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ON FIELDS WITH FINITE BRAUER GROUPS

Ido Efrat

Let K be a field of characteristic 6= 2, let Br(K)2 be the 2-
primary part of its Brauer group, and let GK(2) = Gal(K(2)/K)
be the maximal pro-2 Galois group of K. We show that Br(k)2

is a finite elementary abelian 2-group (Z/2Z)r, r ∈ N, if and
only if GK(2) is a free pro-2 product of a closed subgroup H
which is generated by involutions and of a free pro-2 group.
Thus, the fixed field of H in K(2) is pythagorean. The rank r is
in this case determined by the behaviour of the orderings of K.
E.g., it is shown that if r ≤ 6 then K has precisely r orderings,
and if r <∞ then K has only finitely many orderings.

Introduction.

It is an open problem in the theory of algebras to characterize the fields
K over which there are only finitely many K-central (finite dimensional)
division algebras. Equivalently, the Brauer group Br(K) of K should be
finite. As an abelian torsion group, Br(K) is the direct sum of its p-primary
components Br(K)p, p prime, so one has in fact to know when is Br(K)p
finite and when is it trivial. Much light is shed on this problem by the
following conjecture of Brumer and Rosen [BR] which states: for each p

either
(i) Br(K)p = 0;

(ii) Br(K)p contains a non-trivial divisible subgroup; or

(iii) p = 2 and Br(K)2 is an elementary abelian 2-group.
This conjecture has been proven in many cases ([BR], [Mer2], [Wu]) -
notably, Merkurjev proved it under the assumption that char K 6= p and K
contains the group µp of roots of unity of order p (or more generally, when
(K(µp) : K) ≤ 2; an alternative proof was given by Kahn [K]). Note that
when char K = p, Br(K)p is divisible, so the conjecture is obviously true.
When µp ⊆ K we also have Br(K)p = 0 if and only if GK(p) is a free pro-p
group (here GK(p) = Gal(K(p)/K), where K(p) is the compositum of all
finite Galois p-extensions of K; cf. Lemma 1.1(a) below). Thus, an essential
problem is to characterize the fields K for which Br(K)2

∼= (Z/2Z)r for
some r ∈ N. In this paper we characterize these fields in terms of the group
GK(2). Recall that a field K is pythagorean if any sum of squares in K is
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a square; equivalently [B1], GK(2) is topologically generated by involutions.
We prove:

Main Theorem. The following conditions on a field K of characteristic
6= 2 are equivalent:
(a) Br(K)2 is a finite elementary abelian 2-group;

(b) GK(2) is a free pro-2 product GK(2) = GL(2) ∗2 F̂ , where L is a
pythagorean subextension of K(2)/K satisfying (L× : (L×)2) <∞ and
F̂ is a free pro-2 group.

If one omits the finiteness requirements in these two statements, then (b) still
implies (a). The converse implication may also be true. However, our ap-
proach (which yields this converse result in the finite case, as in the main the-
orem) relies on a “realization” property for reduced quaternionic structures
(see §2). This property is conjectured to hold in general, but is presently
only known to hold under certain finiteness assumptions (in [K] Kahn gives
several other conditions which are equivalent to Br(K)2 being of exponent
2, but these conditions do not seem to yield a pythagorean extension as
needed).

This stands in an interesting analogy with the following well known prop-
erty of the character group C(K) = Hom(GK ,Q/Z) of a field K of charac-
teristic 6= 2 (with GK denoting the absolute Galois group of K): C(K)2 is
an elementary abelian 2-group if and only if K is pythagorean [DD]. In the
same spirit, the Brumer-Rosen conjecture is analogous to a result of Whap-
les [W], asserting that for any field K one of (i)-(iii) above holds also when
we replace Br(K) by C(K).

In the last two sections we study the size of Coker(4 Br(K)
2−→ Br(K)2)

in general and relate it to the “real arithmetic” of K - in particular, to the
theory of fans. It is shown that if this cokernel is finite then K has only
finitely many orderings. We also get some more precise information on K

when Br(K)2 is small (§5).
I thank Bruno Kahn for drawing my attention to the unpublished chapter

[K] of his thesis. I also thank Jack Sonn for several discussions and an
anonymous referee for a simplification in Prop. 5.9.

