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SUBMANIFOLDS WITH PARALLEL
MEAN CURVATURE VECTOR
IN PINCHED RIEMANNIAN MANIFOLDS

F. FONTENELE

In this paper, we prove a generalized integral inequality
for submanifolds with parallel mean curvature vector in an
arbitrary Riemannian manifold, and from which we obtain
a pinching theorem for compact oriented submanifolds with
parallel mean curvature vector in a complete simply con-
nected pinched Riemannian manifold, which generalizes the
results obtained by Alencar-do Carmo and Hong-Wei Xu.

1. Introduction.

Let M™ be an n-dimensional oriented closed minimal submanifold in an
(n + p)-dimensional Riemannian manifold N"*?. Denote by a(x) and b(x)
the infimum and the supremum, respectively, of the sectional curvatures of
N at a point z. In [11], Hong-Wei Xu obtained the following inequality

(1.1)
/M{an - <1 + %sgn(p — 1)) S? — D(n,p)(b—a)S — E(n,p)(b—a)?*} <0,

where S is the square norm of the second fundamental form of the immersion,
sgn( - ) is the standard sign function and

(12) D(n,p) =+ 3 (p—1)(n— 1),

E(n,p) = %pn(n —1)(26n — 25).

Using (1.1), Xu proved in [11] the following result:

Theorem 1.3. Let M™ be an n-dimensional oriented closed minimal sub-
manifold in a complete simply connected manifold N™*? with §(n,p) < Ky <
1, where

n— gsgn(p—1)
D(n,p) +2E%(n,p)

(1.4) d(n,p) =1-—
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If

(1.5)  E¥(l-¢) < Sgn—gsgn(p—l)— (p+EY) -0,

where ¢ is the infimum of the sectional curvatures of N"*P, then N"tP =
SUtP and either M™ is the unit sphere ST, one of the Clifford minimal hy-

persurfaces S* (\/g) x Snk <\/"Tj>, E=1,2,...,n—1, in ST, or the

Veronese surface in S}.

We want to extend the above result to constant mean curvature. When
dealing with submanifolds of constant mean curvature, it is convenient to
replace the second fundamental form by a tensor ¢: T,M x T,M — T,M+

defined as follows: choose an orthonormal frame {e, 1,...,e,,} of T,M™*,
and for each n +1 < a < n + p, define maps ¢,: T, M — T,M by
(16) ¢a(X) = <h7 ea> X — Aoz(X)’
where h is the mean curvature vector. The tensor ¢ is given by
n—+p
(1.7) X, Y)= > ($a(X),Y)ea.
a=n+1
The norm |¢| of ¢ is defined by
n+p
(1.8) 6P = D tréi.
a=n-+1

It is easy to see that both ¢ and |¢| do not depend on the choice of {e,} and
that

(1.9) 6" = |A]* — nH?,

where H = |h|. Furthermore, |¢| = 0 if and only if the immersion is totally
umbilic.

According to Alencar-do Carmo [2], many theorems on minimal subman-
ifolds have a natural extension to constant mean curvature if one replaces
|A|? by |¢|?>. This turns out to be the case in the present situation.

For each 0 < r < 1, let S"7!(r) — R™ and S*(v/1 —12) — R? be the
cannonical immersions. Following [1], we call an H(r)-torus in Sy the
product immersion S™7'(r) x S'(v/1 —r?) = R" x R?.

In [1], H. Alencar and M. do Carmo obtained the following integral in-
equality for constant mean curvature immersions f: M™ — S of a com-

pact n-dimensional manifold M” into the unit sphere S7*:

110 03 [ 1vop+ [ jop{ 1o - SE2,

Hl|g| +n(H? + 1)}.
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For each H > 0, denote by By the square of the positive root of Py (x) = 0,
where

n(n —2)

(1.11) Py(x) = 2%+ T

Hx —n(H?+1).

Then, from (1.10), they obtained the following theorem:

Theorem 1.12. Let M™ be a compact and oriented manifold and let
f: M™ — S have constant mean curvature H. If |¢|> < By on M,
then:
(i) Either |¢|*> =0 (and M™ is totally umbilic) or |¢|*> = By.
(i) |¢|* = By if and only if:
(a) H =0 and M™ is a Clifford torus in S}™";
(b) H#0,n >3, and M™ is an H(r)-torus with r* < "=1;
(¢) H#0,n=2, and M™ is an H(r)-torus with r* # 3.

For submanifolds with parallel mean curvature vector in spheres, Walcy
Santos extended the above theorem for higher codimensions [10]. Note that
in the codimension one case, the mean curvature vector h is parallel if and
only if H = |h| is constant.

For submanifolds with parallel mean curvature vector in arbitrary Rie-
mannian manifolds, we obtain here the following integral inequality, which
generalizes the inequalities obtained by other authors ([1, 10, 11], etc.):

Theorem 1.13. Let M"™ be a compact and orientable manifold and let
f: M™ — N™P be an immersion with parallel mean curvature vector h in
an (n + p)-dimensional Riemannian manifold N™"*?. Denote by a(z) and
b(x) the infimum and the supremum, respectively, of the sectional curvatures
of N at a point x. Then

(1.14)
0> /M { —B(b-a)? - %n(n C D) —1)(b— a)H?

