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TWO GENERALIZATIONS OF THE
GLEASON-KAHANE-ZELAZKO THEOREM

ERIK CHRISTENSEN

In this article we obtain 2 generalizations of the well known
Gleason-Kahane-Zelazko Theorem. We consider a unital Ba-
nach algebra 2(, and a continuous unital linear mapping ¢ of
2 into M, (C) — the n x n matrices over C. The first general-
ization states that if ¢ sends invertible elements to invertible
elements, then the kernel of ¢ is contained in a proper two
sided closed ideal of finite codimension. The second result
characterizes this property for ¢ in saying that ¢(2l,,) is con-
tained in GL, (C) if and only if for each a in 2 and each natural
number k:

trace(p(a”®)) = trace(p(a)¥) .

1. Introduction.

The results are based on Aupetits work [1], where he proves that if ¢ is
surjective and ¢(2,y) is contained in GL,,(C) then ¢ is a Jordan homomor-
phism. Some of the key ingredients in Aupetits proof are some relations
which involve ¢ and the trace. We quote [1, Rel (3), p. 15]

trace(p(zy)) = trace(p(z)e(y))-

The results in this paper are based on some elaboration of the identity above.

Aupetits result is proved via a Liouville Theorem for harmonic functions.
Since we could not get the reference quoted in [1] for this result, we have
included a slightly different argument, which on the other hand is an appli-
cation of the Hadamard Factorization Theorem, very much in the same way
as used in [3, 4].

2. Notation and basic results.

We will consider a unital Banach algebra 2 over the complex numbers, and
let 2, denote the set of invertible elements in 2. For a natural number n
we let M, (C) denote the n x n matrices over C and we will let tr(-) denote
the usual trace on M, (C), which satisfies tr(I) = n. We remind the reader
that a functional f on an algebra 9B is called a trace if f(ab) = f(ba) for all
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a,b from B. Moreover — up to scalar multiples — there exists only one trace
on M, (C).
The following lemma is well known, but we do not have an exact reference.

Lemma 2.1. There exists a positive real 7(0 < r < 1) such that for all z
in M, (C) with ||z — I|| < r we have

|det(z) —1| <1 and Log(det(x)) = tr(Log(x)).

Proof. The existence of (0 < r < 1) such that ||[z—I]| < r = |det(z)—1] <1
follows from the continuity of the determinant. Suppose now x in M, (C)
is chosen such that ||z — I|| < r < 1 then the power series for Log(1 + u)
in the circle {u € C | |u| < 1} converges for both (det(x) — 1) and (z — I)
so the expressions make sense. The equality is easily obtained when x is
represented in a Jordan normal form. [l

3. Main results.

We start by recapturing the basic results from [1] in Theorem 3.1, and then
we present our extensions.

Theorem 3.1. Let A be a unital Banach algebra ¢ a continuous unital
linear mapping of A into M, (C).

If o(Uiny) € GL,(C) then:
(i) Va,beA:det(p(e®eh)) = det(ef@er®)),

(
(ii) Va,b e A:tr(p(ab)) = tr(p(a)e(d)) = tr(e(ba)),
(iii) Va,b € A : det(p(ab)) = det(p(a)p(b)).

Proof. For an a in 2 we define an entire function f(z) by
£(2) = det(p(e)e "),
As usual f(z) # 0 for all z and the order p of f satisfies p < 1 since

[F ()] < llell™ exp(|z|n(llall + lle(a)]))-

By Hadamards Factorization Theorem [2, p. 291; 5 p. 250] we have f(z) =
ez but f(0) =1 so f(z) = e,
Following Lemma 2.1 we get that for some positive real r we have

z, |z| <r: Bz =tr(Log(I + z¢(a) + O(z%))) — ztr(p(a))
= 0(z%).
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Hence 8 = 0 and det(p(e?)) = det(e?(@).

In the general case define an entire function f(w,z) in 2 variables by
flw,z) = det(p(ev2e®®)e wr(@e=2¢®)) Let w be fixed then the function
g9(z) = f(w,z) is entire, never vanishing, of order 1 and by the previous
result g(0) = 1, hence there exists a complex function a(w) such that
fw,2) = g(z) = e*®= By analogy we find a complex function ((z)
such that f(w,z) = e*%*). Hence there exists a constant vy such that
f(w,z) = ™% On the other hand the function k(z) = f(z,z) is easily
seen to be of order less than or equal to 1 so v =0 and (i) follows. Ul

Applying Lemma 2.1 to both sides in the following identity
det (e“’“’(“)) det (ez“"(b)) = det (¢ (e“*e™))

shows that there exists a positive real r such that for all z,w in C with
lz| <7, |wl <7

witr (¢ (a)) + ztr (@ (b)) = tr (Log (¢ (e”e*")))
= tr (Log (I + we (a) + z¢ (b) + wzep (ab) + w’p; (w, 2) + 2°p2 (w, 2)))
=wtr(p(a))+ ztr (¢ (b)) + wztr (¢ (ab))

- %wz tr (¢ (a) ¢ (b) + ¢ (b) ¢ (a) + w’ps (w, 2) + 2°ps (w, 2)

where p;(w, z) are power series. Hence (ii) follows from the properties of the
trace. The relation (iii) is a consequence of (i) since for |z| > ||a|| + ||b]| we
have (z —a) = z(1 — ¢) = zexp (Log(I — 2)) and a similar expression for b
and hence for |z| > ||a]| + ||b]| we have

det(p((a — 2)(b— 2))) = det(p(a — 2)) det(i(b - 2)).

Since the functions involved are entire, we get (iii) for z = 0.