1. Preliminaries.

Let p be a prime number and let K be a field of characteristic 6= p containing
a primitive root of unity of order p. We collect several (mostly well-known)
facts relating Br(K)p to GK(p). For an abelian group A and a positive
integer n, let nA = Ker(A

n−→A). We write µpn for the group of all roots
of unity of order dividing pn (over the prime field of K). After fixing a
generator of µp we may identify µp ∼= Z/pZ as GK(p)-modules. The free
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pro-p product of pro-p groups Γ1, . . . ,Γm is denoted by Γ1 ∗p · · · ∗p Γm. We
will not distinguish between a central simple K-algebra and its equivalence
class in Br(K).

Lemma 1.1. Let K be as above.
(a) For each n, pn Br(K) ∼= H2(GK(p), µpn);

(b) Let L1, . . . , Lm be subextensions of K(p)/K such that GK(p) = GL1
(p)∗p

· · · ∗pGLm(p). Then Br(K)p ∼= Br(L1)p⊕· · ·⊕Br(Lm)p via restriction.

Proof. (a) This is a consequence of the Merkurjev-Suslin theorem ([MerS];
cf. [JW, 1.7]).
(b) For any finite discrete GK(p)-module A one has a natural isomorphism

H2(GK(p), A)
∼=−→

m⊕
i=1

H2(GLi(p), A)

[N, Satz 4.1]. Taking A = µpn , the assertion follows from (a) by passing to
direct limits.

We abbreviate H i(K) = H i(GK(p),Z/pZ). Let XK be the set of orderings
of K.

Lemma 1.2. Let K be as above, let K ⊆ L ⊆ K(p) be a field, and suppose
that GK(p) = GL(p) ∗p F̂ , with F̂ a free pro-p group. Then:
(a) Br(K)p ∼= Br(L)p via restriction.

(b) If p = 2 then Res : XL → XK is bijective.

Proof. (a) The fixed field M of F̂ in K(p) satisfies p Br(M) ∼= H2(M) = 0
(Lemma 1.1(a)). Hence Br(M)p = 0, so we are done by Lemma 1.1(b).
(b) [B1] yields a natural bijection between XK and the conjugacy classes
of the involutions in GK(2), and likewise for L. As F̂ is torsion-free, the as-
sertion follows from the following general group-theoretic results of Herfort
and Ribes [HR, Th. A and Th. B’] and Melnikov [Mel, Prop. 4.9] (indepen-
dently; see also [EH, Lemma 5.4]): If Γ1,Γ2 are closed subgroups of a pro-p
group G such that G = Γ1 ∗p Γ2, then:
(i) every element of finite order in G is conjugate to an element of either

Γ1 or Γ2;

(ii) elements of Γ1 which are conjugate in G are already conjugate in Γ1.

Finally, let v be a (Krull) valuation on K (and keep assuming that
char K 6= p and µp ⊆ K). We say that (K, v) is p-henselian if v has a
unique extension to K(p). Denote the residue field of (K, v) by k and its
value group by Γ, and suppose that char k 6= p. Let {πj}j∈J be elements of
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K× such that the cosets of v(πj), j ∈ J , form a Z/pZ-linear base of Γ/pΓ.
Denote the collection of all subsets of J with precisely m ∈ N elements by
Jm. Also, let (x) be the image of x ∈ K× in H1(K) under the Kummer
isomorphism K×/(K×)p ∼= H1(K), and let 〈(x)〉 be the generated subgroup.
There is a natural epimorphism GK(p) → Gk(p) [EH, Lemma 1.1], giving
rise to inflation maps Inf : H i(k)→ H i(K). Parts (a) and (b) of the follow-
ing lemma are proved by Wadsworth [W, Th. 3.6 and Remark 3.14]. Part
(c) follows using Lemma 1.1(a) and the Kummer isomorphism.

Lemma 1.3. In the setup as above and for all n ∈ N we have:

(a) Hn(K) =
n⊕

m=0

⊕
{j1,... ,jm}∈Jm

(
Inf(Hn−m(k)) ∪ 〈(πj1)〉 ∪ · · · ∪ 〈(πjm)〉).

(b) For each 0 ≤ m ≤ n and each set {j1, . . . , jm} ∈ Jm, the map
Hn−m(k) −→Hn(K), given by ϕ 7→ Inf(ϕ) ∪ (πj1) ∪ · · · ∪ (πjm), is
injective.