+ (na+nH? — ;(n 1) p—1)(b— )6
n(n —2) 2 4
- m\%’ |p|* — 0,119 },

where H = |h| and

(1.15) 9h_{1+§sgn(p—1), if p=1 or h=0,
: P

1+ 2sgn(p —2), otherwise.
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When H = 0, inequality (1.14) becomes the inequality (1.1) obtained by
Hong-Wei Xu [11], and in the case p = 1 and N"** = S}""! | we reobtain (up
to the term [}, [V¢|?) inequality (1.10) obtained by Alencar do Carmo [1].
Furthermore, if p > 2, N*"*? = S7"? and H # 0, inequality (1.14) becomes

(116) 0> [ o {1+ 1)~ ZEZjon) - (14 Ssmnio—2)) 107,

which is stronger than the inequality obtained by Santos ([10], inequality
(2.14)).
From (1.14) and the obvious inequality

n(n —2) 5 _ n(n—2) 3
(1.17) m\d’h\ [ WHW ;
we obtain
(1.18)

0>/M{—E(b—a) —gn(n—n%( —1)(b— a)H?

¥ (na+nBH? — (= 1)}~ 1)(b— )of

n(n —2) 3 4
—WHW = Op 10 }

In order to generalize Theorems (1.3) and (1.12), we need some notation.
We set

(1.19) F(n,p. H) = | (1+ 6,,)B* + D] B,

(120)  G(n,p, H) = n(l+ H)E} — gn(n i p—1)H,
—2od gEL 4\ /202 2R 4 4FG

(1.21) An,p, H) = o s

2F ’

and for p > 1 and any real numbers H > 0, ¢ < 1, we define a polynomial
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PH,c,p by

(1.22)
Pyrey(@) = — E(1 — o) — gn(n D) p—1)(1—)H?

+ (ne +nH? — ;(n D) p—1)(1— )2

— M[ﬂﬁ — 9p,h$4-
n(n —1)
By observing the sign of the coefficients of the above polynomial, it follows
from the Descartes’ rule of sign (see [9], page 60, Corollary 35) that the
equation Py . ,(z) = 0 has at most two positive real roots, that we denote,
if they exist, by z1(c) < za(c).
In what follows, we denote by S¥ - S?tP the umbilical immersion of
SZin SIHP.

Using (1.18), we can finally establish our main result:

Theorem 1.23. Let M" be a compact and oriented manifold and let f: M™ —
N™P be an immersion in a complete and simply connected manifold N"*?.

Suppose the mean curvature vector h is parallel in the normal connection
and that G(n,p, H) > 0, where H = |h|. If

(1.24) 1—-X(n,pH) <Ky<1
and
(1.25) 21(c) < 6] < a(c),

then N™P = ST*P and either |¢|*> = 0 (and the immersion is totally umbilic)
or |¢|*> = Bu,, where By, is the square of the positive root of Py 1 ,(z) = 0.
Furthermore, |¢|*> = By, if and only if:

(a) p=1, H=0 and M" is a Clifford torus S™ (\/%) x Snom (\/@) C

n+1,
Sl ’

() p=1, H> 0 and M" is an H(r)-torus S"~'(r) x S*(r;) C Syt
where > + 13 = 1. If n > 3 we have r* < "=, and if n = 2 we have
L

(¢) p=2,n=2 and M™ is a Clifford torus

1 1
Sl( 2(1+H2)>XS1< 2(1+H2)>CS§’+H27—>53;
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(d p=2,n=2 H >0 and for each H,, 0 < H, < H, M" is an
H,(r)-torus S*(r) x S*(ry) C S}, > = — S}, where H? + HY = H?,
rP+ri =1+ H2)"and r® # (1+ H2)™Y;

(e) p=3,n=2 and M is the Veronese surface M> C S}, o — — S7.

Remark 1.26. In [10], W. Santos classified the compact orientable sub-
manifolds of S7'? with parallel mean curvature vector and for which

(127) o < By {1+ 1) - T2 =D 1,

vn(n—1)
where

p,h —

_ _{1/(2—1/p), if p=1 and h=0,
1/(2—1/(p—1)),  otherwise.

She obtained more examples than those of Theorem (1.23). The reason is
that, when N"*? = S7"*”? condition (1.25) becomes |¢|*> < By, which is
easily seen to be stronger (for p < 3) than (1.27) (see (4.14) below). The
case of equality in Theorem (1.23) was inspired in the proof of the theorem
of Santos [10].

Remark 1.28. Condition G(n,p, H) > 0 in Theorem (1.23) is technical
and is probably needless. It should be noticed that G(n,p,H) > 0 if p <
max{3,n} or if H = 0 (for all examples appearing in Theorem (1.23), we
have p < 3).

