

(4.8)
= a0y (o ) 350 (e )
- A+,
hua(a ~ AG) ~ 2 (.0, + 6.6 =0,
s (B = AB) = 2 (8B + 9ufe) + 5 5ot (3247 =0
s (e = A9) = S5 (87, + 6272) = gt (B + Bire) =

Kz
Let v = \/hyo@. From (4.8) it follows that

o 1 8h22)2<_2 L, k§>
Av = [4h22(8¢ a,+0z2+r2

1 ihg—gahgg 2 =9 k2>
 Ghes 06 09 (5 A+

1 Ohy, Oh 1 0*v/h,

+ 22 44 ('_)’3‘*"72) -

4hyy 0¢ O¢ Vha 04
v(r,2z,0) =0, v(r,zt)|lep =0 for 0 <t <T.

2 (@2 +¢2)|v

By the concrete expressions for the metric tensor h;; we know that the
coefficient of v is bounded from above on D x [0, s] for s € (0,7). By using
the maximum principle [F] we conclude v = 0, and then o = 0. Similarly,
after proving 5 = 0 we also can prove v = 0. Hence, we have

Lemma 4.1. The evolution problem (4.1) — (4.3) has a unique regular
solution ¢(r,z,t) on D x [0,T) for some T > 0. Furthermore, if ¢ # 0,

(4.9) 0 < ¢(r,z,t) < ;_r for (r,z,t) € D x (0,T).

Proof. 1t suffices to prove (4.9). We write equation (4.1) in the form

o9 ¢ ¢ 199
5t = o2 "oz oy T ANANS

where

A1 8in2¢ + A, sin2¢ cos 2¢
2r2¢(r, 2, t) ’

Q('f', Z,t) = -
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which is bounded from above on D x [0, s] for s € (0,T). Due to (4.2) and
(4.3) we can employ the maximum principle to obtain ¢(r,z,t) > 0 unless
it is identically 0. Similarly, let n = § — ¢. Then 7 satisfies

on 0'n &%n 10n
5t~ o "o Trar TPOAIN
where
A1 8in2n — A, sin 27 cos 27
2r2q(r, 2, t)

p(r,z,t) =

Since 7(0, 2,t) = £ > 0 we may choose small £ such that 7 > 0 on D, x [0, 5],
where s € (0,7, and

D, ={(r,z) € D; r<e}.

It is easily seen that p(r,z,t) is bounded from above on {D \ D.} x [0, 5].
Due to (4.2) — (4.3) we use the maximum principle again to conclude n >

0. g

4.2. Barrier Functions. To analyze the blow-up phenomena let us con-
sider the z-independent solutions of (3.5), which are solutions to the follow-
ing ODE

d’¢  1dp N

A
+ ==L — L sin2¢p — =2 sin 24 cos 2¢ = 0,
2r2

(4.10) drz " rdr  2r2

0<r<l, 0<¢<g.

To solve equation (4.10) with the condition li_r)% ¢(r) = 0 we make the

change of variable r = e®*, —oo0 < z < 0. Then (4.10) becomes
2

(4.11) %—%sin%&—%sin%ﬁcos%):o,

(4.12) o <z<0, 0<¢< 72-5 lim_¢(z) =0.

Multiplying (4.11) by % and integrating, we obtain

dz

where c is a constant. Due to the conditions (4.12) the constant c has to be
zero and (4.13) becomes

@ = ++/A; + Ay cos? ¢sin ¢.

dz

2
(4.13) <@-> — X\ sin ¢ — —)513 sin’ 2¢ = c,
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Noting (4.12), the minus sign of the right hand side of the above equation is
impossible. Therefore, (4.13) reduces to

(4.14) %@é = v/ A1 + Ag cos? ¢ sin ¢.
T

For any initial condition ¢(zo) = 7, —00 < zp < 00, there is a unique
solution ¢(z) to (4.14), which can be extended to whole line (—o0, 00) since
the right hand side of (4.14) is bounded. Notice that the constant solutions
of (4.14) are ¢ = km, (k = 0,£1,---). Let us consider the solutions ¢ of
(4.14) with initial condition 0 < 7 < 7. By uniqueness the solution curve
on (z,¢) plane lies within two lines ¢ = 0 and ¢ = w. Thus xEI—noo ()

exists, which implies that there exists a sequence of points {z;} — —oo

such that %(wk) — 0. Considering the equation (4.14) on those points gives
lim ¢(z) = 0. Similarly, lim ¢(z) = 7. In summarizing, we have

——00 T—>00

Lemma 4.2. For any 7 < w there exists a unique solution ¢.(z) of

(4.14) satisfying the boundary conditions ¢.(0) = 7 and im ¢(z) = 0.

Futhermore,

¢n () < ¢ry(2),

where 7, < Ty.