(c) p Br(K) ∼= p Br(k)⊕ (k×/(k×)p)J ⊕ (Z/pZ)J2.

2. Quaternionic structures.

All fields considered from now on will be assumed to have characteristic 6= 2.
We keep the cohomological notation of §1, but with p = 2.

Our proofs make an essential use of the notion of quaternionic structures,
as in [M]. We recall that a quaternionic structure is a triple 〈G,Q, q〉,
consisting of an elementary abelian 2-group G (written multiplicatively) with
a distinguished element −1, a set Q with a distinguished element 0, and a
surjection q: G×G→ Q, such that for all x, x′, y, y′ ∈ G:
(1) q(x, y) = q(y, x);

(2) q(x,−x) = 0 (where −x := (−1)x);

(3) q(x, y) = q(x′, y) if and only if q(xx′, y) = 0;

(4) if q(x, y) = q(x′, y′) then there exists z ∈ G such that q(x, y) = q(x, z)
and q(x′, y′) = q(x′, z).

Morphisms and direct products of quaternionic structures are defined in the
obvious way (see [M] for more details and background). Given subgroups
G1, G2 of G, let Qi = 〈Gi, Qi, qi〉 be the induced structures, where Qi =
q(Gi×Gi) and qi = q|Gi×Gi , i = 1, 2. A decomposition G = G1×G2 extends
to a decomposition Q = Q1×Q2 precisely when the following holds: for any
x1, y1 ∈ G1, x2, y2 ∈ G2 we have q(x1y1, x2y2) = 0 if and only if q(xi, yi) = 0,
i = 1, 2 [M, Th. 5.8].

To a field K one associates a quaternionic structure

Q(K) =
〈
K×/(K×)2, QK , qK

〉
,
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where −1 is −(K×)2, QK is the set of all quaternion algebras in 2 Br(K), and
qK is the usual quaternionic pairing. To a field extension L/K one associates
in a natural way a morphism Res : Q(K)→ Q(L).

The category of quaternionic structures is naturally equivalent to the cat-
egory of abstract Witt rings [M, Th. 4.5]. We will not make here any real
use of the latter notion; however, in considerations involving quaternionic
structures we will freely apply some known results which are formulated in
the literature in terms of abstract Witt rings. Under the above-mentioned
equivalence, Q(K) corresponds to the Witt ring W (K) of K.

A quaternionic structure Q =
〈
G,Q, q

〉
is called:

(i) completely degenerate if Q = {0};
(ii) non-degenerate if q is non-degenerate;

(iii) reduced if for all x ∈ G, q(x, x) = 0 implies x = 1 (equivalently, the
map x 7→ q(x,−1) is injective);

(iv) euclidean if G = {1,−1} and |Q| = 2;

(v) non-basic if G 6= {1,−1} and there exists x ∈ G such that q(x, y) 6= 0
for all y ∈ G\{1,−x} and such that q(−x, y) 6= 0 for all y ∈ G\{1, x};

(vi) finitely generated if |G| <∞.

Remark 2.1. Let K be a field. Then Q(K) is completely degenerate
precisely when H2(K) = 0 (by [Mer1]), i.e., when GK(2) is a free pro-2
group [S1, I-32, Prop. 21.2 and I-37, Cor. 2]. Also, Q(K) is reduced if and
only if K is pythagorean [M, pp. 89-90]. Finally, Q(K) is euclidean if and
only if GK(2) has (profinite) rank 1 but is not Z2. By the results of [B1],
this means that K is a euclidean field (i.e., GK(2) ∼= Z/2Z).

The following classification theorem [M, Th. 6.23] is of fundamental im-
portance:

Theorem 2.2 (Marshall). Every finitely generated reduced quaternionic
structure is a direct product of finitely many quaternionic structures which
are either euclidean or both reduced and non-basic.

Following Arason, Elman and Jacob [AEJ], we call a quaternionic struc-
ture Q realizable if for every field K and a decomposition Q(K) = Q×Q′
of quaternionic structures there exists a subextension K ⊆ L ⊆ K(2) such
that Res : Q(K) → Q(L) coincides with the projection Q × Q′ → Q. It is
unknown whether every quaternionic structure is realizable. Yet, one has:

Proposition 2.3. A quaternionic structure Q is realizable in each of the
following cases:
(a) Q is non-basic;

(b) Q is completely degenerate;
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(c) Q is euclidean.