Remark 1.29. When p = 1 and N"*! = S7"!, condition (1.24) is imme-
diately satisfied and (1.25) becomes the hypothesis of Theorem (1.12). In
the case H = 0, it is easy to see that 1 — A%*(n,p,0) < d(n,p) and so the
condition (1.24) is weaker than the hypothesis d(n,p) < Ky < 1 in Theorem
(1.3). Furthermore, for each ¢ > §(n, p), it is possible to prove that

2, <Ei(1—c¢) §n—gsgn(p—l)—(D+E%)(1—c) < xa,

and thus (1.25) is weaker than (1.5). Therefore, if p = 1 Theorem (1.23)
extends Theorem (1.12), and if H = 0 Theorem (1.23) is stronger than
Theorem (1.3).

Remark 1.30. Note that for both Theorems (1.3) and (1.23) to make
sense, it is necessary to assure the existence of two positive real roots of
Py cp(xz) = 0. In the case H = 0, Py, is a quadratic polynomial in S,
and we have only to force its discriminant to be nonnegative. If H # 0,
however, Py ., is a quartic polynomial in |¢| and we overcome this difficulty
in a different way (see the proof of Theorem (1.23)).
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Condition (1.25) in Theorem (1.23) can be replaced by & (c) < [¢]|* <
& (c), where & (c) and &;(c) satisfy

27 < &i(c) < &le) < 23,
£1(1) =0, &(1) = By

For example, if p = 1 and, if instead of (1.24), we require

B
1 < Ky<1,

1.31 1—-—
( ) n+2E1/2 —

we can take & (c) = EY2(1 — ¢) and &(c) = By — (n+ EY?)(1 - ¢).
More precisely, we have the following result:

Theorem 1.32. Let f: M™ — N"! be a constant mean curvature immer-
sion of a compact oriented manifold M™ into a complete simply connected
manifold N™ 1 satisfying (1.31). If

(1.33) Ei(1—¢)<|¢> < By —(n+E?)(1—-c¢),

then N"t1 = St and either |¢|? = 0 (and M™ is totally umbilic) or |¢|> =
By. We have |¢|*> = By if and only if (a) or (b) in Theorem (1.23) occurs.

The work is organized as follows: in section 2 we obtain a formula for the
Laplacian of the second fundamental form of an immersion M™ < N™*? in
a general framework: no assumption on the codimension, or on the mean
curvature vector or on the ambient space is made. In section 3 we consider
the case of parallel mean curvature vector, and after some estimates, we
prove Theorem (1.13). In section 4 we prove Theorems (1.23) and (1.32).

Acknowledgements. This work is the author’s doctoral thesis at Instituto
de Matemaética Pura e Aplicada. The author wants to thank Manfredo
Perdigao do Carmo for his orientation and Walcy Santos and Sergio Luiz
Silva for helpful conversations and suggestions.

2. The Laplacian of the Second Fundamental Form.

In this section we shall compute the Laplacian of the second fundamental
form of an immersion f: M"™ — N"*? by using moving frames. Notations
will be as in [4]. We shall make use of the following convention on the ranges
of indices:

1<AB,C,...,<n+p; 1<id,5,k,...,<n;
n+1§a7/6777"’ ,S?’Z‘i‘p
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Choose a local field of orthonormal frames ey,... ,e,;, in N such that, re-
stricted to M, the vectors ey, ... , e, are tangent to M. Let {w} and {wap}
be the fields of dual frames and the connection 1-forms of N, respectively.
Restricting the forms to M, we have

(2.1) Woi = 3 hSw;,  hS = hS,
J

where the hf; are the coefficients of the second fundamental form of the
immersion. The equations of Gauss and Ricci are:

(2-2) R;‘kl = K;u + Z(h?kh?z - h?eh?k)a
(2-3) ngz = nge + Z(h?khiﬂé - h;’léh?k)a

where RS,,, R}, and Kj, are the normal curvature tensor, the curvature
tensor of M and the curvature tensor of N, respectively. We define the
covariant derivatives of hf; by

> g, =dhS + ) hSwi + Y hw + > Bwag,
k s s

B
> R we = dhSy + > hSwis + S wis + > hE w + Y b wag.
¢ s s s B

We have

(2-4) h%‘k - h?kj = —Kiajm

(2-5) hiajké - h%’ék = Z h?ijke + Z hiasR;kZ + Z hiﬁjngé‘
s s B

We define the Laplacian of the second fundamental form by Ahg =
>~ higy- Using (2.4) and (2.5) we obtain
k

Ah% = Z(hgkij - K;clikj - ngk) + Z thRZ‘Lk
k k,m
+> R R = WL RS,
k,m k.3
Substituting (2.2) and (2.3) into the above formula, we have
Ahj; = Z(hgkij = Ky — Kiji) + Z(hmei?k + P K i)
k k,m
YK+ Y Aok Bk + 20, i b
k,B

m,k,B

= Dbt iy — By ihig by — iy hi ),
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and then
(2.6)
SAlAP = PIUAEIWTL
= zk: (h%k)2 + zk: (hihiwi; — iy Kiing — iy Ki)
,7,R,& 1,7,k