Lemma 4.3. Let ¢(r) be a solution to (4.10) satisfying the boundary con-
ditions .
lim¢(r) =0 and ¢(ry) = 2arctan (cr&ﬁl—) < 3

r—0

Then we have the estimates
(4.15) 2 arctan (crv’\”‘“) < ¢(r) < 2arctan (cr‘/A_l) ,

where 0 <r <1y <1 and c is a positive constant.

Proof. Let
Li(y) = % — VA sing

for —oo < z < Inry. It can be verified that 1 = 2arctan (cexp v/ z) is a
solution to the equation

L,(y)=0.
For a solution ¢(z) to (4.14) with

¢(Inrg) = 2arctan (cr(;/’\_l) < g—
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Li(¢) = % — V) sing

- VAL + Az cos? psing + /Ay + Az cos? psing — /A sing
= /A1 + Az cos? gpsing — A sing > 0.

Notice that
¢(Inry) =¢¥(nry), lim ¢(z) = lim 9(z) =

r——00 r——00
If there exists a point z € (—o0,Inr) such that (¢ — 1)(z) > 0, then there
is a positive maximum point zy € (—00,In7y) of ¢ — 1. We have

0 < Li(¢ — 9)(z0) = v M (sintp(zo) — sin ¢(zp)),

but the right hand side of the above expression is negative. The contradiction
implies ¢ < 9 on (—o0,Inry]. Reversing back to the original variable gives

#(r) < 2arctan (crm) .

Let

Ly () = (:’b VAL + Az sing.

Then any solution of (4.14) is a supersolution of Ly(3) = 0. By the similar
argument as the above will obtain another inequality of (4.15) O

Lemma 4.4. There ezists a solution é to equation (4.10) satisfying the

condition lirréqﬁ(r) = 0 such that ¢ > ¢ on D, where ¢y is the given
r—

initial-boundary data satisfying conditions (4.2) and (4.3).

Proof. By the condition of ¢y near r = 0 there are constants K and ¢ such

that
$o(r,z) < KrvM+22  when r < 6 and (r,2z) € D.

On the other hand, there is §; > 0, such that

2crVAitiz oy
> KT.\/ 1+ 2’

— \/)\1+>\2) : — B
¢. = 2arctan (cr > sing, 1T s 2

when ¢ > £ and r < §;. For this c,

2
¢ > Po on Dﬂ{r<60},

where Jo = min(d,d;). Furthermore, we can choose c sufficiently large such
that on DN {§, <r <1}

¢. > 2arctan (055 )‘”L’\z) > mgx(d)o).
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We have shown that there exists ¢y such that ¢., > ¢o on D.
Choose 7o such that cory *+*2 = 1. Denote by ¢ the solution to (4.10)
with the boundary conditions 1i_r}x& ¢(r) = 0 and ¢(ro) = 5. By Lemma 4.3,

> ¢, >0 on DN{0<T <1}
Notice that (]3 is monotone increasing and

(zl[ro,l] 2> > ¢0-

ST

O

We need the following comparison principle, as in [G1, Lemma 4.3]. For
completeness we also include the proof here.

Lemma 4.5. Let ¢(r,2,t) be a regular solution to (4.1) — (4.3) on [0,T).
Let ¢ be a regular solution to equation (4.1). Moreover, let ¢ and ¢ satisfy
the initial-boundary relations:

(416) é(n Z, O) 2 ¢0(T1 Z) on Da

Blap = dolop,  $(0,2,t) = ¢o(0,2) = 0.
Then ¢ > ¢ on D x [0,T).

Proof. Let n = ¢ — ¢. By (4.16) n <0 on D x {0} and on 8D x [0,T). By
equation (4.1) n satisfies

(4.17) M = Npr + Nz + % +p(r,z,t)n  on D x[0,T),
where
_ M (sin2¢ —sin2¢) ) (sin4d¢ —sindg)
p(r,z,t)—— 2((}“)_(}5)7.2 4(;?)——(}5)’!‘2
1t - I .
=—ﬁ/ cos2 [s¢ + (1 — s)¢] ds—r—2 cos4 [s¢+ (1 — s)¢] ds.
0 0

Since ¢(0,z,t) = ¢(0,2z,t) = 0, for each t, € (0,T) there exists € > 0
such that p < 0 on D, x [0,ty]. Hence p(r,2,t) is bounded from above on
D x[0,t] . By using the maximum principle again we conclude that n < 0
on D x [0,T). O
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4.3. Proof of the Main Theorem. Now we are in a position to prove the
theorem stated in the introduction by the standard method, as shown in
[G1].

Let ¢(r, z,t) be the unique solution to (4.1) - (4.3) on D x [0,T), where
T is the maximum existence time. If T is finite, then ¢ must blow up at 7,
i.e. for some (r,2) € D

lim sup [V(r, 2,1)| = oo.