Proof. (a) This is [AEJ, Th. 4.8].
(b) Consider a decomposition Q(K) = Q × Q′ with Q = 〈G,Q, q〉 com-
pletely degenerate and Q′ = 〈G′, Q′, q′〉. Let A,A′ be F2-linear bases of
G,G′, respectively. Denoting the Frattini subgroup by Φ, we have a perfect
duality

GK(2)/Φ(GK(2)) × K×/(K×)2 −→ {±1},
given by (σ̄, ā) 7→ 〈σ̄, ā〉 = σ(

√
a)/
√
a for σ ∈ GK(2) and a ∈ K× (with σ̄,

ā denoting the corresponding cosets, and with
√
a being a fixed square root

of a). Choose subsets Σ,Σ′ of GK(2) such that the cosets of Σ ∪ Σ′ form
an F2-linear basis of GK(2)/Φ(GK(2)) dual to A ∪ A′. Let L be the fixed
field of Σ in K(2). For any b ∈ L× the duality yields a ∈ K× such that
〈σ̄, ā〉 = 〈σ̄, b̄〉 for all σ ∈ Σ and such that 〈σ̄′, ā〉 = 1 for all σ′ ∈ Σ′. Then
a ≡ b mod (L×)2 and (a) ∈ G. As Q is completely degenerate, we conclude
that the quaternionic pairing qL is trivial and Res : Q(K)→ Q(L) coincides
with the projection Q(K)→ Q.
(c) In this case the projection Q(K) = Q × Q′ → Q corresponds to a
signature on K, hence also to an ordering P ∈ XK [M, pp. 74-75]. We take
L to be a euclidean closure of K with respect to P [B1] (alternatively, one
can argue along the lines of (b)).

The following is the immediate quaternionic structure analog of [JWr,
Th. 3.4 and Remark 3.5]:

Lemma 2.4 (Jacob, Ware). The following conditions on a field K and
fields K ⊆ L1, . . . , Ln ⊆ K(2) are equivalent:
(a) Q(K) = Q(L1)× · · · × Q(Ln) via restriction;

(b) GK(2) = GL1
(2) ∗2 · · · ∗2 GLn(2).

Lemma 2.5. Every quaternionic structure Q decomposes as Q = Q1×Q2,
with Q1 non-degenerate and Q2 completely degenerate.

Proof. Write Q = 〈G,Q, q〉 and decompose G = G1 × G2, with G2 =
{
x ∈

G
∣∣ ∀y ∈ G : q(x, y) = 0

}
. For any x1, y1 ∈ G1 and x2, y2 ∈ G2 we have

q(x1x2, y1y2) = 0 precisely when q(x1, y1) = 0. Therefore, by the criterion
mentioned earlier, this decomposition of G gives rise in a natural way to a
decomposition Q = Q1 × Q2 of quaternionic structures with Q1 and Q2 as
in the lemma.

Lemma 2.6. The following conditions on a quaternionic structure Q =
〈G,Q, q〉 are equivalent:
(a) If x ∈ G satisfies q(x, x) = 0 then q(x, y) = 0 for all y ∈ G;
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(b) Q = Q1 ×Q2 with Q1 (resp., Q2) a reduced (resp., completely degen-
erate) quaternionic structure.

Proof. (a)⇒(b): First decompose Q = Q1×Q2 as in Lemma 2.5 and write
Qi = 〈Gi, Qi, qi〉, i = 1, 2. Suppose that x ∈ G1 satisfies q1(x, x) = 0. Then
also q(x, x) = 0, so by assumption q(x, y) = 0 for all y ∈ G. In particular,
q1(x, y) = 0 for all y ∈ G1, whence x = 1. This shows that Q1 is reduced.
(b)⇒(a): Denote againQi = 〈Gi, Qi, qi〉, i = 1, 2. Let x, y ∈ G and suppose
that q(x, x) = 0. Decompose x = x1x2, y = y1y2, with x1, y1 ∈ G1, x2, y2 ∈
G2. By the decomposition criterion mentioned above, q1(x1, x1) = 0. Since
Q1 is reduced, x1 = 1. As Q2 is completely degenerate, q2(x2, y2) = 0.
By the decomposition criterion again, q(x2, y1) = 0. Therefore q(x, y) =
q(x2, y1y2) = 0.