+ > (o K+ hho K5+ Y RSy,

J

,5,k,m,a i,5,k,,8
B 1.8 B 1B
— > hShLRLRL, 4+ > RERGhLRY,
,5,k,£,0,3 1,5,k,L,0,3
B B B8 B
- Z (hiakhjk - h?khik)(hiaehjz - h?ZhiZ)'
i,5,k,L,0,3

Remark 2.7. In the case H = 0, the terms

> hhg,; and > hehShSghiy,

.9,k .9,k 40,8

in formula (2.6) vanish, and (2.6) reduces to the corresponding formula en-
countered in [11].

3. Estimates and the Proof of Theorem (1.13).

From now on, we assume that the immersion has parallel mean curvature
vector in the normal connection. In this case, we have the following lemma:

Lemma 3.1. For an immersion M™ — N™? with parallel mean curvature
vector h, we have
V¢ =—Vo,

where o: T,M x T,M — T,M* denotes the second fundamental form and
V¢ and Vo denote the gradient of the tensors ¢ and o, respectively.

Proof. From (1.7), it is immediate to verify that
p(X,Y)=(X,Y)h—0o(X,Y),

for any X, Y € TM. Now fix a point p € M and choose a local orthonormal
frame {ey,...,e,} such that V.,e;(p) = 0 for all 4, j. Since h is parallel, we
then have in p that

(Vo)(eisej ex) = (Ve 0)(eisej) = Ve dlei ;) = Ve, ((ei, €5) b — a(eis e5))
= —V0(eie;) = —(Ve,0)(ei ej) = —Vo(e e, ep),
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for all ¢, j, k, and the lemma is proved. [l

From the above lemma we obtain that V?¢ = —V?0, and so ¢f,, =
—hgy,- Since tr ¢, = 0, we conclude that

Z h%hgkij = - Z ((h,eq) dij — ;);)¢gkzg =0.

.5,k .5,k

Using this fact, formula (2.6) becomes

(3.2)
1 (e} (e} (e} o o
§A|A|2 = Z (hijk)Q - Z (hinkikj + hinz‘jkk)
i,7,k,a i,7,k,a
+ Y (WS KT + hShe KT+ > he R K
i,7,k,m,a i,7,k,o,3
— > REAERLR, 4+ DT hRGhLRE,
1,7,k 4,0, 7,k 40,3
- Z (h?kh?k - h?khfk)(h?zh?e - h?ehfe)-
1,7,k 4,c,08

Remark 3.3. When the ambient manifold has constant curvature, the
second and the fourth terms in (3.2) vanish, and we obtain the formula
given in Erbacher ([6], formula (12)).

To obtain estimates for the terms appearing in the right hand side of (3.2),
we will use the following propositions. Except for the equality case in part
(i), Proposition (3.4) below is proved in [7, pages 92-94].

Proposition 3.4 ([7], see also [11]). If N is a Riemannian manifold and
a < Kyx <batapoint x € N, then, at this point,

o (i) [Kapac| < 3(b—a), for B#C;

o (i) [Kapcp| < 2(b—a), for A, B,C, D distinct two by two.
Equality in (1) implies that Kac = Kpc.
Proposition 3.5 [10]. Let x;, y; i = 1,...,n, be real numbers such that
Za:i =0= Zyl Then

n-2 A’B < foyz < 717—21423,

VAT = VD

where A* =3z} and B® = Y y7.
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Proposition 3.6 (see [4, 8, 11]). Let A, 1, A 2,..., Anyp be symmetric
(n x n)-matrices. Denote Sag = tr(ALAg) and N(A) = tr(A*A). Then,

ZN(AaAﬁ—Aﬁ +ZS§<B (l—I-lsgn ) (Ztr A2>

a,B

For future use, we shall prove Proposition (3.4)(i).

Proof of Proposition (3.4)(i). Let A, B, C be mutually distinct. A simple
computation shows that

EKap —26nKapac +1°Kac
& +n?

for any real numbers &, 7. Since a < K(ea,&ep + nec) < b, we obtain

K(ea,&ep +nec) =

)

(Kap — a)&® — 26nKapac + (Kac — a)n® > 0,
(b— Kap)€® + 2enKapac + (b — Kac)n* > 0,

for all £, € R, which implies that

(3.7) |Kapac| < \/(KAB —a)(Kac — a),
(3.8) |Kapac| < \/(b_KAB)(b_KAC)'
Since

(3.9) VKas — ) —a) < PAET 20220
and

(3.10) o= Kap)(b— Kao) < 2= KA; —fac

we conclude from (3.7) and (3.8) that
b—a

(3.11) |Kapac| <

Equality in (3.11) implies that all the above inequalities become equalities.
In particular equality holds in (3.9), which shows that K45 = Kac. O

To estimate the right hand side of (3.2), we will study each term sepa-
rately. The integral inequality of the following lemma is a generalization of a
corresponding inequality in Xu’s paper [11], which is a key step in the proof
of Theorem (1.3).
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Lemma 3.12 (see [11]).