The relation (ii) is the basis for the following result.

Theorem 3.2. Let 2 be a unital Banach algebra and ¢ a continuous, unital
linear mapping of A into M, (C).
If p(Usny) € GL,(C) then A has a proper closed two sided ideal J — of

finite codimension — which contains the kernel of .

Proof. Define J = {a € A | Vb € A : tr(p(ab)) = 0}, then J is obviously
a closed right ideal, but by the trace property — tr(p(ab)) = tr(¢(ba)) —
from (ii) in Theorem 3.1 we see that J is a left ideal as well. The property
tr(p(ab)) = tr(p(a)p(b)) from (ii) above shows that kerp C J. Hence J is
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of finite codimension and since p(I) = I we get I ¢ J and J is a proper
ideal. u

Corollary 3.3. Let k,n be natural numbers if ¢ is a unital linear mapping
of My, (C) into M,,(C) which satisfy p(GLx(C)) € GL,,(C), then ¢ is injective
and k divides n.

Proof. Since M, has no nontrivial ideals, we get ker ¢ = {0} and ¢ is injec-
tive. By (ii) in Theorem 3.1 we get that tr, oy is a trace on M (C) which
satisfies tr,,(p(I)) = tr,(I) = n. By the uniqueness (up to scalar multiples)
of the trace on M (C) we have for all a in M (C): tr,(¢(a)) = (n/k) tri(a).
Let e be a rank 1 projection in M (C) then o(p(e)) C o(e) = {0,1} so
tr,(¢(e)) € No. On the other hand tr,(p(e)) = (n/k)tri(e) = n/k so
n/k € N. |

Corollary 3.4. If o(i) € GL,(C) then there exists a unital finitedimen-
sional algebra B and a linear mapping ¥ of M, (C) into B such that 1) o @
s a unital homomorphism.

Proof. Just another formulation of the result ker ¢ C J # 2, combined with
elementary algebra. [l

The property (ii) from Theorem 3.1 and the theorem above are generaliza-
tions of the original Gleason-Kahane-Zelazko Theorem. The following result
yields another generalisation as well as a characterization of the mappings
¢ which satisfy ¢(2,,) € GL,(C).

Theorem 3.5. Let2 be a unital Banach algebra and ¢ a unital continuous
linear mapping into M, (C). Then ¢(in,) € GL,(C) if and only if

VkeNVaeA:tr(p(a¥)) =tr (p(a)k).
Proof. Suppose first that ¢(Ui,,) € GL,(C). Let r be the positive real
comming from Lemma 2.1 and let a be in % and z in C, then there exists a
positive real 71,0 < r; < ||a||~* such that for |z| < 7
lp(I + za) —I|| <r and || exp(p(Log(l + za))) —I|| <r.

By Theorem 3.1 (i) we get for |z| <

det(yp(exp(Log(I + za)))) = det(exp(¢(Log(I + za))))
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so by Lemma 2.1

Vz,|z| <ry:tr(Log(I + z¢(a))) = tr(e(Log(l + za))).

By expanding in power series and comparing terms we get
VEeN: (=1D)" 'k 'tr(p(a)®) = (1) "k tr (p(a”)),

and the first part of the proof is complete. Let us now suppose, that for
each k£ in N and any a in 2 tr(¢(a®)) = tr(¢(a)*). Let b be an element in 2
and let € denote the abelian unital Banach algebra generated by b and all its
resolvents in . Since € is abelian we get for ¢,d in € ¢d = 1((c+d)*—(c—d)?)
SO

() tr(ed)) = 1 (ir ((0(e) + 9(d))? ~ (() — 9(@))?) ) = tr(p(c)e(d))

Having this identity we may as in the proof of Theorem 3.2 define a two
sided ideal J¢ in € by
Je={ceC|Vde€:tr(p(cd)) = 0}.
Again J; # € and
(kerpNC) C Je.

Since J¢ is a proper two sided ideal in € and b is invertible in €, b ¢ Jg,
and ¢(b) # 0. Let p(z) be a monic polynomial which satisfies p(¢(b)) = 0.
The roots for p are divided into two groups L = {A,..., Ay} and M =

{p1, .., m} corresponding to the criteria: for each A; we have (b— ;) is not
invertible in € and for each p;, (b— ;) is invertible in €. Finally, there exist
exponents r,...,7; and s1,...,S such that
k !
p(z) = <H(93 - AD”) [I@—w)|.
i=1 j=1

In order to link properties of p(b) to properties of p(p(b)) = 0 we state
and prove that for any polynomial ¢ and any ¢,d in € we have

(+) tr(p(g(c)d)) = tr(p(a(c))p(d)) = tr(g(p(c))p(d))-

The proof of (xx) follows from the proof of the special case where ¢(z) =
x°, s € N. Let z € C then by assumption

VzeC: tr(p((ct2d)*™)) =tr ((w(C) + w(d))SH)



32 ERIK CHRISTENSEN

and then by comparing terms

tr(p(c’d)) = tr (¢(c)’p(d)) -

Having (**) we get p(b) € Je. Since the elements (b — ;) are invertible in €
we get for the polynomial ¢(z) = [I_, (z —\;)" that ¢(b) € Je. By definition
of J¢ and by (**) we then have

VseN: tr((g(e(b))’) = tr(p(q(b)*)) =0.

The matrix g(¢(b)) is then nilpotent and then for each X in o(p(b)) there
exists an ¢ € {1,...k} such that A = \; € o(b), and we have proved that
a(p(b)) € o (b), 50 P(Ainy) S GL,(C).
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