3. Elementary abelian 2-primary Brauer groups.

We view the cyclic algebra defined by χ ∈ C(K) and b ∈ K× as a bilinear
pairing C(K)⊗K× → Br(K), χ⊗b 7→ (χ, b) [S2, Ch. XIV, §1]. In particular,
if χ = χa is the character in 2C(K) with kernel GK(

√
a), a ∈ K×, then (χa, b)

is the quaternion algebra (a, b) in 2 Br(K).

Theorem 3.1. The following conditions on a field K are equivalent:
(a) Br(K)2 is an elementary abelian 2-group.

(b) If a ∈ K× satisfies (a, a) = 0 then (a, b) = 0 for all b ∈ K×.

(c) Q(K) = Q1 × Q2 with Q1 (resp., Q2) a reduced (resp., completely
degenerate) quaternionic structure.

(d) ∪(−1): H2(K)→ H3(K) is injective.

Proof. (a)⇔(b): By the results of Merkurjev and Suslin [MerS, §16], the
cyclic algebra pairing 4C(K)⊗K× → 4 Br(K) is surjective. Thus, (a) means
that (2χ, b) = 0 for all χ ∈ 4C(K) and b ∈ K×. Furthermore, there is an
exact sequence

4C(K)
2−→ 2C(K)

δ−→ 2 Br(K),

where δ(χa) = (a, a) [S3, p. 4]. Thus, as χ ranges over 4C(K), the character
2χ ranges over all χa ∈ 2C(K) with a ∈ K× satisfying (a, a) = 0.
(b)⇔(c): Use Lemma 2.6.
(a)⇔(d): [LLT, Cor. A4] (and [Mer1]) yields an exact sequence

4 Br(K)
2−→ 2 Br(K) ∼= H2(K)

∪(−1)−→ H3(K).

Other equivalent conditions are given in [K, Th. 2]. In light of Remark 2.1
we get:
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Corollary 3.2. A field K is pythagorean if and only if:
(i) Br(K)2 is an elementary abelian 2-group; and

(ii) the quaternionic pairing qK : K×/(K×)2 × K×/(K×)2 → 2 Br(K) is
non-degenerate.

Corollary 3.3. Let K be a field such that GK(2) = GL(2) ∗2 F̂ , with
K ⊆ L ⊆ K(2) a pythagorean field and F̂ a free pro-2 group. Then Br(K)2

is an elementary abelian 2-group.

Proof. Let M be the fixed field of F̂ in K(2). By Lemma 2.4, Q(K) ∼=
Q(L) × Q(M) via restriction. By Remark 2.1, Q(L) is reduced and Q(M)
is completely degenerate, so we are done by Theorem 3.1.

Proof of the Main Theorem. Assume (a). Theorem 3.1 yields a decompo-
sition Q(K) = Q1 × Q2 with Q1 reduced and Q2 completely degenerate.
Write Q1 = 〈G1, Q1, q1〉. Since the map G1 → Q1 given by x 7→ q(x,−1)
is injective, and since Q1 embeds into the finite group 2 Br(K), the struc-
ture Q1 is finitely generated. By Theorem 2.2 and Proposition 2.3, Q1

is the product of finitely many quaternionic structures which are reduced
and realizable. Moreover, Q2 is also realizable. Using Lemma 2.4 we get
K ⊆ L1, . . . , Ln, Ln+1 ⊆ K(2) such that GK(2) = GL1

(2) ∗2 · · · ∗2 GLn+1
(2),

such that Q(L1), . . . ,Q(Ln) are reduced and Q(Ln+1) is completely degen-
erate, and such that Q1

∼= Q(L1)×· · ·×Q(Ln). By Remark 2.1, L1, . . . , Ln,
hence also L = L1 ∩ · · · ∩ Ln, are pythagorean, and GLn+1

(2) is a free
pro-2 group. Clearly, GK(2) = GL(2) ∗2 GLn+1

(2). Finally, L×/(L×)2 ∼=
L×1 /(L

×
1 )2 × · · · × L×n /(L×n )2 ∼= G1, whence (L× : (L×)2) <∞.