LA X s - mk, - n k00 > - [ Epo -

i,4,k,c
where E(n,p) is given by (1.2).
Proof. 1t is straightforward to verify that E ( (h¢x)® = h§ Ky — he K20

1,4,k

is a globally defined function, and hence, the integral of the left hand side
of the inequality makes sense.
Next, we claim that

(3.13) = > (MG K5+ heK) = > (WK + e Koy) — div V,

Jij
i,k 4,5,k

where V is the globally defined vector field

V= Z(h?k mf"ha Zk) k

.5,k

and div V means the divergence of V. For this, fix a point p € M and choose
a local orthonormal frame {e;,... ,e,} in M such that V..e;(p) = 0 for all
i, 7. In p we have

- Z (hi, ﬁ;k + haKzaJkk) Z ek(hf‘kK;‘” + ha Sk) +

4,5,k,a 4,5,k
§ : a «a « a § : o « « o :
+ (hikkK]z] + h'L]kKl]k) (hikkK]zj + hlij’ij‘) le‘/,
i,j,k,a 1,4,k

where ey ( - ) denotes directional derivative, and since p is arbitrary, the claim
is proved.

Using (2.4), Proposition (3.4), Lemma (3.1) and the fact that tr ¢, = 0
for all «, we have

(314) Z hzkk J'L] = Z (hzki - Kl?ik)Kﬁj
i,7,k,a i,7,k,a
= - Z km kzk Kﬁ]
i,5,k,c

- _Z (Z JU)

—%pn(n —1)%(b—a).

v
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On the other hand, using (2.4) and Proposition (3.4), we obtain

(3.15)
1
S+ Y hKG >~ Y (KD’
4,5k, 3,5k, i,7,k,a
1 1
>0 > (KG) -5 XD (K
a 4,7,k distinct a  i#£j

> —%pn(n —1)(n—2)(b—a)*— %pn(n —1)(b—a).

The conclusion now follows from (3.13), (3.14) and (3.15), by using Green’s
divergence theorem. [l

Lemma 3.16 (see [11]).

> (WEh K+ hGhoa KD + D0 hGRLKG,

i.5,k,m,c .3,k 8

> nalof? — S(n = 13— 1)(b - @] AP

Proof. Fix a vector e, and let {e;} be a frame diagonalizing the matrix (hg})
with eigenvalues A, i = 1,... ,n. This frame also diagonalizes (¢;), with
eigenvalues u® = (h,e,) — A?. By Proposition (3.4), we have

(3.17)
apf gra B ya o
Z hishe Kgr; = Z PN K G
i,4,k,0 i,k,83

2 (03
>- Y - ol

i#k,B#a
1 1 1
> - ~(b—a) ((n—1)2(R)* + (n—1)"2(A9)?
#;ﬂg( ) (0= DL + (n = 1)7E0)?)
2—%@—1)%@—@)2&,4;

BFa
- %(n D3 —1)(b—a) tr A2,
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On the other hand, using the fact that tr ¢, = 0, we have

(3.18)
D (W K + Wby Ki) = Y () Kjg, + ) MATKE,

i,5,k,m i,k i,k

== Z (AF = A2)* Kp
=35 Z Kllczk
ay (u—pp)?

i,k
_ 2
=na tr ¢;.

>

M\’—‘

The lemma now follows from (3.17) and (3.18). u

Lemma 3.19.

— > SRR = =D (tr dads)® — n*H* — 2ntr ¢;.

1,5,k 4,0 a,B

Proof. If H = 0, we have ¢, = —A,, for all a, and thus

Z ha e hﬁ hfz = - Z(tr Ao Aﬂ)z == Z(tr ¢a¢'8)27

4,7,k Lo, 3 o, a,3

which proves the lemma in this case. If H # 0, choose a local orthonormal

frame {e,11,... ,€ntp} such that e,.; = h/|h|. With this choice we have
i = HId— A, .1,
(3.20) Pot1 i
Go = —Aa, a>n+1
and
tr A1 = nH,
(3.21) O =0
tr A, =0, a>n+1.

Furthermore, since e, is a parallel direction, we have [A, 1, 45] = 0, and
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thus [¢,41,¢s) = 0 for all . Using (3.20) and (3.21), we have

— > hShg RO, = = (tr ALAp)?