By Lemma 4.4 we have the regular solution é to (4.1), which is independent
of t and z. By Lemma 4.5, ¢ > ¢ on D x [0,T). Therefore, from (4.15) it
follows that

Br,zt) — 9(0,2,8) _ () — d(0) _ 2arctan (cr™)

r T r

for sufficiently small r, and |¢,| is bounded at » = 0 when t — T.
Therefore, if blow-up first occurs on » = 0, then we have a sequence
(ri,2i,t:) = (0,2*,T) for which |¢,| — oo. Then for all i sufficiently large,
we have
¢ (i, 2is ts)| > 1.
On the other hand, since ¢ is C*t*(D x {t}) for t < T, there exists {a,}
such that

1

(418) ”¢('ati)”2+a < a—
We can choose r; < a; and obtain

iy Zi, ;) — .t 1 1

]¢Z(T'E7Z’L’tl) ¢Z(07 zl tl)l > - > s

T; r; a;

bl

||¢('ati)“2+a > maxl¢zr(',ti)| >

which contradicts (4.18). Thus we conclude that there is no blow-up on
r = 0 and there exists € > 0, such that

(4.19) sup ||Vo|le < 00.

D, x[0,T)
The solution ¢ can also be viewed as a bounded solution to the linear
parabolic equation

1
¢t:¢r,+¢z2+;¢r+p(r,z,t) on D\ D, x[0,T),

where

A1 8in2¢ + A, sin 2¢ cos 2¢
p(r,z,t) = - o2 .
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It is easily seen that

A + A
lp(¢,7)| < 5 D\ D..
Hence we can apply the estimates for linear parabolic equations to obtain
(4.20) |gllcz+ai+a(pr\D, x[0,1) < C(E),

where C(g) is a constant depending only on ¢ (see [L-S-U], pp. 351-355).
Inequalitties {4.19) and (4.20) mean that there is no blow-up for the solution
and ¢ is the global solution and

sup [[Vé(:,t)lle < C.
tef0,00)
It turns out that (4.20) holds for T' = oo.
We now study the convergence of ¢(r,z,t) when ¢ goes to infinity. By a
direct computation the energy functional of the defined map f is

(4.21)
1 Op\?  [04\? Asin®¢  Aysin®2¢
g/D [(5) + (‘a—z) + ) + 472 rdrdz.
We have
EJE _ A1 sin2¢ ¢, )\2 sin 2¢ cos 2¢ ¢,
7= (8t bugus 20 Pt rards

— [ |5 6br) + (6.6 dras

09 .
_ / (¢M + b+ ld)r _ A sin 2¢ _ Ao sin 2¢ cos 2¢) yr drdz.
D T 212 2r2

Using Stokes’ theorem and the fact that ¢;|sp = 0, we see that the first term
of the above expression vanishes. From (4.1) it follows

dE

(4.22) —_ = —/ (¢¢)r drdz.

dt

Since

E((f)(T,Z,O)) = E(¢0(Ta Z)) < 00,

there exists a sequence of points {¢;} — oo, such that

/ $2(z, 2,1 )r drdz — 0.
D
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Thus for any n € L*(D)

(4.23) / @s(ry 2, t)pr drdz — 0.
D

This means that ¢,(r,z,t;) converges to zero weakly in L*(D) as t; ap-
proaches infinity. From the estimate (4.20) we may choose a subsequence
of {tx} (denoted by {t;} for simplicity), such that ¢(z,z,%;) converges to
oo = ¢(r, 2,00) strongly in C***(D \ D,). Due to (4.23), ¢ is a weak so-
lution to (3.5), and therefore a regular solution to (3.5). From the previous
discussion
0 < ¢(r, 2,1) < ¢(r)

for any t. It follows that ¢, = 0 asr — 0. Hence ¢, is a regular solution to

(3.5)-(3.6) and by our previous discussion supplies an equivariant harmonic
map from B? into CIP?. O

5. Final Remarks.

1. If the domain manifold is the unit disk B?> we consider the polar co-
ordinates instead of the axially symmetric coordinates. By the similar but
simpler discussion we have a corresponding theorem . As for target manifold
being CP™ (n > 2) we can also conclude a similar result.

2. It is natural to investigate the higher-dimensional cases. Let B"*! be
the open unit ball in (n+1)-dimensional Euclidean space. For any Z € B**!,
there exist X € S™ !, (r,2) € D such that

Z = (rX,z),

where D is as defined in Section 1. One of the factors of our construction
is the harmonic maps from S™! into S* in this case. When n > 2 such
a harmonic map has to be constant, then the construction reduces to the
special case. If let the target manifolds be quaternionic projective spaces,
there appears S° instead of S'. It seems that results could be obtained for
maps from higher-dimensional ball into quaternionic projective spaces (see
e.g. [X2]). The analogue of (4.10) will be more complicated in this case, and
in particular will not admit a first integral. It is possible that the stability
theory of ODE would provide some information.
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