Conversely, assume (b). Then Br(K)2
∼= Br(L)2 via restriction (Lemma

1.2(a)). Since the quaternionic pairing L×/(L×)2 ⊗ L×/(L×)2 → 2 Br(L)
is surjective [Mer1] and (L× : (L×)2) <∞, the group 2 Br(L) is finite. But

2 Br(L) = Br(L)2 (Corollary 3.2), so Br(K)2 is a finite elementary abelian
2-group.

Remark 3.4. Any elementary abelian 2-group is realizable as Br(K)2

for some pythagorean field K. Indeed, let A be any set (considered as
a discrete topological space) and let X be its one-point compactification.
Since X is Boolean (i.e., Hausdorff, compact and totally disconnected), a
construction of Craven [C] yields a pythagorean field K satisfying the strong
approximation property (SAP) and for which XK

∼= X. By Corollary 3.2,
Br(K)2 = 2 Br(K) ∼= H2(K). It follows from [Er, Th. 3 and Lemma 2] that
Br(K)2

∼= {±1}A.
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4. The T -invariant.

Even when Br(K)2 is not an elementary abelian 2-group, one may still ex-
tract some information regarding the “reduced” structure of K by consider-
ing

T (K) = Coker(4 Br(K)
2−→ 2 Br(K)).

For a, b ∈ K× let (a, b) be the image of the quaternion algebra (a, b) under the
natural projection 2 Br(K) → T (K). By a result of Lam, Leep and Tignol
[LLT, Cor. 5.14], (a, b) = 0 if and only if the Pfister form 〈〈−a,−b, 1〉〉 is
0 in W (K), or equivalently, if and only if (a) ∪ (b) ∪ (−1) = 0 in H3(K).
Moreover, by [LLT, Cor. A4] again, T (K) ∼= H2(K)∪〈(−1)〉 naturally. Note
that if 0 6= a ∈ K2 +K2 then 〈〈−a, 1〉〉 is isotropic, hence 〈〈−a,−b, 1〉〉 = 0
in W (K) for all b ∈ K×. Consequently, the quaternionic pairing induces a
bilinear map

K×/((K2 +K2) \ {0})⊗K×/((K2 +K2) \ {0}) −→ T (K),

which is surjective by [Mer1] (recall that (K2 +K2)\{0} is a group with re-
spect to multiplication [L1, Ch. X, Cor. 1.7]). Given a field extension L/K,
the restriction map of the Brauer groups induces a functorial restriction
homomorphism Res : T (K)→ T (L).

Lemma 4.1. (a) Let L1, . . . , Lm be subextensions of K(2)/K such that
GK(2) = GL1

(2) ∗2 · · · ∗2 GLm(2). Then T (K) ∼= T (L1) ⊕ · · · ⊕ T (Lm) via
restriction.
(b) Suppose that (K, v) is 2-henselian, let k, J , J2 be as in §1, and assume
that char k 6= 2 and that −1 6∈ K2. Then:

T (K) ∼= T (k)⊕ (H1(k) ∪ 〈(−1)〉)J ⊕ (Z/2Z)J2 .

Proof. (a) Use Lemma 1.1(b).
(b) This follows from Lemma 1.3.

4.2 Remarks. (1) If
√−1 ∈ K then T (K) = H2(K) ∪ 〈(−1)〉 = {0}.

(2) The triviality of T (K) does not imply that Br(K)2 is divisible. For
example, let K = Q(

√−1, t), with t transcendental. By (1), T (K) = {0}.
But by a result of Fein, Schacher and Sonn [FSS], Br(K)2 has a direct
summand which is generated as an abelian group by elements x, y2, y3, y4, . . .

subject to defining relations 2x = 0, x = 2iyi, i = 2, 3, . . . . Here 2y2 − 4y3

is an involution which is not divisible by 4.
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5. Quantitative results.

In this section we estimate the size of Br(K)2 in case it is an elementary
abelian 2-group. We remark however, that in the special case when K is
pythagorean with finitely many square classes (or more generally, with finite
chain length - see below), one has a rather complete structure theory for
GK(2) (see [J] or [Mi]) which allows a case-by-case computation of Br(K)2

(by means of Lemma 1.1(b) and Lemma 1.3). To treat the general case, we
use instead the theory of fans and the related notion of a strictly pythagorean
field. Throughout this section we assume general familiarity with the theory
of ordered fields, e.g., as in [L2].