@9,k 4,03 o,
=— Y (tradp)’—2 > (tr(HId — ¢ni1)da)’ — (tr(HId — ¢i1)?)°
a,B>n+1 a>n+1
= Z (tI‘ ¢a¢ﬁ)2 -2 Z (H tr ¢a —tr ¢n+1¢o¢)2
a,B>n+1 a>n+1
— (tr(H*Id — 2H$n 11 + ¢;,,1))"
== Z (tr d)a¢ﬁ)2 -2 Z (tI‘ ¢n+1¢a)2 - (nH2 +tr ¢121+1)2
a,B>n+1 a>n+1
= — Z(tr Gads)® —n’H* — 2nH?tr ¢7,,
a,B
= — > (tr dup)® —n*H* —2ntr ¢},
a,B
and the lemma is proved. [l

Lemma 3.22.

nin—2
S e hshong > — 22 6 6P 4 2nlgnl? + nE2|G + n2H

i,5.k.L,a,8 Y, n(n —1)

Proof. Since the inequality is obvious if H = 0, we can assume H # 0. As
in the previous lemma, choose a local orthonormal frame {e, 1,..., €4}

so that e, 1 = h/|h|. Then (3.20) and (3.21) hold, and we have

(3.23)
S RS hSRO, = 3 (tr Au)(tr A,A2)

.9,k 40,8 a,B

= nHZtr A, A2

=nH Z tr(HId — ¢py1)d +nH tr(HId — ¢nia)’

a>n+1
— 2 2 2
=nH tr ¢, —nH tr Pp10s
a>n+1 a>n+1

+nH tr(H*Id — 3H?¢, 11 + 3HP2 1 — @2 ,1)
=nH? Z tr ¢ — nHZtr Gpi10> +n*H* + 3nH? tr gf)iﬂ
a>n+1 a

=nH?|¢|* — nHZtr Gni10> +n*H* + 2nH? tr ¢

n+1-°
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Fix a and choose an orthonormal frame {ej,...,e,} such that g/)Z'H =
uitt s, and ¢ = pi di;. This is possible since ¢, and ¢, commute.

Using Proposition (3.5) and the fact that tr ¢, = 0 for each «, we have

tr dni10s = > (ud)pur ™!

i

1/2
n—2 a2 nt1\2

3 K2

—2
= mmﬂ%\
and so
(3.24) >t gugig? < \/:(;721)1%+1| 6.

The lemma now follows from (3.23) and (3.24) if we observe that |¢,| =
H|¢, 11| and H?tr ¢i+1 =tr ¢i21 = ’¢h|2' O

We can finally prove Theorem (1.13).

Proof of Theorem (1.13). Integrating (3.2) and using Stokes’s theorem, we
obtain from Lemmas (3.12), (3.16), (3.19) and (3.22) that

(3.25)

0> /M {—E(b—a)Q—{—na’QﬁP_z(n_l)é(p_l)(b_a)‘AF_

M2 o

Vn(n—1)
BP9 + 3l A7~ S(0r 60007},

o, a,B

since

S otr[Aa, AP == > (RHG, — RSB (WG RS, — RSRG).

a,B i,5,k,¢00,8

If H =0, we have ¢, = —A,, for all a, and from Proposition (3.6) we obtain

Ztl‘[Aa,Aﬁ]Z - Z(tl‘ ¢o¢¢ﬁ)2 == ZN(¢Q¢6 - ¢6¢0¢) - Z(tr ¢a¢ﬁ)2
a,B

o, o, a,B
1 2
> — (1 +t5 sgn(p — 1)) (za: tr qﬁi)

_ (1 + %sgn(p — 1)) .
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If p =1, we clearly have
Ztr[Aoc:Aﬁ]z - Z(tr ¢a¢ﬁ)2 = _‘¢|4'

a,3 a,B
Suppose now that H # 0 and p > 2. Choose {e, 1,...,€,4+,} such that
ent1 = h/|h|. So [A,41,As] = 0 for all 3, (3.20) holds and we obtain

(3.26) Y tr[Aa, Ag* = D (tr ¢ats)?=— D> N(¢uds — dsda)

a,( a, a,f>n+1
- Z (tI‘ ¢a¢6)2 —2 Z (tr ¢n+1¢a)2 - ’¢n+1’4'
a,B>n+1 a>n+1

Applying Proposition (3.6) for the matrices ¢, 2, ... , ¢nip We have

(3.27)
= X N(@ats—da0a) = D (ir udy)’
a,f>n+1 o,f>n+1
1 2
>—(1+ =sgn(p—2) ( t ¢§>
( 2 P > a;—l '

—— (14 5o - 2)) (0 = 0w

On the other hand, by the Cauchy-Schwarz inequality we obtain
(tr ¢n+1¢a)2 > (tr ¢i+1)(tr Qﬁ) = ‘¢n+1’2|¢a‘27

and thus

(3.28) —2 > (tr pni10a)® > —2|¢n1 (|0 — |Pn1]?]

a>n+1

By (3.26), (3.27) and (3.28), we have

S trlAs Al = Y (tr 6090 2 — (14 5 seulp — 2)) (67 60’

o, a,B
= A998 ~ Buial?) = 19l
—— (14 gsmt-2) o
b2 sn(p — Dlowa PP — [6a]?).
Since

(3:29) 5 8(p — 2)l60 1 PRISP — |61 20,
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we conclude that