Let C(X,G) be the group of all continuous maps from a topological space
X into a discrete group G (when X = ∅ we set C(X,G) = {0}). Denote
the fundamental ideal of W (K) by I(K). The (reduced) stability index
st(K) of K is the minimal positive integer s (∞ if no such integer exists)
such that the total signature sgn: I(K)s → C(XK , 2

sZ) is surjective (where
I(K)0 = W (K)) [L2, §13]. For S ⊆ K let XK(S) = {P ∈ XK | S ⊆ P}
endowed with the Harrison topology [L2, p. 1].

Recall that a field E is strictly pythagorean if E2 is a fan. Equiv-
alently, E is formally real and E(2)-hereditarily pythagorean (i.e., all for-
mally real subextensions E(2)/E are pythagorean) [B2, p. 89, Th. 2]. In
this case GE(2) ∼= Zm2 ×|(Z/2Z) for some cardinal number m, where the gen-
erator of Z/2Z acts on Zm2 by inversion, and |XE| = 2m [B2, pp. 86-87 and
p. 124]. Considering m also as an ordinal number, we may construct such a
strictly pythagorean field E as follows: order Γ = Zm lexicographically and
let E be the field of formal power series

∑
γ∈Γ aγt

γ , with aγ ∈ R and with
{γ ∈ Γ | aγ 6= 0} well-ordered.

The following lemma (essentially due to Becker) allows one to estimate
from below the size of T (K):

Lemma 5.1. Let m be a positive integer and let K be a field with st(K) ≥
m. There exists a strictly pythagorean field K ⊆ E ⊆ K(2) such that:
(a) E = KE2;

(b) |XE| = 2m;

(c) Res : XE → XK is injective;

(d) T (E) = Br(E)2
∼= (Z/2Z)(m2+m+2)/2;

(e) Res : T (K)→ T (E) is surjective.

Proof. Since m is positive, K is formally real. As st(K) ≥ m, [L2, Th. 13.7]
yields a fan S0 on K with |XK(S0)| ≥ 2m. Hence (K× : S×0 ) ≥ 2m+1. Take a
subgroup of S of K× containing S×0 but not −1 such that (K× : S) = 2m+1.
By [L2, Th. 5.5(2) and Remark 5.2], S ∪ {0} is a fan, whence |XK(S)| =
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2m. [B2, p. 143: Th. 7] now yields a strictly pythagorean field K ⊆ E ⊆
K(2) satisfying (a)-(c). Assertion (d) follows from [B2, p. 128: Th. 20]. By
[Mer1] (or by [B2, p. 128: Th. 20] again), Br(E)2 is generated by quaternion
algebras. Combined with (a), this gives (e).

For each P ∈ XK fix a euclidean closure K̄P of K with respect to P [B1].
Since T (K̄P ) = Br(K̄P )2

∼= Z/2Z (with (−1,−1) as the non-trivial element),
we may identify

∏
P∈XK T (K̄P ) with the group of all mappings XK → {±1}.

Under this identification, the image of the restriction T (K)→ ∏
P∈XK T (K̄P )

is contained in C(XK , {±1}), by [Mer1] again. In this manner we get an F2-
linear map ΛK : T (K) → C(XK , {±1}) (which is independent of the choice
of the euclidean closures).

Recall that the chain length cl(K) of a pythagorean field K is the supre-
mum of all n ∈ N for which there exists a proper chain HK(a0) ⊂ HK(a1) ⊂
· · · ⊂ HK(an) of (subbasic) Harrison sets, with a0, a1, . . . , an ∈ K ([L2, §8],
[EH, §2]).

Proposition 5.2. Let K be a field.
(a) If K is pythagorean and cl(K) <∞ then ΛK is injective.

(b) ΛK is surjective if and only if st(K) ≤ 2.

Proof. (a) As T (K) = 2 Br(K) (by Corollary 3.2), this follows from Jacob’s
results in [J, §5]. Note that when K is pythagorean and not formally real (a
case not covered in [J])

√−1 ∈ K, so T (K) = 0 by Remark 4.2(1).
(b) [Mer1] gives an epimorphism I(K)2 → 2 Br(K) mapping the Pfister
form 〈〈−a,−b〉〉 to (a, b). We get a natural commutative square:

I(K)2 −−−→ 2 Br(K) −−−→ T (K)

sgn

y ΛK

y
C(XK , 4Z) −−−→ C(XK , 4Z/8Z)

∼=−−−→ C(XK , {±1})
If st(K) ≤ 2 then the left vertical map is surjective, whence so is ΛK .

Conversely, suppose that st(K) ≥ 3. Let E be as in Lemma 5.1 with
m = 3. Identifying XE with its image under the injection Res : XE → XK ,
we get a commutative square:

T (E)
ΛE−−−→ C(XE, {±1})

Res

x xRes

T (K)
ΛK−−−→ C(XK , {±1}).

Since XE is finite, the right vertical map is surjective. As T (E) ∼= (Z/2Z)7

and C(XE, {±1}) ∼= (Z/2Z)8, the map ΛE is not surjective. Therefore ΛK

is not surjective.
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Corollary 5.3. Let K be a field such that either |XK | ≤ 7 or dimF2
T (K) ≤

6. Then |XK | ≤ dimF2
T (K).

Proof. In both situations, Lemma 5.1 implies that st(K) ≤ 2. By Proposi-
tion 5.2(b), ΛK is surjective.

Remark 5.4. In general, ΛK need not be injective. For example, let K
be a field in which −1 is a sum of 8, but not less, squares (such fields exist
by a result of Pfister [L1, Ch. XI, Th. 2.8]). Then XK = ∅, but by the
observations in §4, (−1,−1) 6= 0 in T (K).

Proposition 5.5. Let K be a field with Br(K)2
∼= (Z/2Z)r and 0 ≤ r ≤ 6.

Then |XK | = r.

Proof. In light of the main theorem and Lemma 1.2, we may assume that
K is pythagorean. By Lemma 5.1 and the assumption, st(K) ≤ 2. By
Corollary 5.3, |XK | < ∞, hence also cl(K) < ∞. The assertion therefore
follows from Proposition 5.2.

Similarly we obtain:

Proposition 5.6. Let K be a pythagorean field with |XK | ≤ 7. Then
Br(K)2

∼= (Z/2Z)|XK |.

Proposition 5.7. Let K be a field with Br(K)2
∼= (Z/2Z)r and 0 ≤ r ≤ 3.

Then GK(2) is the free pro-2 product of r copies of Z/2Z and of a free pro-2
group.

Proof. In light of the main theorem and Lemma 1.2(a), we may assume again
that K is pythagorean. Lemma 5.1 implies that st(K) ≤ 1. Thus K is an
SAP field [L2, Cor. 17.11]. By a result of Eršov [Er, Th. 3], GK(2) is then a
free pro-2 product of finitely many copies of Z/2Z. The fixed fields in K(2)
of these copies are euclidean, hence have Z/2Z as their 2-primary Brauer
group. Conclude from Lemma 1.1(b) that the number of these copies is r,
as required.

Remark 5.8. The bounds in Propositions 5.5-5.7 are the best possible.
Indeed, letK be a strictly pythagorean field with 8 orderings (see the remarks
before Lemma 5.1). Then Br(K)2

∼= (Z/2Z)7. Thus, Proposition 5.5 is
false for r = 7 and Proposition 5.6 is false for |XK | = 8. When K is a
strictly pythagorean field with 4 orderings, Br(K)2

∼= (Z/2Z)4 and GK(2) ∼=
Z2

2×|(Z/2Z), with the generator of Z/2Z acting on Z2
2 by inversion. This

Galois group is not a free pro-2 product of 4 copies of Z/2Z and of a free
pro-2 group (e.g., since the chain length of the former group is 2 and that of
the latter is 4; cf. [EH, Lemma 2.1]). Consequently, in Proposition 5.7 one
cannot take r = 4.
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Proposition 5.9. Let K be a field with T (K) finite. Then XK is finite.

Proof. Let D be the kernel of the homomorphism K× → H3(K) given by
a 7→ (a) ∪ (−1) ∪ (−1). Equivalently, D is the set of all a ∈ K× which are
sums of four squares in K (cf. §4). The signature map therefore induces an
embedding XK ↪→ Hom(K×/D, {±1}). But

K×/D ∼= H1(K) ∪ 〈(−1)〉 ∪ 〈(−1)〉 ⊆ H2(K) ∪ 〈(−1)〉 ∼= T (K).

Therefore K×/D, whence also XK , are finite.
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