> 1l Aaf? = Yt 600 = — (14 5 selp—2)) of"

a,B a,B

Therefore, in any case we have

(3’30) Ztr[Aav AB]Z - Z(tr ¢a¢ﬂ)2 > _Hp,h‘¢|47

a,3 a,B

where 6, is given by (1.15). The conclusion of the theorem now follows
from (1.9), (3.25) and (3.30). u

4. Proof of Theorems (1.23) and (1.32).

In order to prove Theorem (1.23), we will need the following results:

Theorem 4.1 [10]. Let M™ be a compact submanifold in S;'? with parallel
mean curvature vector h and R+ = 0. If ¢ satisfies

n(n —2)

(4.2) 9> < n(1+ H?) - NCICE))

|¢h|7

then

(i) |¢| is constant and either |p|*> = 0 (and M™ is totally umbilic) or the
equality in (4.2) holds.

(ii) Equality holds in (4.2) if and only if:
(a) M™ is a Clifford torus S™(ry) x S""™(rs) C S/ e - — 8P,

1/2 1/2
where r; = (ﬁ) and ry = (%) .

(b) For every H,, 0 < H, < H, M™ is an H,(r)-torus S™ '(r) x
St(ry) C Sf:ég — —S*P, where H> + H? = H?, r? +r? =
(1+H2)™. Ifn >3, we have r* < 2=2(1+ HZ2)™', and if n = 2,
we have r* # (14 HZ)™'.

A well-known theorem of Chern-do Carmo-Kobayashi [4] states that if
M?" is an oriented closed minimal submanifold in the unit sphere S7'** such
that |A|> < n/(2 — 1/p), then either M is the unit sphere S}, one of the
Clifford minimal hypersurfaces in S7*', or the Veronese surface in S?. For
p > 2, AM. Li and J.M. Li [8] obtained the Chern-do Carmo-Kobayashi’s
Theorem under the weaker assumption that |A|? < 2n/3. More precisely,
they proved the following theorem:

Theorem 4.3 [8]. Let M™ be an n-dimensional compact minimal subman-
ifold in S, p > 2. If |A]? < 2 everywhere on M, then M is either a
totally geodesic submanifold or a Veronese surface in S;.
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An immersion f: M™ — N™'P is pseudo-umbilic if the mean curvature
vector h # 0 is an umbilical direction. The following theorem was proved by
S.P. Chen ([3], see also [10]).

Theorem 4.4 [3]. Let M™ be a compact pseudo-umbilical submanifold in
SPPp > 2, and suppose the mean curvature vector h is parallel in the
normal connection. If

p—1 2
4.5 2 < 1+H
then
(i) Fither |¢|*> = 0 (and M™ is totally umbilic) or the equality holds in
(4.5).

(ii) Equality holds in (4.5) if and only if:
- (a) p = 2 and M™ is a Clifford torus S™(ry) x S""™(ry) C
n+1 n—+2 m 1/2 n—m 1/2
ST he - —S77°, wherer; = (m) andry = (m) .
— (b) n=2, p=3 and M is the Veronese surface M> C St, ;> —

—S7.

Remark 4.6. The proof of Theorem (4.4) gived by Santos [10] uses the
theorem of Chern-do Carmo-Kobayashi [4]. If instead of this theorem one
uses Theorem (4.3), the same proof shows that hypothesis (4.5) in Theorem
(4.4) can be replaced by

n(1+ H?)

(4.7) 9] < T+ Lsgu(p—2)°

We can now prove Theorem (1.23):

Proof of Theorem (1.23). Since ¢ < Ky < 1, we have ¢ < a(z) < b(z) < 1,
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for every x € M, and from (1.18) we obtain
(4.8)
2 1
0> / { ~ B~ a' ~ S~ 1)} (p - )b~ a) B
M

(B = 2 - 1) p - 1)(b - )P

3
n(n —2) 3 4
- T HIOl 0,01}

> /M { —E(1 —c¢)? - %n(n— 1)2(p—1)(1 — c)H?

F(netnH? 2 (n—DHp - 1)(1 - e))|o
n(n —2)

Tty 190 = Gpalét'} = [ Prcoll

where Py . ,(z) is the polynomial given by (1.22).

Now we want to show that the polynomial Py . ,(z) of fourth degree in z
has exactly two positive real roots. By observing the sign of the coefficients
of Py.p(z), we conclude from the Descartes’ rule of sign (see [9], page
60, Corollary 35) that Py .,(z) = 0 has at most two positive real roots
z1(c) < z3(c). Since Py . ,(0) < 0and Py . ,(xr) - —o0 as © — 00, it suffices
to show that Py . ,(x,) > 0 for some z, > 0. We claim that

Puey (B (1= 0)F) > 0.

A simple computation shows that

Py, (BH(1 =) = (1- c){ — F(n,p, H)(1 - ¢)

(4.9) - mﬂEiu _ o)t +G(n,p, H)}
—(1-e)J(1—e),

where F(n,p, H) and G(n,p, H) are given by (1.19) and (1.20), respectively,
and

n(n —2)

J(1—c¢)=—F(n,p,H)(1—c)— No )

HE*(1—¢)? +G(n,p, H).

The hypothesis (1.24) implies that v/1 — ¢ < A(n, p, H) (note that A(n,p, H) >
0 since G(n,p, H) > 0), and it is easy to see that J(1 —¢) > 0. The claim
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now follows from (4.9). We have, therefore, exactly two positive real roots
z1(c) < xo(c). Furthermore, we have Py . ,(z) > 0 for every x € [z, z2].
Using condition (1.25), it then follows from (4.8) that

0> [ Pucy(el) >0

and, therefore, Py .,(|¢|) = 0. So, all the above inequalities become equali-
ties. From the second equality in (4.8), we obtain

(4.10) xeM

a(z) =c.

On the other hand, the fourth equality in (3.14) and the fourth equality in
(3.18) give, respectively,

(4.11) | K5 = 7( —a), for all @ and 7 # j

(4.12) K}, = a, for some pair (k,¢),k # (.
Using (4.11), (4.12) and the equality case in Proposition (3.4)(i), we have
Kag = Kkg = a, for all «,

and from (3.7) we obtain |Kj},| = 0, for all a. It then follows from (4.10)
and (4.11) that ¢ = 1. Since N™*? is complete and simply connected, we
have N7 = §/'*P,

Condition (1.25) now becomes
(4.13) 61> < Bu.

where

o2 g +\/ n2° [2 4 dn(1 + H2)0,,

(4.14) /Bu vrnl o :

and from (4.8) we conclude that either |¢|?> = 0 (and M™ is totally umbilic)
or |¢]* = Bpp.
We now characterize all M" for which |¢|*> = By ,. If p =1, we have

_ n(?; 2)1 +\/n(n 22 [2 4 4n(1 + H?)
(4.15) o] = =V Bu,
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and the conclusion follows from Theorem (1.12). If H = 0 and p > 2, we
have |A]? = |¢|*> = 2n/3, and the conclusion follows from Theorem (4.3). If
p > 2 and H # 0, we observe that equality in (1.17) implies that n = 2 or
|pni1| = |#], while equality in (3.29) gives that p = 2 or |¢, 1] = 0.

We now investigate all possibilities. If p = 2 and n = 2, we have Rt =0
(since h is a parallel direction) and

|6 = 2(1 + H?),

and the conclusion follows from Theorem (4.1). If p = 2 and |¢, 11| = |¥],
we have |A, 2| = |¢ni2| = 0, which means that N* C span{e,;}, where

N' = span{a(X,Y); X, Y € TM}

is the first normal space. Since e, is a parallel direction, it follows from
a Theorem of Dajczer [5] that the codimension can be reduced to p = 1.
Furthermore, equation (4.15) is satisfied and then the conclusion follows
from Theorem (1.12). Finally, if |¢,1] = 0 and n = 2, the immersion is
pseudo-umbilic, and |¢|* = By, becomes

o = 2L HD)
1+ isgn(p—2)’

and the conclusion follows from Theorem (4.4) (see Remark (4.6)). The
proof of the Theorem is now complete. [l

Proof of Theorem (1.32). From hypothesis (1.31) we obtain

By
which implies that
(4.17) Ei(1—¢) < By — (n+ E?)(1—c¢).

On the other hand, a simple computation gives

By
1-X(n,,H) <1— ———
(n7 ) ) — n + 2E1/2
and our assumption (1.31) implies that
(4.18) 1-X(n,1,H) < Ky < 1.

If we show that

(4.19) Pi.cn (E%(1 - c)%) >0
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and

(4.20) Py (\/BH — (n+ BY2)(1— c)) >0,

we conclude that Py .1(z) = 0 has exactly two positive real roots z; < s,
and that

(4.21) 21 < BY(1- o)} < /By — (n+ BY2)(1 - ¢) < 2,

and the conclusion of the theorem then follows from (1.33), (4.18), (4.21)
and Theorem (1.23).

To complete the proof, it remains to prove (4.19) and (4.20). Inequality
(4.19) follows from (4.18) and the proof of Theorem (1.23). To prove (4.20),
we set 3 =n + E'/? and we have

Prea (V/Bu = =) = (Bu — 61— ) { = (B — 51 - )
- MH\/WJF n(H? + 1)}
~ n(Bu — B(1 - ¢)) + ne(By — A1 - ¢)) — B o)?
> (B =61 - )|~ B = S,

+ (Bu — (1 = ¢))B(1 = ¢) =n(Bu — B(1 = ¢)) + nc(By — B(1 - ¢))
—E(1—-c¢).

HBY? +n(H? + 1)}

Since /By is the positive root of the polynomial Py (z) defined by (1.11),

it follows from (4.17) that

PH,c,l ( BH — ,6(]. — C)) 2 (BH — /6(1 — C))[ﬁ(l — C) -n+ nC] — E(l — 6)2
= (By —B(1—¢)EY*(1 —¢)— E(1—c)?

> 0.

The proof of the theorem is now complete. [l
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